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1 Functions of bounded variation

We say that a function f: A - RU{o0}, A C R, is increasing if z < y implies
F(z) < F(y), namely if f is order preserving.

Let a < b be real. For a function F' : [a,b] — R, define Vg : [a,b] — [0, 0]
by

Vr(z) = sup D IF(t) = F(t;1)l,
N,a=to<t1<---<tn=b j

called the variation of F'. It is apparent that Vp is increasing. If Vg is bounded,
we say that F has bounded variation. Vp being bounded is equivalent to
Vr(b) < co. If F is increasing then

so in particular an increasing function has bounded variation.
Define Py : [a,b] — [0, 0] by

Pp(x) = sup Z F(t;) — F(tj-1),

Noa=to<t <<t =b g, S0
called the positive variation of F', and define N : [a,b] — [0, 00] by

Nr(z) = sup Y —(F(t;) = Fltj-1)),

N,a=t t e Z<tn=b
ATTOSTS T SINTY B ) <F(t-1)

called the negative variation of F. It is apparent that Pr and Np are in-
creasing.

‘We now prove the Jordan decomposition theorem. It shows in particular
that if F' has bounded variation then Pr and N are bounded.



Theorem 1 (Jordan decomposition theorem). If F : [a,b] — R has bounded
variation, then for all x € [a,b),

VF(x) = PF(SE) + NF((E)

and

F(z) — F(a) = Prp(xz) — Np(x).
Proof. For € > 0 there is some L and some a = 19 < t; < --- < rp = x for
which

> F(rj)—=F(rj1) > Pe(z) —
F(rj)>F(rj-1)

and there is some M and some a = sg < s1 < - -+ < §); = x for which

Z —(F(sj) = F(sj-1)) > Np(x) — €.

F(s;)<F(sj-1)

Leta:t0<t1<"'<tN:.’EWith{to,...,tN}:{To,...,TL}U{S(),...,S]\/[}.
As {To,...,TL}C{to,...,tN},

> Fltj)-F(t;-)> >, F(r)—F(rj)

F(t;)>F(tj—1) F(rj)>F(rj—1)
and as {sg,...,snm} C {to,---,tNn},

Y —(Fty)—F(ti-1)> Y, —(F(s;) = Fsj).

F(t;)<F(tj—1) F(s;)<F(sj-1)

Hence
Vi(z) > Y |F(t;) — F(tj-1)| > Pr(z) + Np(2) — 2,
J
and as this is true for all € > 0 it follows that Vp(z) > Pp(x) + Np(x). And
sup(f +¢g) <sup f +supg, so Vr(z) < Pp(x) + Np(z) and therefore Vp(z) =
Pp(z) + Np(x). Now,

F(z) - F(a) = ZF(fj) — F(tj-1)
= Y, Flty-F)- Y, —(Ft;) = Ft;-),
F(tj)>F(tj—1) F(t;)<F(tj-1)

which implies
|F(x) — F(a) — Pp(z) + Np(z)| < 2,

whence F(z) — F(a) — Pr(z) + Np(z) = 0. O



The Jordan decomposition theorem tells us that if F' has bounded variation
then
F(z) = (Pr(z) — F(a)) — N (),

and as z — Pp(z) — F(a) and x — Ng(x) are increasing, this shows that F' is
the difference of two increasing functions.

The following says that a function of bounded variation is continuous at a
point if and only if its variation is continuous at that point/[l]

Theorem 2. If F : [a,b] — R has bounded variation, then F is continuous at
x if and only if Vi is continuous at x.

Theorem 3. If F : [a,b] — R has bounded variation then there are at most
countably many x € [a,b] at which F' is not continuous.

Proof. According to the Jordan decomposition theorem, Vg = Pgp + N, so
it suffices to prove that if f : [a,b] — R is increasing then there are at most
countably many z € [a,b] at which f is not continuous. Let f(a™) = f(a) and
fora<xz <blet

fl@™) = Tim_ f(y),

y—rx,y<x

and let f(bT) = f(b) and for a < z < b let

+\ — : .

fa) = lim  fy);
this makes sense because [ is increasing, and also because f is increasing we
have f(z7) < f(z) < f(z 7). Let E be the set of those z € [a,b] at which f is
not continuous. If € E, then f(2~) < f(zT) and hence there is some r, €
(f(z7), f(t)NQ. If z,y € E, x < y, then as x < y we have f(zT) < f(y™),
and as z,y € E, f(z7) <1y < f(z7) and f(y~) <1y < f(yh), so ry < 1y
Therefore x +— r, is one-to-one £ — Q, showing that F is countable. O

2 Coverings

The following is the rising sum lemma, due to F. Rieszﬂ (We don’t use the
rising sun lemma elsewhere in these notes, and instead use the Vitali covering
theorem, stated next.)

