C^k spaces and spaces of test functions

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto

April 10, 2014

1 Notation

Let N denote the set of nonnegative integers. For $\alpha \in \mathbb{N}^n$, we write

$$|\alpha| = \alpha_1 + \cdots + \alpha_n,$$

and

$$\partial^\alpha = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}.$$ \hfill (1.1)

We denote by $B_r(x)$ the open ball with center x and radius r.

2 Open sets

Let Ω be an open subset of \mathbb{R}^n and let k be either a nonnegative integer or ∞. We define $C^k(\Omega)$ to be the set of those functions $f : \Omega \to \mathbb{C}$ such that for each $\alpha \in \mathbb{N}^n$ with $|\alpha| \leq k$, the derivative $\partial^\alpha f$ exists and is continuous. We write $C(\Omega) = C^0(\Omega)$. \hfill (2.1)

One proves that there is a sequence of compact sets K_j such that each K_j is contained in the interior of K_{j+1} and $\Omega = \bigcup_{j=1}^\infty K_j$; we call this an exhaustion of Ω by compact sets. For $f \in C^k(\Omega)$, we define

$$p_{k,N}(f) = \sup_{|\alpha| \leq \min(k,N)} \sup_{x \in K_N} |(\partial^\alpha f)(x)|;$$

this definition makes sense for $k = \infty$. If f is a nonzero element of $C^k(\Omega)$, then there is some $x \in \Omega$ for which $f(x) \neq 0$ and then there is some N for which $x \in K_N$, and hence $p_{k,N}(f) \geq \sup_{y \in K_N} |f(y)| \geq |f(x)| > 0$. Thus, $p_{k,N}$ is a separating family of seminorms on $C^k(\Omega)$. Those sets of the form

$$V_{k,N} = \left\{ f \in C^k(\Omega) : p_{k,N}(f) < \frac{1}{N} \right\}$$

form a local basis at 0 for a topology on $C^k(\Omega)$, and because $p_{k,N}$ is a separating family of seminorms, with this topology $C^k(\Omega)$ is a locally convex space. \hfill (2.2)

Because $p_{k,N}$ is a countable separating family of seminorms, this topology is metrizable. We prove in the following theorem that $C(\Omega)$ is a Fréchet space.

Theorem 1. If Ω is an open subset of \mathbb{R}^n, then $C(\Omega)$ is a Fréchet space.

Proof. Let $f_i \in C(\Omega)$ be a Cauchy sequence. That is, for every N there is some i_N such that if $i, j \geq i_N$ then

$$f_i - f_j \in V_{0,N} = \left\{ f \in C(\Omega) : \sup_{x \in K_N} |f(x)| < \frac{1}{N} \right\}.$$

For each $x \in \Omega$, eventually $x \in K_N$. If $x \in K_N$ and $i, j \geq i_N$, then

$$|f_i(x) - f_j(x)| < \frac{1}{N}.$$

Therefore, $f_i(x)$ is a Cauchy sequence in \mathbb{C} and hence converges to some $f(x) \in \mathbb{C}$. We have thus defined a function $f : \Omega \rightarrow \mathbb{C}$. We shall prove that $f \in C(\Omega)$ and that $f_i \rightarrow f$ in $C(\Omega)$.

Let K be a compact subset of Ω, let $\epsilon > 0$, and let N be large enough both so that $K \subseteq K_N$ and so that $N > \frac{1}{\epsilon}$. For $i, j \geq i_N$,

$$\sup_{x \in K_N} |f_i(x) - f_j(x)| < \frac{1}{N} \leq \epsilon.$$

Let $i \geq i_N$ and $x \in K_N$. There is some j_x such that $j \geq j_x$ implies that $|f_j(x) - f(x)| < \epsilon$, and hence for $j \geq \max(i_N, j_x)$,

$$|f_i(x) - f(x)| \leq |f_i(x) - f_j(x)| + |f_j(x) - f(x)| < \epsilon + \epsilon.$$

This shows that for $i \geq i_N$,

$$\sup_{x \in K} |f_i(x) - f(x)| \leq \sup_{x \in K_N} |f_i(x) - f(x)| \leq 2\epsilon.$$

We have proved that for any compact subset K of Ω, we have $\sup_{x \in K} |f_i(x) - f(x)| \rightarrow 0$ as $i \rightarrow \infty$.

