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1 Measurable spaces

Let R = R U {—o00,00}, with the order topology. We assign R the Borel o-
algebra. It is a fact that for £ C R, E € %y if and only if E'\ {—00,00} € Hg.

Theorem 1. Let (Q,X) be a measurable space. If f; is a sequence of measurable
functions Q — R, then for each k,

gr(x) = sup fi(z),  hi(z) = inf f;(x),
3>k izk

are measurable Q — R, and

g(x) = limsup f;(x), h(z) = liminf f;(x),

j—oo J—r00

are measurable O — R.

Proof. Let a € R. For each j, f;l(a,oo] €Y, so
U fj_l(a,oo] €x.
j=k

For each 7 > k,

f{l(a,oo] C {a: € Q:sup fi(x) > a} ,

i>k
SO
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If y & U;’o:k f;l(a7oo], then for each j > k, f;(y) < a, hence gx(y) < a, which
means that y & {z € Q: gx(x) > a}. Therefore,

U fj_l(a,oo] ={z € Q:gr(z) > a},
j=k

and thus gk_l(a, oo] € . Because this is true for all a € R and %y is generated
by the collection {(a, 0] : a € R}, it follows that gi : @ — R is measurable.
That hy is measurable follows from the fact that if f : O — R is mea-
surable then —f : Q@ — R is measurable, and that hi(x) = inf;>x fj(z) =
- Supjzk(—fj (2)).
For z € (),

g(x) = ,;rzlfl gr(x),

and because each gj, is measurable it follows that g is measurable. Likewise,

W) = sup hy (x),
k>1

and because each hj is measurable it follows that h is measurable. O

2 Convergence in measure

Let (£2,%, 1) be a probability space. Let L°(u) be the collection of equivalence
classes of measurable functions 2 — C, where C has the Borel o-algebra, and
where two functions f and g are equivalent when

wlz € Q: f(z) # g(x)} = 0.

L) is a vector space. For f,g € L°(u) we define

_ |f — gl
p(f,g)—/Qilﬂfimdu.

This is a metric on L°(u), and one proves that with this metric L°(u) is a
topological vector space. We call the topology induced by p the topology of
convergence in measure.!

Theorem 2. Suppose that f, is a sequence in L°(u). f, — 0 in the topology
of convergence in measure if and only if for each € > 0,

Jim g ({2 € Q: |fal2)] > €}) = 0.

LCharalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 480, Lemma 13.40.



Proof. Suppose that f,, — 0 in the topology of convergence in measure and let
€ > 0. For each n, let

An:{er:|fn(x)26}:{x€Q: @] € }

1+ |fa(z)] — 1+e€

[fn
n= 1+\fn|’

| fn] _

ie. p(An) < H<p(fn,0), which tends to 0 as n — oco.
Let € >0 and for each n, let

Because 1+e XA

An:{meQ:|fn(x)ze}:{er: @) o € }

14+ |fa(z)] — 1+4e€

Suppose that u(A,) — 0 as n — co. There is some n. such that n > n. implies
that p(4,) <e. For n > n,,

B | fnl | fnl
pUfn,0) = /A T ] /Q\An T4 1] ™

€
< 1du+/ dup
/A Q\A, 1+e¢

n

=LA + (0 A,)

1+e€ 1+e€
(N(An) + N(Q \ An))

1 €

= ATL
1+€M( )+1+e

1 €

— A,
1+6u( )+
1 n €
1+e ¢ 1+e

< 2e.

1+¢€

This shows that f,, — 0 in the topology of convergence in measure. O

We now prove that if a sequence in L°(;1) converges almost everywhere to 0
then it converges in measure to 0.2

Theorem 3. Suppose that f, is a sequence in L°(u) and that for almost all
x €Q, fo(xr) = 0 as n — co. Then f, — 0 in the topology of convergence in
measure.

2Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 479, Theorem 13.37.



Proof. Let ¢ > 0 and let n > 0. Egorov’s theorem tells us that there is some
E € ¥ with u(F) < n such that f,, — 0 uniformly on Q\ E. So there is some
ng such that if n > ng and « € Q\ E then |f,(z)| < e. Thus for n > ny,

u({z € Q: [fu(@)] > €}) < p(B) + u({z € Q\ B+ |fu(x)] > &})
= pu(E)
<n.

Then p({z € Q: |fn(x)] > €}) = 0 as n — oo, namely, f,, — 0 in measure. [

Theorem 4. If f,, is a sequence in L'(u) that converges in L' () to 0, then f,
converges in measure to 0.

