Convolution semigroups, canonical processes, and Brownian motion

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto
June 16, 2015

1 Convolution semigroups, projective families, and canonical processes

Let
\[E = \mathbb{R}^d \]
and let \(\mathcal{E} = \mathcal{B}_{\mathbb{R}^d} \), the Borel \(\sigma \)-algebra of \(\mathbb{R}^d \), and let \(\mathcal{P}(E) \) be the collection of Borel probability measures on \(\mathbb{R}^d \). With the narrow topology, \(\mathcal{P}(E) \) is a Polish space. For a nonempty set \(J \), we write
\[\mathcal{E}^J = \bigotimes_{t \in J} \mathcal{E}, \]
the product \(\sigma \)-algebra.

Let \(A : E \times E \to E \) be \(A(x_1, x_2) = x_1 + x_2 \). For \(\nu_1, \nu_2 \in \mathcal{P}(E) \), the convolution of \(\nu_1 \) and \(\nu_2 \) is the pushforward of the product measure \(\nu_1 \times \nu_2 \) by \(A \):
\[\nu_1 * \nu_2 = A_*(\nu_1 \times \nu_2). \]
The convolution \(\nu_1 * \nu_2 \) is an element of \(\mathcal{P}(E) \).

Let
\[I = \mathbb{R}_{\geq 0}. \]
A convolution semigroup is a family \((\nu_t)_{t \in I} \) of elements of \(\mathcal{P}(E) \) such that for \(s, t \in I \),
\[\nu_{s+t} = \nu_s * \nu_t. \]
From this, it turns out that \(\mu_0 = \delta_0 \)\(^1\). A convolution semigroup is called continuous when the map \(t \mapsto \nu_t \) is continuous \(I \to \mathcal{P}(E) \).

\(^1\)See http://individual.utoronto.ca/jordanbell/notes/narrow.pdf, Theorem 3.
For \(\nu \in \mathcal{P}(E) \) and \(x \in E \), and for \(B \in \mathcal{E} \),
\[
(\nu \ast \delta_x)(B) = \int_E \left(\int_E 1_B(x_1 + x_2)d\delta_x(x_1) \right) d\nu(x_2) = \nu(B - x),
\]
and we define \(\nu^x \in \mathcal{P}(E) \) by
\[
\nu^x = \nu \ast \delta_x.
\]

For \(\nu \in \mathcal{P}(E) \) and for a Borel measurable function \(f : E \to [0, \infty] \), write
\[
\nu f = \int_E fd\mu.
\]

For \(x \in E \), using the change of variables formula\(^3\) and Fubini’s theorem,
\[
\nu^x f = \int_E \int_E f(x_1 + x_2)d\delta_x(x_2)d\nu(x_1) = \int_E f(x_1 + x)d\nu(x_1).
\]
That is, for \(\nu \in \mathcal{P}(E) \), for \(f : E \to [0, \infty] \) Borel measurable, and for \(x \in E \),
\[
\nu^x f = \int_E fd\nu^x = \int_E f(x + y)d\nu(y). \tag{1}
\]

For nonempty subsets \(J \) and \(K \) of \(I \) with \(J \subset K \), let
\[
\pi_{K,J} : E^K \to E^J
\]
be the projection map. Let \(\mathcal{K} = \mathcal{K}(I) \) be the collection of finite nonempty subsets of \(I \). Let \((\Omega, \mathcal{F}, P, (X_t)_{t \in I}) \) be a stochastic process with state space \(E \).

For \(J \in \mathcal{K} \), with elements \(t_1 < \ldots < t_n \), we define
\[
X_J = X_{t_1} \otimes \cdots \otimes X_{t_n},
\]
which is measurable \(\mathcal{F} \to \mathcal{E}^J \). The joint distribution \(P_J \) of the family of random variables \((X_t)_{t \in J} \) is the distribution of \(X_J \), i.e.
\[
P_J = X_{J*}P.
\]

The family of finite-dimensional distributions of \(X \) is the family \((P_J)_{J \in \mathcal{K}} \).