Let $x \in \Omega$, let $\epsilon > 0$, and let N be large enough both so that x lies in the interior of K_N and so that $N > \frac{1}{\epsilon}$. Because $\sup_{x \in K_N} |f_i(x) - f(x)| \rightarrow 0$ as $i \rightarrow \infty$, there is some i_0 so that $i \geq i_0$ implies

$$\sup_{x \in K_N} |f_i(x) - f(x)| < \epsilon.$$

Let $i = \max(i_0, i_N)$. Because f_i is continuous, there is some $\delta > 0$ so that $|x - y| < \delta$ implies that $|f_i(x) - f_i(y)| < \epsilon$; take δ small enough so that the open ball with center x and radius δ is contained in K_N. For $|y - x| < \delta$,

$$|f(x) - f(y)| \leq |f(x) - f_i(x)| + |f_i(x) - f_i(y)| + |f_i(y) - f(y)|$$

$$\leq \sup_{z \in K_N} |f(z) - f_i(z)| + \frac{1}{N} \sup_{z \in K_N} |f(z) - f_i(z)|$$

$$< \epsilon + \epsilon + \epsilon.$$

This shows that f is continuous at x and x was an arbitrary point in Ω, hence $f \in C(\Omega)$.

We have already established that for any compact subset K of Ω, we have $\sup_{x \in K} |f_i(x) - f(x)| \to 0$ as $i \to \infty$. Thus, for any N, there is some j_N so that if $i \geq j_N$ then $\sup_{x \in K_N} |f_i(x) - f(x)| < \frac{1}{N}$. In other words, if $i \geq j_N$, then $p_{0,N}(f_i - f) < \frac{1}{N}$, i.e. $f_i - f \in V_{0,N}$, showing that $f_i \to f$ in $C(\Omega)$.

Theorem 3. If Ω is an open subset of \mathbb{R}^n and k is a positive integer, then $C^k(\Omega)$ is a Fréchet space.

Proof. We have proved in Theorem 1 that $C(\Omega) = C^0(\Omega)$ is a Fréchet space. We assume that $C^{k-1}(\Omega)$ is a Fréchet space, and using this induction hypothesis we shall prove that $C^k(\Omega)$ is a Fréchet space.

Let $f_i \in C^k(\Omega)$ be a Cauchy sequence in $C^k(\Omega)$. f_i is in particular a Cauchy sequence in the Fréchet space $C(\Omega)$, hence there is some $g \in C(\Omega)$ such that $f_i \to g$ in $C(\Omega)$. We shall prove that $g \in C^k(\Omega)$ and that $f_i \to g$ in $C^k(\Omega)$.

For each $1 \leq p \leq n$ we have $\partial_p f_i \in C^{k-1}(\Omega)$, and $\partial_p f_i$ is a Cauchy sequence in $C^{k-1}(\Omega)$. Because $C^{k-1}(\Omega)$ is a Fréchet space, for each p there is some $g_p \in C^{k-1}(\Omega)$ such that $\partial_p f_i \to g_p$ in $C^{k-1}(\Omega)$. Fix p, and let $\alpha \in \mathbb{N}^n$ have pth entry 1 and all other entries 0. Then, fix $x \in \Omega$, and take N large enough so that x lies in the interior of K_N. For each i, define $F_i(t) = f(x + t\alpha)$, for which

$$F_i'(t) = (\nabla f)(x + t\alpha) \cdot \alpha = (\partial_p f_i)(x + t\alpha).$$

For nonzero τ small enough so that the line segment from x to $x + \tau \alpha$ is contained in K_N,

$$F_i(\tau) - F_i(0) = \int_0^\tau F_i'(t)dt,$$

i.e.

