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A trigonometric polynomial of degree n is an expression of the form

n∑
k=−n

cke
ikt, ck ∈ C.

Using the identity eit = cos t+ i sin t, we can write a trigonometric polynomial
of degree n in the form

a0 +

n∑
k=1

ak cos kt+

n∑
k=1

bk sin kt, ak, bk ∈ C.

For 1 ≤ p < ∞ and for a 2π-periodic function f , we define the Lp norm of
f by

‖f‖p =

(
1

2π

∫ 2π

0

|f(t)|pdt
)1/p

.

For a continuous 2π-periodic function f , we define the L∞ norm of f by

‖f‖∞ = max
0≤t≤2π

|f(t)|.

If f is a continuous 2π-periodic function, then there is a sequence of trigono-
metric polynomials fn such that ‖f − fn‖∞ → 0 as n → ∞ [31, p. 54, Corol-
lary 5.4].

If 1 ≤ p <∞ and f is a continuous 2π-periodic function, then

‖f‖p =

(
1

2π

∫ 2π

0

|f(t)|pdt
)1/p

≤
(

1

2π

∫ 2π

0

‖f‖p∞dt
)1/p

= ‖f‖∞.

Jensen’s inequality [16, p. 44, Theorem 2.2] (cf. [30, p. 113, Problem 7.5]) tells
us that if φ : [0,∞)→ R is convex, then for any function h : [0, 2π]→ [0,∞) we
have

φ

(
1

2π

∫ 2π

0

h(t)dt

)
≤ 1

2π

∫ 2π

0

φ(h(t))dt.
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If 1 ≤ p < q <∞, then φ : [0,∞)→ R defined by φ(x) = xq/p is convex. Hence,
if 1 ≤ p < q <∞ then for any 2π-periodic function f ,

‖f‖p = (φ(‖f‖pp))1/q

=

(
φ

(
1

2π

∫ 2π

0

|f(t)|pdt
))1/q

≤
(

1

2π

∫ 2π

0

φ(|f(t)|p)dt
)1/q

=

(
1

2π

∫ 2π

0

|f(t)|qdt
)1/q

= ‖f‖q.

The Dirichlet kernel Dn is defined by

Dn(t) =

n∑
k=−n

eikt = 1 + 2

n∑
k=1

cos kt.

One can show [14, p. 71, Exercise 1.1] that

‖Dn‖1 =
4

π2
· log n+O(1).

(On the other hand, it can quickly be seen that ‖Dn‖∞ = 2n+ 1, and it follows
from Parseval’s identity that ‖Dn‖2 =

√
2n+ 1.)

Pólya and Szegő [27, Part VI] present various problems about trigonomet-
ric polynomials together with solutions to them. A result on L∞ norms of
trigonometric polynomials that Pólya and Szegő present is for the sum An(t) =∑n
k=1

sin kt
k . The local maxima and local minima of An can be explicitly deter-

mined [27, p. 74, no. 23], and it can be shown that [27, p. 74, no. 25]

‖An‖∞ ∼
∫ π

0

sin t

t
dt.

1 Lp norms

If 1 ≤ p < q < ∞, then [14, p. 123, Exercise 1.8] (cf. [7, p. 102, Theorem 2.6])
there is some C(p, q) such that for any trigonometric polynomial f of degree n,
we have

‖f‖q ≤ C(p, q)n
1
p−

1
q ‖f‖p.

This inequality is sharp [33, p. 230]: for 1 ≤ p < q < ∞ there is some C ′(p, q)

such that if Fn(t) = 1
n

∑n−1
k=0 Dk(t) (Fn is called the Fejér kernel) then

‖Fn‖q > C ′(p, q)n
1
p−

1
q ‖Fn‖p.
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Let Xn = {a0 +
∑n
k=1 ak cos kt+ bk sin kt : ak, bk ∈ R}, the real vector space

of real valued trigonometric polynomials of degree n, have norm

‖f‖Xn = max{|a0|, |a1|, . . . , |an|, |b1|, . . . , |bn|}.