Lemma 4 (Rising sun lemma). Let G : [a,b] — R be continuous and let E
be the set of those x € (a,b) for which there is some x < y < b satisfying
G(y) > G(x). G is open, and if G is nonempty then G is the union of countably
many disjoint (ag,br) C [a,b]. If ax > a then G(b;) = G(a), and if ap = a
then G(br) > G(ag).

1V. 1. Bogachev, Measure Theory, volume 1, p. 333, Proposition 5.2.2; http://individual.
utoronto.ca/jordanbell/notes/helly.pdf} p. 6, Theorem 9.
“Elias M. Stein and Rami Shakarchi, Real Analysis, p. 118, Lemma 3.2.
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Proof. If xy € E, there is some zy < yo < b with G(yg) > G(zp). Writing
e = G(yo) —G(xzg), as G is continuous there is some ¢ > 0, (z¢g—4, z9+9) C [a, b],
such that if | — z¢| < 0 then |G(z) — G(zg)| < €, so

G(yo) — G(z) = e+ G(x0) — G(x)
> e—|G(x) — G(zo)]
> 0.

Thus if € (zg — J, 20 + 0) then G(yo) > G(x), which shows that E is open.
Suppose now that E is nonempty, and for x € E let

Ay, =inf{t eR: (t,x) C E}, By=sup{teR: (z,t) C E}.

As E is open, there is some §, > 0 such that (x—09,,2+0,) C E,s0 A, < x—d, <
x and B, > x + 6, > x. Furthermore, as F is open it follows that A, ¢ E and
B, ¢ E. For z,y € E, either (A, B;) N (Ay,By) = 0 or (A;, By) = (Ay, By),
and as (A, B;) contains at least one rational number,

E= |J (As By).

rc€EENQ

As ENQ is countable, there are pairwise disjoint (ay, by) C [a,b], ar, &€ E, by € E,
k € I, such that

E= U(ak,bk).

kel

For k € I, suppose by contradiction that G(by) < G(ay). Let

G(ax) + G(bg) }

Ck:{CG(ak,bk)IG(C): 5

which is nonempty by the intermediate value theorem. Let ¢; = sup Cy, and
because G is continuous, ¢, € C. ¢x = by would imply G(bg) = w,
contradicting G(by) < G(ay); hence ¢ € (ag,br) C E. Then because ¢, € E,
there is some ¢, < d < b satisfying G(d) > G(cx). If d > by then as by €
(a,b) \ E it holds that G(d) < G(bx) < G(cx) < G(d), a contradiction, and if
d = by then G(d) = G(br) < G(ci) < G(d), a contradiction; hence d < b.
As G(d) > G(cx) > G(by), by the intermediate value theorem there is some
¢ € (d,bg) such that G(c) = G(ci). But then we have ¢ € Cj, and ¢ > ¢,
contradicting ¢ = sup C. Therefore,

G(bk) > G(ak).

If ap # a then ai € (a,b) \ E, which means that there is no ar < y < b
satisfying G(y) > G(ax). Hence G(by) < G(ax), which shows that for ai # a,
we have G(b;) = G(ag)- O



Let A be Lebesgue measure on the Borel o-algebra of R and let A* be
Lebesgue outer measure on R.

A Vitali covering of a set £ C R is a collection V of closed intervals such
that for € > 0 and for € F there is some [ € V with z € T and 0 < A\(]) < e.
The following is the Vitali covering theoremﬂ

Theorem 5 (Vitali covering theorem). Let U be an open set in R with A(U) <
0o, let E C U, and let V be a Vitali covering of E each interval of which is
contained in U. Then for any € > 0 there are pairwise disjoint I,...,I, € V
such that

MIENUL | <e
j=1

3 Differentiability

Let F : [a,b] — R be a function. The Dini derivatives of F' are the following.
D~ F(z): (a,b] - RU{oo} is defined by

F h)—F
D™ F(z) = limsup (z+h) (:1:)7
h—0,h<0 h

D_F(z) : (a,b] = RU{—o0} is defined by

D_F(z) = liminf LEFH) = F@)
h—0,h<0 h

D F(z) : [a,b) = RU{oo} is defined by

F h)—F
DT F(x) = limsup (z+h) (z) ,
h—0,h>0 h

D, F(z):[a,b) > RU{—oc0} is defined by

... Flx+h)—-F(z)
DyF(w) = hh—>n(%,1hn>f0 h '