$$f_i(x + \tau \alpha) - f_i(x) = \int_0^\tau (\partial_p f_i)(x + t\alpha)dt.$$

Because $f_i \to g$ in $C(\Omega)$ and $\partial_p f_i \to g_p$ in $C(\Omega)$, we have $\sup_{y \in K_N} |f_i(y) - g(y)| \to 0$ and $\sup_{y \in K_N} |(\partial_p f_i)(y) - g_p(y)| \to 0$, from which it follows that

$$g(x + \tau \alpha) - g(x) = \int_0^\tau g_p(x + t\alpha)dt,$$

or

$$\frac{g(x + \tau \alpha) - g(x)}{\tau} = \frac{1}{\tau} \int_0^\tau g_p(x + t\alpha)dt.$$

As τ tends to 0, the right hand side tends to $g_\alpha(x)$, showing that $(\partial_p g)(x) = g_p(x)$. But x was an arbitrary point in Ω, so $\partial_p g = g_p \in C^{k-1}(\Omega)$. Thus, for each $1 \leq p \leq n$ we have $\partial_\alpha g \in C^{k-1}(\Omega)$, from which it follows that $g \in C^k(\Omega)$.

Theorem 2. If Ω is an open subset of \mathbb{R}^n, then $C^\infty(\Omega)$ is a Fréchet space.

Proof. Let $f_i \in C^\infty(\Omega)$ be a Cauchy sequence in $C^\infty(\Omega)$. Thus, for each k, f_i is a Cauchy sequence in $C^k(\Omega)$, and so by Theorem 2 there is some $g_k \in C^k(\Omega)$ for which $f_i \to g_k$ in $C^k(\Omega)$. Define $g = g_0$, and check that $g_0 = g_1 = g_2 = \cdots$, and hence that $g \in C^\infty(\Omega)$.
3 Closed sets

Let \(\Omega \) be an open subset of \(\mathbb{R}^n \) such that \(\overline{\Omega} \) is compact, i.e. \(\Omega \) is a bounded open subset of \(\mathbb{R}^n \). If \(k \) is a nonnegative integer, let \(C^k(\overline{\Omega}) \) be those elements \(f \) of \(C^k(\Omega) \) such that for each \(\alpha \in \mathbb{N}^n \) with \(|\alpha| \leq k \), the function \(\partial^\alpha f \) is continuous \(\Omega \to \mathbb{C} \) and can be extended to a continuous function \(\overline{\Omega} \to \mathbb{C} \); if there is such a continuous function \(\overline{\Omega} \to \mathbb{C} \) it is unique, and it thus makes sense to talk about the value of \(\partial^\alpha f \) at points in \(\partial \Omega \), and thus to write \(\partial^\alpha f : \overline{\Omega} \to \mathbb{C} \). We write \(C(\overline{\Omega}) = C^0(\overline{\Omega}) \). For \(f \in C^k(\overline{\Omega}) \), we define
\[
\|f\|_k = \sup_{|\alpha| \leq k} \sup_{x \in \overline{\Omega}} |(\partial^\alpha f)(x)|.
\]
It is straightforward to check that this is a norm on \(C^k(\overline{\Omega}) \).

Theorem 4. If \(\Omega \) is a bounded open subset of \(\mathbb{R}^n \), then \(C(\overline{\Omega}) \) is a Banach space.

Proof. Let \(f_i \in C(\overline{\Omega}) \) be a Cauchy sequence. Thus, \(f_i : \overline{\Omega} \to \mathbb{C} \) are continuous, and for any \(\epsilon > 0 \) there is some \(i_\epsilon \) such that if \(i, j \geq i_\epsilon \) then
\[
\sup_{x \in \overline{\Omega}} |f_i(x) - f_j(x)| < \epsilon.
\]
Then, for each \(x \in \overline{\Omega} \) we have that \(f_i(x) \) is a Cauchy sequence in \(\mathbb{C} \) and hence converges to some \(f(x) \in \mathbb{C} \), thus defining a function \(f : \overline{\Omega} \to \mathbb{C} \). For \(x \in \overline{\Omega} \) and \(\epsilon > 0 \), because \(f_i(x) \to f(x) \), there is some \(j_x \) such that \(j \geq j_x \) implies that
\[
|f_i(x) - f(x)| < \epsilon.
\]

This shows that \(\sup_{x \in \overline{\Omega}} |f_i(x) - f(x)| \to 0 \) as \(i \to \infty \).