Let Yn,p be the same vector space with the Lp norm. Ash and Ganzburg [1]
give upper and lower bounds on the operator norm of the map i : Xn → Yn,p
defined by i(f) = f .

Bernstein’s inequality [14, p. 50, Exercise 7.16] states that for 1 ≤ p ≤ ∞, if
f is a trigonometric polynomial of degree n, then

‖f ′‖p ≤ n‖f‖p.

In the other direction, if f ∈ C1 then

1

2π

∫ 2π

0

f(s)ds+
1

2π

∫ t

0

sf ′(s)ds+
1

2π

∫ 2π

t

(s− 2π)f ′(s)ds

=
1

2π

∫ 2π

0

f(s)ds+
1

2π

∫ 2π

0

sf ′(s)ds−
∫ 2π

t

f ′(s)ds

=
1

2π

∫ 2π

0

f(s)ds+
1

2π
sf(s)

∣∣∣2π
0
− 1

2π

∫ 2π

0

f(s)ds− f(s)
∣∣∣2π
t

=f(t).

Hence

|f(t)| ≤ 1

2π

∫ 2π

0

|f(s)|ds+
1

2π

∫ t

0

s|f ′(s)|ds+
1

2π

∫ 2π

t

(2π − s)|f ′(s)|ds

≤ 1

2π

∫ 2π

0

|f(s)|ds+

∫ t

0

|f ′(s)|ds+

∫ 2π

t

|f ′(s)|ds

= ‖f‖1 + 2π‖f ′‖1,

so
‖f‖∞ ≤ ‖f‖1 + 2π‖f ′‖1.

This is an instance of the Sobolev inequality [26].
It turns out that for a trigonometric polynomial the mass cannot be too

concentrated. More precisely, the number of nonzero terms of a trigonometric
polynomial restricts how concentrated its mass can be. Let dµ = dt

2π . Thus
µ([0, 2π]) = 1. A result of Turán [20, p. 89, Lemma 1] states that if λ1, . . . , λN ∈
Z and T (t) =

∑N
n=1 bne

iλnt, bn ∈ C, then for any closed arc I ⊂ [0, 2π],

‖T‖∞ ≤
(

2e

µ(I)

)N−1
max
t∈I
|T (t)|.

Nazarov [11, p. 452] shows that there is some constant A such that if E is a
closed subset of [0, 2π] (not necessarily an arc), then

‖T̂‖1 ≤
(

A

µ(E)

)N
max
t∈E
|f(T )|.
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Nazarov [23] proves that there exists some constant C such that if 0 ≤ q ≤ 2
and µ(E) ≥ 1

3 , then

‖T‖q ≤ eC(N−1)(1−µ(E)
2π )

(
1

2π

∫
E

|T (t)|qdt
)1/q

.

These results of Turan and Nazarov are examples of the uncertainty principle
[9], which is the general principle that a constrain on the support of the Fourier
transform of a function constrains the support of the function itself.

In [10], Hardy and Littlewood present inequalities for norms of 2π-periodic
functions in terms of certain series formed from their Fourier coefficients. Let
ck ∈ C, k ∈ Z, be such that ck → 0 as k → ±∞, and define c∗0, c

∗
1, c
∗
−1, c

∗
2, c
∗
−2, . . .

to be the absolute values of the ck ordered in decreasing magnitude. For real
r > 1, define

S∗r (c) =

( ∞∑
k=−∞

c∗k
r(|k|+ 1)r−2

)1/r

.