Proof. Let e > 0and let A, = {z € Q : |fn(x)| > €}. By Chebyshev’s inequality,

1
M(An) < . ||fn||1 )

hence u(A,) — 0 as n — oo, namely, f,, converges to 0 in measure. O

The following theorem shows that a sequence in L°(y) that converges in
measure to 0 then it has a subsequence that almost everywhere converges to 0.3

Theorem 5. Suppose that f, is a sequence in L°(u) that converges in measure
to 0. Then there is a subsequence f,n) of fn such that for almost all x € €,
fa(n) (Z‘) — 0.

Proof. For each n, with e = =, there is some a(n) such that m > a(n) implies

that
R

1
E, = {l’ €N: |fa(n)(x)| > n}?

for which p(E,) < 5. Let

3\*—‘

For each n, let

-nur

and for each n,

M(E)SM<UEm>SZH( <2271=27'2=21_n-

Because this is true for all n, u(F) = 0. If x € Q\ E, then there is some n,
such that = ¢ Um . E,,. This means that for m > n, we have x ¢ E,,, i.e.
| fam)(2)] < L. This implies that for = ¢ E, fan)(x) = 0 as n — oo, showing
that for almost all z € Q, fo(,)(z) = 0 as n — oo. O

3Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 479, Theorem 13.38.



We now prove that p is a complete metric, namely that L°(u) with this
metric is an F-space.*

Theorem 6. p is a complete metric on L°(u).

Proof. Suppose that f,, is a Cauchy sequence in L°(y). To prove that f,, is
convergent it suffices to prove that f, has a convergent subsequence. If (X, d) is
a metric space and x,, is a Cauchy sequence in X, for any N let ay be such that
n,m > ay implies that d(z,,z,,) < % and a fortiori d(zp, Zm) < ﬁ Thus we
presume that f, itself satisfies p(fn, frn) < £ for m > n.

Let

Apm(€) ={z € Q: [fe(z)—fm(2)| = €} = {33 € 1fT}f2x;{n}S()z|zc)| =7 ie} ’

for which () — fon ()]
€ E\T) — Jm\T
T e = T @) — @)
If m>k,
1+e | fx — fml] _1te l+el
u(Ak.Jn(e)) < . Al-ﬁ- ‘f}c —fm|dﬂ T p(.fkafm) < . & (1)

For n =1 and €; = 5r, let k; be such that 1-:7161]?11 < gr,ie ky >2- 1'6"% For
n>1ande¢, = QL, assume that k,, satisfies 1:“" ki < QL and k, > k,_1. For

1+enyp1 1 1

1
€nt1 = gurrs let kny1 be such that === =0 < oy

and k,4+1 > k,. For any
n we have, because k, > n, =L < L Then using (1) with m > k,,

1 1+e, 1 1
_ < .
8 (A’“’m (2)> S e B oM ?

Let g, = fx, and let

1
By = {2 € 0510 (0) — 0.0 2 1 |

for which, by (2), w(E,) < 5. Let

Fn = U En7
which satisfies - -
u(Fn) < Z.U(En) < Z 27" =27

4Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 481, Theorem 13.41; Gerald B. Folland, Real Analysis: Modern
Techniques and Their Applications, second ed., p. 61, Theorem 2.30.



Hence F = ()2, F, satisfies u(F) = 0.

If x € F, then there is some n for which = ¢ F},, i.e. for each r > n we have
z & E,, ie. for each r > n we have |g,+1(z) — g-(z)| < 27". This implies that
for £ > n and for any positive integer p,

|gktp(2) — g1 (@)] < |ghtp(®) = Ghap—1 (@) + -+ + |1 () — g ()]
< 2—k—p+l _|_ .. _|_ 2—k‘
< 97kHL,
so if j > k then
g5 (z) — gi(z)] <277 (3)

This shows that if © ¢ F then gx(x) is a Cauchy sequence in C, and hence
converges. We define g : 9 — C by

9(x) = xa\r(x) limsup gi (), x € Q,
k—o00

and by Theorem 1, g € L°(u). For z € F), we have z ¢ F and so g;(z) — g()
as | — oo. Then for « ¢ F), and j > k, using (3) we have
195(2) = g(2)] < 1g;(2) = gu(@) ]+ |gr () — g )| < 2757 +|gu(2) — g(2)| — 27!

as | — o0, so |gj(x) — g(x)| < 27%*+L. For € > 0, let k be such that 27%+1 < e.
Then

p{z € Q:gr(z) — g(z)| > €})
<p(Fr) + p({z € Q\ Fr : [ge(z) — g(x)| > €})

<27* 4 u({w € Q\ Fy : [gi(@) — g(2)] = 2751}
:2—k)+1

which tends to 0 as & — oo, showing that g, converges to g in measure, and
because g is a subsequence of fj this completes the proof. O
3 Equi-integrability

Let (2,3, 1) be a probability space. A subset .# of L!(u) is said to be equi-
integrable if for every € > 0 there is some ¢ > 0 such that for all £ € ¥ with

u(E) <4 and for all f € Z,
[ 1t <
E

In other words, to say that .# is equi-integrable means that

lim sup/ fldp = 0.
w(E)=0 fe g E| i



The following theorem gives an equivalent condition for a bounded subset of
L'(u) to be equi-integrable.’