Fix \(x \in \Omega \) and let \(\epsilon > 0 \). What we just proved shows that there is some \(i_\epsilon \) for which \(i \geq i_\epsilon \) implies that \(\sup_{z \in \overline{\Omega}} |f_i(z) - f(z)| < \epsilon \). As \(f_i : \overline{\Omega} \to \mathbb{C} \) is continuous, there is some \(\delta > 0 \) such that for \(y \in B_\delta(x) \cap \overline{\Omega} \), we have \(|f_i(x) - f_i(y)| < \epsilon \). Then, for \(y \in B_\delta(x) \cap \overline{\Omega} \),
\[
|f(x) - f(y)| \leq |f(x) - f_i(x)| + |f_i(x) - f_i(y)| + |f_i(y) - f(y)| < \epsilon + \epsilon + \epsilon.
\]
This proves that \(f \) is continuous at \(x \), and because \(x \) was an arbitrary point in \(\overline{\Omega} \), we have that \(f \in C(\overline{\Omega}) \).

Theorem 5. If \(\Omega \) is a bounded open subset of \(\mathbb{R}^n \) and \(k \) is a positive integer, then \(C^k(\overline{\Omega}) \) is a Banach space.

Proof. We proved in Theorem 4 that \(C(\overline{\Omega}) = C^0(\overline{\Omega}) \) is a Banach space. We assume that \(C^{k-1}(\overline{\Omega}) \) is a Banach space, and using this induction hypothesis we shall prove that \(C^k(\overline{\Omega}) \) is a Banach space.
Let \(f_i \in C^k(\Omega) \) be a Cauchy sequence. In particular, \(f_i \) is a Cauchy sequence in \(C(\Omega) \), and because \(C(\Omega) \) is a Banach space, there is some \(g \in C(\Omega) \) for which \(\| f_i - g \|_0 \to 0 \). For each \(1 \leq p \leq n \) we have \(\partial_p f_i \in C^{k-1}(\Omega) \). Because \(C^{k-1}(\Omega) \) is a Banach space, for each \(p \) there is some \(g_p \in C^{k-1}(\Omega) \) for which \(\| \partial_p f_i - g_p \|_{k-1} \to 0 \).

Let \(\alpha \in \mathbb{N}^n \) have \(p \)th entry 1 and all other entries 0, and let \(x \in \Omega \). For nonzero \(\tau \) small enough so that the line segment from \(x \) to \(x + \tau \alpha \) is contained in \(\Omega \),

\[
 f_i(x + \tau \alpha) - f_i(x) = \int_0^\tau (\partial_p f_i)(x + t\alpha)dt.
\]

Because \(\| f_i - g \|_0 \to 0 \) and \(\| \partial_p f_i - g_p \|_0 \to 0 \) (the latter because \(\| \partial_p f_i - g_p \|_{k-1} \to 0 \)), we obtain

\[
 g(x + \tau \alpha) - g(x) = \int_0^\tau g_p(x + t\alpha)dt,
\]

or

\[
 \frac{g(x + \tau \alpha) - g(x)}{\tau} = \frac{1}{\tau} \int_0^\tau g_p(x + t\alpha)dt.
\]

As \(\tau \) tends to 0 the right hand side tends to \(g_p(x) \), which shows that \((\partial_p g)(x) = g_p(x) \). We did this for all \(x \in \Omega \), and so \(\partial_p g = g_p \in C^{k-1}(\Omega) \). Because this is true for each \(1 \leq p \leq n \), we obtain \(g \in C^k(\Omega) \).

If \(\Omega \) is a bounded open subset of \(\mathbb{R}^n \), then

\[
 C^\infty(\Omega) = \bigcap_{k=0}^{\infty} C^k(\Omega).
\]

It can be proved that \(C^\infty(\Omega) \) is the projective limit of the Banach spaces \(C^k(\Omega) \), \(k = 0, 1, \ldots \). A projective limit of a countable projective system of Banach spaces is a Fréchet space, and thus \(C^\infty(\Omega) \) is a Fréchet space.