For instance, if ck = 1 for −N ≤ k ≤ N and ck = 0 for |k| > N , then

S∗r (c) =
(

1 + 2
∑N+1
k=2 k

r−2
)1/r

. Hardy and Littlewood state the result [10,

p. 164, Theorem 2] that if 1 < p ≤ 2 then there is some constant A(p) such
that for any sequence c, with ck → 0 as k → ±∞, if f(t) =

∑∞
k=−∞ cke

ikt and
‖f‖p <∞ then

S∗p(c) ≤ A(p)‖f‖p.
A proof of this is given in Zygmund [35, vol. II, p. 128, chap. XII, Theorem 6.3].
Asking if this inequality holds for p = 1 suggests the following question that
Hardy and Littlewood pose at the end of their paper [10, p. 168]: Is there a
constant A such that for all distinct positive integers mk, k = 1, . . . , N , we have

‖
N∑
k=1

cosmkt‖1 > A logN?

McGehee, Pigno and Smith [18] prove that there is some K such that for all N ,
if n1, . . . , nN are distinct integers and c1, . . . , cN ∈ C satisfy |ck| ≥ 1, then

‖
N∑
k=1

cke
inkt‖1 > K logN.

Thus

‖
N∑
k=1

cosmkt‖1 =
1

2
· ‖

N∑
k=1

eimkt + e−imkt‖1 ≥
1

2
·K log(2N).

For k ≥ 2, define TN (t) =
∑N
n=1 e

inkt. Since ‖TN‖∞ = N , for each p ≥ 1 we
have ‖TN‖p ≤ N . Hua’s lemma [22, p. 116, Theorem 4.6] states that if ε > 0,
then

‖TN‖2k = O
(
N1− k

2k
+ε
)
.
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Hua’s lemma is used in additive number theory. The number of sets of integer
solutions of the equation

f(x1, . . . , xn) = N, ar ≤ xr ≤ br

is equal to (cf. [12, p. 151])∑
a1≤x1≤b1

· · ·
∑

an≤xn≤bn

∫ 1

0

e2πi(f(x1,...,xn)−N)tdt.

Borwein and Lockhart [4]: what is the expected Lp norm of a trigonometric
polynomial of order n? Kahane [13, Chapter 6] also presents material on random
trigonometric polynomials.

Nursultanov and Tikhonov [25]: the sup on a subset of T of a trigonometric
polynomial f of degree n being lower bounded in terms of ‖f‖∞, n, and the
measure of the subset.

2 `p norms

For a 2π-periodic function f , we define f̂ : Z→ C by

f̂(k) =
1

2π

∫ 2π

0

e−iktf(t)dt.

For 1 ≤ p <∞, we define the `p norm of f̂ by

‖f̂‖p =

( ∞∑
k=−∞

|f̂(k)|p
)1/p

,

and we define the `∞ norm of f̂ by

‖f̂‖∞ = max
k∈Z
|f̂(k)|.

Parseval’s identity [31, p. 80, Theorem 1.3] states that ‖f‖2 = ‖f̂‖2.
If 1 ≤ p <∞, then

‖f̂‖∞ ≤
(
· · ·+ ‖f̂‖p∞ + · · ·

)1/p
= ‖f̂‖p.

If 1 ≤ p < q <∞, then, since for each k, |f̂(k)|
‖f̂‖q

≤ 1,

1 =

( ∞∑
k=−∞

(
|f̂(k)|
‖f̂‖q

)q)1/q

≤

( ∞∑
k=−∞

(
|f̂(k)|
‖f̂‖q

)p)1/q

=
‖f̂‖p/qp

‖f̂‖p/qq

.

Hence for 1 ≤ p < p ≤ ∞,
‖f̂‖q ≤ ‖f̂‖p.
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For 1 ≤ p <∞, if f is a trigonometric polynomial of degree n then

‖f̂‖p =

(
n∑

k=−n

|f̂(k)|p
)1/p

≤

(
n∑

k=−n

‖f̂‖p∞

)1/p

= (2n+ 1)1/p‖f̂‖∞.