Theorem 7. Suppose that F is a bounded subset of L*(p). Then the following
are equivalent:

1. F is equi-integrable.

2. iMoo SUP ez f{‘f|>c} |fldu = 0.
Proof. Let K =supc g | f|l; < oo and suppose that .# is equi-integrable. For
f € %, Chebyshev’s inequality tells us

1Al _

K
P> M) < B < 55

Because u({|f| > M}) — 0 as M — oo and .7 is equi-integrable,

lim Sup/ |fldu = 0.
M=eo rez J{|f1>m}

Suppose now that

lim Sup/ |fldu = 0. (4)
M=o fez J{if1>m}

For E€ ¥ and f € #,if M > 0 then

/ If\du=/ Ifldu+/ Fldu
E En{|fI<M} En{|fI>M}

< Mu(E) + / \Fldu
{IfI>M}

< Mu(E) + sup / |glds,
g€ 7 J{lg|>M}

hence

Sup/ |f|dM§M,u(E)+Sup/ |g|dp. (5)
rez JE 9€7 J{|g|>M}

Let € > 0. By (4) there is some M such that sup,c & f{‘ng} lgldp < §. For
d = 557, if € X and p(F) <6 then (5) yields

o [ 1 <5+ 5 =
fe#JE 2

showing that % is equi-integrable. O

5Fernando Albiac and Nigel J. Kalton, Topics in Banach Space Theory, p. 105, Lemma
5.2.6.



Theorem 8 (Absolute continuity of Lebesgue integral). Suppose that f €
LY (u). If € > 0 then there is some § > 0 such that for any E € X with

nw(E) <6,
/ | fldp < e.
E

Proof. For n > 1, define

gn(x) = min{'f(x)lvn}’ z €.

Then g, is a sequence in L' () such that for each z € Q, g, () is nondecreasing
and g, (z) — |f(z)|, and thus the monotone convergence theorem tells us that

n—oo

lim gndu:/ | fldp.
Q Q

Then there is some N for which

OS/IfIdM—/gNdMS
Q Q
For § = 55 and E € ¥ with pu(E) <4,

[ ista= [ r1=gmydu+ [ av

€
+ / gndp
E

+ Nu(E)

[N e}

IN A

IN

2
€
2
€
-+ NJ
2+

€.

The following is the Vitali convergence theorem.®

Theorem 9 (Vitali convergence theorem). Suppose that f € L°(u) and f, is a
sequence in L*(u). Then the following are equivalent:

1. {fn} is equi-integrable, {f,} is bounded in L*(u), and f, — f in measure.
2. feLY(u) and f, — f in L*(p).

Proof. Suppose that {f,} is equi-integrable and f,, — f in measure. Because
Jn — [ in measure, there is a subsequence f,(,) of f, that converges almost

6V. I. Bogachev, Measure Theory, volume I, p. 268, Theorem 4.5.4.



everywhere to f and so |fq(n)| converges almost everywhere to |f|. Let K =
sup,,>1 || fa(n) ||1 < o0o. Fatou’s lemma tells us that |f| € L(u) and

£l < timinf || foe [, < K.

Because f € L°(u) and |f| € LY(u), f € L'(u). To show that f,, converges to f
in L' (), it suffices to show that any subsequence of f,, itself has a subsequence
that converges to f in L'(u). (Generally, a sequence in a topological space
converges to x if and only if any subsequence itself has a subsequence that
converges to x.) Thus, let g, be a subsequence of f,,. Because f, converges
to f in measure, the subsequence g, converges to f in measure and so there is
a subsequence gq(,) of g, that converges almost everywhere to f. Let € > 0.
Because {f,} is equi-integrable, there is some ¢ > 0 such that for all £ € ¥
with p(F) < 6 and for all n,

/ |9a(n)ldp < e
E

If E € X with u(E) < 6, then xgg,n) converges almost everywhere to xgf,
and sup,,>; HXEga(n) ||1 < ¢, so by Fatou’s lemma we obtain

/ |fldp = lIxefly < liminf ||xpgom|], < e
E n o0

But because gq(,) converges almost everywhere to f, by Egorov’s theorem there
is some £ € ¥ with u(E) < § such that g,(,) — f uniformly on 2\ £, and so
there is some ng such that if n > ng and € Q\ E then [g,)(z) — f(z)| < e.
Thus for n > ng,

/'ga(n) *f|d,u:/ |9a(n) *f|dﬂ+/ |9an) — fldu
0 O\E B
<u(@\E)et [ lgaguldn-+ [ 171dn
E E
<e+e+e,

which shows that g,y — f in L'(u). That is, we have shown that for any
subsequence g, of f, there is a subsequence gq(,) of g, that converges to f in
L' (u), which implies that the sequence f,, converges to f in L!(u).