4 Test functions

Let \(\Omega \) be an open subset of \(\mathbb{R}^n \). If \(f : \Omega \to \mathbb{C} \) is a function, the support of \(f \) is the closure of the set \(\{ x \in \Omega : f(x) \neq 0 \} \). We denote the support of \(f \) by \(\text{supp} f \). If \(\text{supp} f \) is a compact set, we say that \(f \) has compact support, and we denote by \(C^\infty_c(\Omega) \) the set of all elements of \(C^\infty(\Omega) \) with compact support. We write \(\mathcal{D}(\Omega) = C^\infty_c(\Omega) \).

For \(f \in \mathcal{D}(\Omega) \), we define

\[
 \| f \|_N = \sup_{|\alpha| \leq N} \sup_{x \in \Omega} |(\partial^\alpha f)(x)|.
\]

If \(K \) is a compact subset of \(\Omega \), we define

\[
 \mathcal{D}(K) = \{ f \in C^\infty_c(\Omega) : \text{supp} f \subseteq K \}.
\]

The restriction of these norms to $\mathcal{D}(K)$ are norms, in particular seminorms. Hence, with the topology for which a local basis at 0 is the collection of sets of the form \(\{ f \in \mathcal{D}(K) : \| f \|_N < 1/N \} \), we have that $\mathcal{D}(K)$ is a locally convex space, and because there are countably many seminorms $\| \cdot \|_N$, the space is metrizable. One checks that the topology on $\mathcal{D}(K)$ is equal to the subspace topology it inherits from $C^\infty(\Omega)$.

Theorem 6. If Ω is an open subset of \mathbb{R}^n and K is a compact subset of Ω, then $\mathcal{D}(K)$ is a closed subspace of the Fréchet space $C^\infty(\Omega)$.

Proof. Let $f_i \in \mathcal{D}(K)$, $f \in C^\infty(\Omega)$, and suppose that $f_i \to f$ in $C^\infty(\Omega)$. If $x \in \Omega \setminus K$, then $f_i(x) = 0$. There is some K_N that contains K, and the fact that $f_i \to f$ gives us in particular that

\[
|f(x)| = |0 - f(x)| = |f_i(x) - f(x)| \leq \sup_{y \in K_N} |f_i(y) - f(y)| \to 0,
\]

hence $f(x) = 0$. This shows that supp $f \subseteq K$, and hence that $f \in \mathcal{D}(K)$.

Let K_j be an exhaustion of Ω by compact sets. Check that $\mathcal{D}(K_j)$ is a closed subspace of $\mathcal{D}(K_{j+1})$ and that the inclusion $\mathcal{D}(K_j) \hookrightarrow \mathcal{D}(K_{j+1})$ is a homeomorphism onto its image. We define the following topology on the set $\mathcal{D}(\Omega)$. Let \mathcal{B} be the collection of all convex balanced subsets V of $\mathcal{D}(U)$ such that for all j, the set $V \cap \mathcal{D}(K_j)$ is open in $\mathcal{D}(K_j)$. (To be balanced means that $\alpha V \subseteq V$ if $|\alpha| \leq 1$.) We define \mathcal{T} be the collection of all subsets U of $\mathcal{D}(\Omega)$ such that $x_0 \in U$ implies that there is some $V \in \mathcal{B}$ for which $x_0 + V \subseteq U$. We check that \mathcal{T} is a topology on $\mathcal{D}(\Omega)$, which we call the strict inductive limit topology. One proves\(^4\) that with this topology, $\mathcal{D}(\Omega)$ is a locally convex space. With the strict inductive limit topology, we call the locally convex space $\mathcal{D}(\Omega)$ the strict inductive limit of the Fréchet spaces $\mathcal{D}(K_1) \hookrightarrow \mathcal{D}(K_2) \hookrightarrow \cdots$, and write

\[
\mathcal{D}(\Omega) = \lim_{\longrightarrow} \mathcal{D}(K_j).
\]