For x € [a,b], the upper derivative of F at x is

DF(z) = limsup Floth) = Fz) ,
h—0,h£0 h

and the lower derivative of F' at x is

DF(z) = liminf L& = F@)
h—0,h7#0 h

Shttp://individual .utoronto.ca/jordanbell/notes/vitali.pdf
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Let
£ ={z€(a,b]: D"F(x) = D_F(x)},

R = {z €[a,b): DTF(z) = D, F(z)}.
For x € Z, the left-derivative of I at x is
F' (z) = D F(z) = D_F(x),
and for x € #Z, the right-derivative of F' at x is
F\ (z) = DV'F(z) = DyF(x).
For z € (a,b), for F to be differentiable at x means that
—00 < D_F(z) =D F(z) = DyF(z) = DY F(z) < <.

We prove that the set of points at which F is left-differentiable and right-
differentiable but F' (z) # F/ (x) is Countableﬁ

Lemma 6. {x € L NZ : F' (x) # F| (x)} is countable.
Proof. Let Q = {ry : k > 1}, ry # rj for k # j, and let
E={zecZnNZ:F (z)<F_(x)},

For x € E, as F' () < F (x) there is a minimal k with F’ (z) < ry < F(z)
As rp > F’ (x), there is a minimal m such that r,,, < z and for all ¢t € (r,,,
EW=F=) . and hence F(t) — F(x) > ri(t — x). Likewise, as 7, < F,(

t—x
there is a minimal n such that r, > x and for all ¢t € (z,7,), w > 7

and hence F(t) — F(x) > r(t — x). Hence

3
Y

z)
z)

F(t) — F(z) > ri(t — ), t € (rm,rn),t # x. (1)

Now for distinct x,y € E suppose by contradiction that (k(x), m(z),n(z)) =
(k(y), m(y),n(y)). As x,y € (7, ry), using (1) with t =y and t = z we get

F(y) = F(x) > r(y =), F(z) = F(y) > ri(z - y),
yielding rip(x —y) < F(z) — F(y) < ri(z — y), a contradiction. Therefore
x + (k(z),m(z),n(x)) is one-to-one E — N3, for N the positive integers, which
shows that E is countable.
We similarly prove that
{eeLnNZ:F (x) > F_(2)}

is countable. O

4V. I. Bogachev, Measure Theory, volume 1, p. 332, Lemma 5.1.3.



4 Differentiability of increasing functions

We now use the Vitali covering lemma to prove that the Dini derivatives of an
increasing function are finite almost everywhere[’]

Lemma 7. Let F : [a,b] — R be an increasing function and let
A” ={z € (a,b]: D" F(z) =0}, A_ ={x € (a,b] : D_F(x) = —o0},

AT ={z €[a,b): DY F(x) =0}, Ay = {x € [a,b) : Dy F(x) = —o0}.
Then
MN(AT) =0, (A) =0, (A1) =0,\*(4_) = 0.
Proof. Because F' is increasing, for any h # 0, w
A_ =0 and A, = . Suppose by contradiction that

> 0, and therefore

A(A7)=a>0.
As a > 0, there is some 7 > 0 satisfying

ro

5 > F(b) = Fla).

For z~, because D~ F(x) = co there is an increasing sequence t, € [a,b] that

tends to = such that for each k> 1,

F(x) = F(ter)

> 2
:L’—tz’k =T ()

Let
V={[ltur,x] :x € A7 k> 1},

which is a Vitali covering of A~, and so by the Vitali covering theorem there
are pairwise disjoint [t,, r,,z;] € V, 1 < j < n, such that

n
* — (07
M| A \jg[txj,kj,xj] <3

and then

-

(A7) <X AN ULty 2] | X[ U oykyo 2] ]
j=1

j=1

5Russell A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, p. 55,
Lemma 4.8.



hence

/\([twj7kj7$jb =A U[tﬂ:j;]fj’xj]

1 Jj=1

n

J

(A7) = A [ A O[twj,xj]

j=1

Y%

That is,

Now, by @), F(x;) = F(ta,x,) > r(zj — ta, x,), SO

S F () = Fltayn,) = > r(ay — ta, 1) > % > F(b) — F(a).

j=1 j=1
But because the intervals [t x;, ;] are pairwise disjoint and F' is increasing,
S (F(xj) = F(te,x;)) < F(b) — F(a), contradicting the above inequality.
Therefore A\*(A~) = 0.
Suppose by contradiction that
N(AT)Y =a>0.

As a > 0, there is some 7 > 0 satisfying
ro

5 > F(b) — Fla).