For \(J, K \in \mathcal{K} \) with \(J \subset K \),
\[
X_J = \pi_{K,J} \circ X_K,
\]
from which
\[(\pi_{K,J})_{*}P_{K} = P_{J}.\] (2)

Forgetting the stochastic process \(X\), a family of probability measures \(P_{J}\) on \(E^{J}\), for \(J \in \mathcal{K}\), is called a projective family when (2) is true. The Kolmogorov extension theorem\[^4\] tells us that if \((P_{J})_{J \in \mathcal{K}}\) is a projective family, then there is a unique probability measure \(P_{I}\) on \(E^{I}\) such that for any \(J \in \mathcal{K}\),
\[(\pi_{I,J})_{*}P_{I} = P_{J}.\] (3)

Then for \(\Omega = E^{I}\) and \(\mathcal{F} = E^{I}\), \((\Omega, \mathcal{F}, P_{I})\) is a probability space, and for \(t \in I\) we define \(X_{t} : \Omega \to E\) by
\[X_{t}(\omega) = \pi_{I,\{t\}}(\omega) = \omega(t),\] (4)
which is measurable \(\mathcal{F} \to \mathcal{E}\), and thus the family \((X_{t})_{t \in I}\) is a stochastic process with state space \(E\). For \(J \in \mathcal{K}\) it is immediate that
\[X_{J} = \pi_{I,J}.\]

For \(B \in \mathcal{E}^{J}\), applying (3) gives
\[(X_{J}, P_{I})(B) = ((\pi_{I,J})_{*}P_{I})(B) = P_{J}(B),\]
which means that \(X_{J} \ast P_{I} = P_{J}\), namely, \((P_{J})_{J \in \mathcal{K}}\) is the family of finite-dimensional distributions of the stochastic process \((X_{t})_{t \in I}\). We call the stochastic process associated with the projective family \((P_{J})_{J \in \mathcal{K}}\).

Let \((\nu_{t})_{t \in I}\) be a convolution semigroup and let \(\mu \in \mathcal{P}(E)\). For \(J \in \mathcal{K}\), with elements \(t_{1} < \ldots < t_{n}\), and for \(B \in \mathcal{E}^{J}\), define
\[P_{J}(B) = \int_{E} \ldots \int_{E} 1_{B}(x_{1}, \ldots, x_{n})d\nu_{x_{n}}^{x_{n-1}}(x_{n}) \ldots d\nu_{x_{1}}^{x_{0}}(x_{1})d\mu(x_{0}).\] (5)

We say that \((P_{J})_{J \in \mathcal{K}}\) is the family of measures induced by the convolution semigroup \((\nu_{t})_{t \in I}\). It is proved that \((P_{J})_{J \in \mathcal{K}}\) is a projective family\[^5\]. Therefore, from the Kolmogorov extension theorem it follows that there is a unique probability measure \(P^{\mu}\) on \(E^{I}\) such that
\[(\pi_{I,J})_{*}P^{\mu} = P_{J}.\] (6)

For \(\Omega = E^{I}\) and \(\mathcal{F} = E^{I}\), \((\Omega, \mathcal{F}, P^{\mu})\) is a probability space. For \(t \in I\) define \(X_{t} : \Omega \to E\) by
\[X_{t}(\omega) = \pi_{I,\{t\}}(\omega) = \omega(t).\]

\[^4\]See http://individual.utoronto.ca/jordanbell/notes/finitedimdistributions.pdf
\[^5\]See http://individual.utoronto.ca/jordanbell/notes/markovkernels.pdf, Theorem 4.
Applying this with \(\mu \) is, i.e., for \(J \in \mathcal{X} \) with elements \(t_1 < \cdots < t_n \) and for \(B \in \mathcal{E}^J \),

\[
((X_{t_1} \otimes \cdots \otimes X_{t_n})_\ast P^\mu)(B) = \int_E \cdots \int_E 1_B(x_1, \ldots, x_n) d\nu_{t_n-t_{n-1}}(x_n) \cdots d\nu_{t_1}(x_1) d\mu(x_0).
\]