For 1 ≤ p < q < ∞, we have [30, p. 123, Problem 8.3] (this is Jensen’s
inequality for sums)(

n∑
k=−n

1

2n+ 1
|f̂(k)|p

)1/p

≤

(
n∑

k=−n

1

2n+ 1
|f̂(k)|q

)1/q

,

i.e.
(2n+ 1)−1/p‖f̂‖p ≤ (2n+ 1)−1/q‖f̂‖q.

Hence for 1 < p < q <∞,

‖f̂‖p ≤ (2n+ 1)
1
p−

1
q ‖f̂‖q.

For any t,

|f(t)| =

∣∣∣∣∣
∞∑

k=−∞

f̂(k)eikt

∣∣∣∣∣ ≤
∞∑

k=−∞

|f̂(k)eikt| =
∞∑

k=−∞

|f̂(k)| = ‖f̂‖1.

Hence
‖f‖∞ ≤ ‖f̂‖1.

For any k ∈ Z,

|f̂(k)| =
∣∣∣∣ 1

2π

∫ 2π

0

e−iktf(t)dt

∣∣∣∣ ≤ 1

2π

∫ 2π

0

|f(t)|dt = ‖f‖1.

Hence
‖f̂‖∞ ≤ ‖f‖1.

The Hausdorff-Young inequality [32, p. 57, Corollary 2.4] states that for 1 ≤
p ≤ 2 and 1

p + 1
q = 1, if f ∈ Lp then

‖f̂‖q ≤ ‖f‖p.

The dual Hausdorff-Young inequality [32, p. 58, Corollary 2.5] states that for
1 ≤ p ≤ 2 and 1

p + 1
q = 1, if f ∈ Lq then

‖f‖q ≤ ‖f̂‖q.

A survey on the Hausdorff-Young inequality is given in [6])

For M + 1 ≤ k ≤ M + N , let ak ∈ C and let S(t) =
∑N+1
k=M+1 ake

ikt. Let
t1, . . . , tR ∈ R, and let δ be such that if r 6= s then

‖tr − ts‖ ≥ δ,
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where ‖t‖ = mink |t − k| is the distance from t to a nearest integer. The large
sieve [19] is an inequality of the form

R∑
r=1

|S(2πtr)|2 ≤ ∆(N, δ)

M+N∑
k=M+1

|ak|2.

A result of Selberg [19, p. 559, Theorem 3] shows that the large sieve is valid
for ∆ = N − 1 + δ−1.

Kristiansen [15]
Boas [2]
For F : Z/n → C, its Fourier transform F̂ : Z/n → C (called the discrete

Fourier transform) is defined by

F̂ (k) =
1

n

n−1∑
j=0

F (j)e−2πijk/n, 0 ≤ k ≤ n− 1,

and one can prove [31, p. 223, Theorem 1.2] that

F (j) =

n−1∑
k=0

F̂ (k)e2πikj/N , 0 ≤ j ≤ n− 1.

One can also prove Parseval’s identity for the Fourier transform on Z/n [31,
p. 223, Theorem 1.2]. It states

n−1∑
k=0

|F̂ (k)|2 =
1

n

n−1∑
j=0

|F (j)|2.

Let P (t) =
∑n−1
k=0 ake

ikt. Define F : Z/n→ C by

F (j) =

n−1∑
k=0

ake
2πikj/n, 0 ≤ j ≤ n− 1.

(That is, F̂ (k) = ak.) We then have

n−1∑
k=0

|ak|2 =
1

n

n−1∑
j=0

|F (j)|2 =
1

n

n−1∑
j=0

∣∣P(2πj

n

)∣∣2.
Thus

‖P‖2 =

 1

n

n−1∑
j=0

∣∣P(2πj

n

)∣∣21/2

.