For z € AT, because DT F(z) = oo there is a decreasing sequence t, 1 € [a, ]
that tends to x such that for each k > 1,
F(ta) - F(z)

>r. 3
P (3)

Let
V=A{lz,tyx] iz € AT k> 1},

which is a Vitali covering of AT, and so by the Vitali covering theorem there
are pairwise disjoint [z, x;] €V, 1 < j < n, such that

£ " «@
A A+\U[g;j,twj,kj] <3

j=1



and then

AT <N AT Ul tay )] |+ [ U gty )]
j=1 j=1
hence
Z)\([SC], zj,k 7 = U :17]’ zj,k J
j=1
> N(AT) =2 [ AT [t ]
j=1
> o — &
5"
That is,

j=1 j=1

But because the intervals tz, ;| are pairwise disjoint and F' is increasing,

[z,
Z;—l:l(F(tzj,kj) — F(zj)) < F( ) F(a), contradicting the above inequality.

Therefore \*(AT) = 0. O

We now prove that an increasing function is differentiable almost every-
where[]

Theorem 8. Let F : [a,b] — R be increasing and let
E={x€ (a,b): —00 < D_F(x) = D F(x) = DyF(z) = DY F(z) < <}.
Then X*([a,b] \ E) = 0.

Proof. Let
A={z € (a,b): DyF(z) < D" F(x)},

and suppose by contradiction that A*(A) > 0. Since

A= U {z € (a,b): DyF(z) <p<q< D"F(z)},
p,q€Q,p<q

SRussell A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, p. 55,
Theorem 4.9.



which is a union of countably many sets, there are some p,q € Q, p < ¢, such
that A*(B) = 8 > 0,
B={x € (a,b): D, F(x) <p<q<DTF(x)}.

Let € > 0. There is an open set U C (a,b) with B C U and A(U) < \*(B) +¢e=
B+ €. For x € B, because D F(z) < p and because = belongs to the open set
U, there is a sequence t, ;, € (z,x+1/k), [x,t; 1] C U, such that for each k > 1,

F(tyr) — F(x)

<Dp.
th—x P

Then
V={[z,tys]: 2 € B,k >1}

is a Vitali covering of B, so by the Vitali covering theorem there are pairwise
disjoint [x},t,; x,] € V, 1 < j < m, such that

A* B\U[xj,twj’kj] <€,
j=1

and then, as the intervals [z, ,] are pairwise disjoint and are all contained
inU,

Z(F(t$j7kj) - F($])) < Zp(txj,kj - Z‘j)
=0 Y Aty )
:p)\ <U [xj7tz]7k]:|
j=1
<pA\U
<p(B+e)

Let C' = BNUj_ (), ts, k,), for which

B=A(B) <X(C)+ X B\O[l‘j,tl«j)]fj] < AN(C) + €,

j=1

SO

A(C) > B —e
For y € C there is some i for which y € (z;,t4, k,), and because DT F(y) > ¢
there is a sequence uy; € (y,y + 1/1), [y, uyi] C (@i, ts, k), such that for each
1>1,
Fluyy) = F(y)

Uyl — Y

> q.

10



Then
W ={ly,uy,]:y € B,l >1}

is a Vitali covering of C, so by the Vitali covering theorem there are pairwise
disjoint [y, uy; ;] € W, 1 < j <n, such that

n
ijauy],] 67

SO
A* ( <)‘* U Y Uyl ] +A U[ijuyj,lj] <€+Z>\([yj7uyjalj])7
j=1 j=1 j=1
and then
> (Fluy, 1,) ) > qlug, 0, —y5) > (A (C) — €) > q(B — 2¢).
j=1 j=1

Now for 1 <i <mlet mj = {1 < j < n:lyj,uy,,] C (@it k,)} Because F
is increasing, if j € m; then F'(uy, 1) — F(y;) < F(te, ;) — F(2i), and because
each [y;,uy; 1;] is contained in some (z, tm“kl),

M:

Q(ﬁ - 26) (F(uyj,lj) - F(y]))
J=1
= Z Z iy, 1,) = F(y5))
< Z(F(tafhki) - F(xi));

@
Il
—

the last inequality also uses that the intervals [y;,u,, ;] are pairwise disjoint.
But we have found Y/, (F (s, 1) — F(2:)) < p(B+€), so q(8—2¢) < p(B+e¢).
As this is true for all € > 0, it holds that ¢8 < pS, and as 5 > 0 we get ¢ < p,
contradicting that p < ¢. Therefore A*(A4) = 0. O

11
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