Suppose that f € L'(u) and f, — f in L'(u). First, because the sequence
fn is convergent in L' () the set {f,} is bounded in L'(p). Second, f, — f in
L'(u) implies that f,, — f in measure. Third, for € > 0, let ny such that n > ng
implies that || f, — f||; < e. For each 1 < n < ng, by Theorem 8 there is some
df, > 0 such that for F € ¥ and u(F) < dy,,

/ Fuldu < e
E



and likewise there is some 07 such that for £ € ¥ and pu(F) < f,

[ 1t <
E
Let § > 0 be the minimum of dy,,...,65, ,,df. Thusif E € ¥ and p(F) < 6,

then for 1 < n < n,
[ 1l <
E

and for for n > ng,

/E|fn|dus/E|fn—f|du+[E|f\dusufn—f||1+/E|f|duge+e.

This shows that {f,} is equi-integrable, completing the proof. O

The following is the de la Vallée-Poussin criterion for equi-integrability.”

Theorem 10 (de la Vallée-Poussin criterion). Suppose that F C L'(u). F is
bounded and equi-integrable if and only if there is a there nonnegative nonde-
creasing function G on [0,00) such that

. G()

lim —= =00 and sup | G(|f(z)|)du(z) < oo, (6)

t— o0 t fey Q
and if there is a nonnegative nondecreasing function G satisfying (6) then there
is a convex nonnegative nondecreasing function G satisfying (6).

Proof. Suppose that G is a nonnegative nondecreasing function on [0, o) satis-
fying (6). Let

sup / G(If (#))dp(z) < M < 0.

fez
For € > 0, there is some C such that ¢ > C implies that % > %, and hence, for
feZ, ifweQand |f(z)] > C then SO > M e | f(a)] < 5G(f(x))),

which yields

d et < €
/{Ifz(J} [l < /{IfIZC} 77 CUf@)Ddu(z) < -7 .

Therefore by Theorem 7, .%# is bounded and equi-integrable.
Suppose that .% is bounded and equi-integrable. For f € .% and j > 1, let

pi(f) = p{z € Q:[f(x)] > j}) € X

By induction, because .# is bounded and equi-integrable there is a strictly
increasing sequence of positive integers C,, such that for each n,

sup [ a2 (7)
feZ J{|f1>Cn}

V. L. Bogachev, Measure Theory, volume I, p. 272, Theorem 4.5.9.

10



For f € # and n > 1,

/ | fldp
{lfI>Cn}

o0

> / | fldp
(i<IfI<i+1)

J=Chn

Y I

I
LMz A2 A0

Ju{z e Q:j<|f(z)|<j+1})

<

I (f) = pja(f))

<

=D wilf)
j
Using this and (7), for f € .Z,
o0 o0 o)
W< [l
2 2D
<y oo
n=1
=1.
For n > 0 we define
o — 0 n < Cy
" max{k: Cr <n} n>C.

It is straightforward that a,, — oo as n — oo. We define a step function g on
[0, 00) by

g<t) = Z An X (n,n+1] (t)a 0<t< o0,

n=0

and we define a function G on [0, 00) by

G(t) = /Otg(s)ds, 0<t <o

It is apparent that G is nonnegative and nondecreasing. For t1,t2 € [0, 00),
t1 < ta, by the fundamental theorem of calculus,

G'(t1)(t2 —t1) = g(t1)(t2 — t1) < G(t2) — G(t1),

showing that G is convex. The above inequality also yields that for ¢ > 0,

Gt) > %, and ¢(t/2) — oo as t — 00 so we get that lim; G _ . For

t t
f €%, using G(0) =0, G(1) =0, and for n > 1,

Gn+1)<g)+g2)+--+gn+l)=ag+a1+ - +a, =01+ -+ ap,

11



we get

JREUCIEEY SR EEITIERD Y SN G
< / G(n+ 1)du(z)

o

(b (f) = B2 ())G(n + 1)

3
Il
—

(b () = b1 (f)) Z a;

3
Il
-

o

n(f)am

> i)
1j=C,

3
Il
-

M

IA
= 3

i

showing that sup ;e » [ G(|f(x)])du(z) < oo, which completes the proof. [
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