The Marcinkiewicz-Zygmund inequalities [35, vol. II, p. 28, chap. X, Theo-
rem 7.5] state that there is a constant A such that for 1 ≤ p ≤ ∞, if f is a
trigonometric polynomial of degree n then(

1

2n+ 1

2n∑
k=0

∣∣f( 2πk

2n+ 1

)∣∣p)1/p

≤ A(2π)1/p‖f‖p,
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and for each 1 < p < ∞ there exists some Ap such that if f is a trigonometric
polynomial of degree n then

‖f‖p ≤ Ap

(
1

2n+ 1

2n∑
k=0

∣∣f( 2πk

2n+ 1

)∣∣p)1/p

.

Máté and Nevai [17, p. 148, Theorem 6] prove that for p > 0, if Sn is a
trigonometric polynomial of degree n then

‖Sn‖∞ ≤
(

(1 + np)e

2

)1/p

‖Sn‖p.

Máté and Nevai [17] prove a version of Bernstein’s inequality for 0 < p < 1, and
their result can be sharpened to the following [34]: For 0 < p < 1, if Tn is a
trigonometric polynomial of order n then

‖T ′n‖p ≤ n‖Tn‖p.

Let supp f̂ = {k ∈ Z : f̂(k) 6= 0}. A subset Λ of Z is called a Sidon set
[28, p. 121, §5.7.2] if there exists a constant B such that for every trigonometric

polynomial f with supp f̂ ⊆ Λ we have

‖f̂‖1 ≤ B‖f‖∞.

Let B(Λ) be the least such B. A sequence of positive integers λk is said to
be lacunary if there is a constant ρ such that λk+1 > ρλk for all k. If λk is a
lacunary sequence, then {λk} is a Sidon set [21, p. 154, Corollary 6.17]. If Λ ⊂ Z
is a Sidon set, then [28, p. 128, Theorem 5.7.7] (cf. [21, p. 157, Corollary 6.19])

for any 2 < p < ∞, for every trigonometric polynomial f with supp f̂ ⊆ Λ we
have

‖f‖p ≤ B(Λ)
√
p‖f‖2,

and
‖f‖2 ≤ 2B(Λ)‖f‖1.

Let 0 < p < ∞. A subset E of Z is called a Λ(p)-set if for every 0 <
r < p there is some A(E, p) such that for all trigonometric polynomials f with

supp f̂ ⊂ E we have
‖f‖p ≤ A(E, p)‖f‖2.

Λ(p) sets were introduced by Rudin, and he discusses them in his autobiography
[29, Chapter 28]. A modern survey of Λ(p)-sets is given by Bourgain [5].

Bochkarev [3] proves various lower bounds on the L1 norms of certain trigono-
metric polynomials. Let ck ∈ C, k ≥ 1. If there are constants A and B such
that

A
(log k)s√

k
≤ |ck| ≤ B

(log k)s√
k

, k ≥ 1,
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then [3, p. 58, Theorem 19]

‖
n∑
k=1

cke
ik2t‖1 �

{
(log n)s−

1
2 , s > 1

2 ,

log log n, s = 1
2 .

If P (t) =
∑n
k=0 ake

ikt with ak ∈ {−1, 1}, then by the Cauchy-Schwarz
inequality and Parseval’s identity we have

‖P‖1 =
1

2π

∫ 2π

0

1 · |P (t)|dt ≤ ‖1‖2 · ‖P‖2 = 1 · ‖P̂‖2 =
√
n+ 1.

Newman [24] shows that in fact we can do better than what we get using the
Cauchy-Schwarz inequality and Parseval’s identity:

‖P‖1 <
√
n+ 0.97.

A Fekete polynomial is a polynomial of the form
∑l−1
k=1

(
k
l

)
zk, l prime, where(

k
l

)
is the Legendre symbol. Let Pl(t) =

∑l−1
k=1

(
k
l

)
eikt. Erdélyi [8] proves upper

and lower bounds on
(

1
|I|
∫
I
|Pl(t)|qdt

)1/q
, q > 0, where I is an arc in [0, 2π].
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