Applying this with \(\mu = \delta_x \) yields

\[
((X_{t_1} \otimes \cdots \otimes X_{t_n})_\ast P^{\delta_x})(B) = \int_E \cdots \int_E 1_B(x_1, \ldots, x_n) d\nu_{t_n-t_{n-1}}(x_n) \cdots d\nu_{t_1}(x_1),
\]

and thus, for any \(\mu \in \mathcal{P}(E) \),

\[
\int_E \cdots \int_E 1_B(x_1, \ldots, x_n) d\nu_{t_n-t_{n-1}}(x_n) \cdots d\nu_{t_1}(x_1) d\mu(x) = \int_E ((X_{t_1} \otimes \cdots \otimes X_{t_n})_\ast P^{\delta_x})(B) d\mu(x).
\]

That is, for \(\mu \in \mathcal{P}(E) \), for \(J \in \mathcal{X} \), and \(B \in \mathcal{E}^J \),

\[
(X_{J\ast} P^\mu)(B) = \int_E (X_{J\ast} P^{\delta_x})(B) d\mu(x). \tag{7}
\]

For \(J \in \mathcal{X} \), \(A_t \in \mathcal{E} \) for \(t \in J \), and \(A = \prod_{t \in J} A_t \times \prod_{t \notin J} E \in \mathcal{F} = \mathcal{E}^J \), namely \(A \) is a cylinder set\(^6\), let \(B = \pi_{I,J}(A) = \prod_{t \in J} A_t \in \mathcal{E}^J \),

\[
X_J^{-1}(B) = \pi_{I,J}^{-1}(B) = A,
\]

so by (7),

\[
P^\mu(A) = \int_E P^{\delta_x}(A) d\mu(x). \tag{8}
\]

Because this is true for all cylinder sets in the product \(\sigma \)-algebra \(\mathcal{E}^J \) and \(\mathcal{E}^J \) is generated by the collection of cylinder sets, \(\text{[8]} \) is true for all \(A \in \mathcal{F} \).

Let \(J \in \mathcal{X} \), with elements \(t_1 < \cdots < t_n \), and let \(\sigma_n : E^{n+1} \to E^n \) be \(\sigma_n(x_0, x_1, \ldots, x_n) = (x_0 + x_1, x_0 + x_1 + x_2, \ldots, x_0 + x_1 + x_2 + \cdots + x_n) \).

For \(B \in \mathcal{E}^n \) using \(\text{\textbullet} \) we obtain by induction

\[
\int_E \cdots \int_E 1_B(x_1, \ldots, x_{n-1}, x_n) d\nu_{t_{n-1}-t_{n-2}}(x_n) \cdots d\nu_{t_1}(x_1) d\mu(x_0) = \int_E \cdots \int_E 1_B(x_1, \ldots, x_{n-1}, x_n + x_1) d\nu_{t_{n-1}-t_{n-2}}(x_n) \cdots d\nu_{t_1}(x_1) d\mu(x_0) = \cdots = \int_E \cdots \int_E 1_B \circ \sigma_n d\nu_{t_{n-1}-t_{n-2}}(x_n) \cdots d\nu_{t_1}(x_1) d\mu(x_0).
\]

\(^6\)See http://individual.utoronto.ca/jordanbell/notes/productmeasure.pdf

\(^7\)See http://individual.utoronto.ca/jordanbell/notes/productmeasure.pdf
Thus, with P_J the probability measure on \mathcal{E}^J defined in [3],

$$
\int_{E^J} 1_B dP_J = P_J(B) = \int_E \cdots \int_E 1_B \circ \sigma_n d\nu_{t_n} \cdots d\nu_1(x_1) d\mu(x_0).
$$

For $f : E^n \to [0, \infty]$ a Borel measurable function, there is a sequence of measurable simple functions pointwise increasing to f, and applying the monotone convergence theorem yields

$$
\int_{E^n} f dP_J = \int_E \cdots \int_E f \circ \sigma_n d\nu_{t_n} \cdots d\nu_1(x_1) d\mu(x_0).
$$

2 Increments

Let $(\Omega, \mathcal{F}, P, (X_t)_{t \in I})$ be a stochastic process with state space E. X is said to have **stationary increments** if there is a family $(\nu_t)_{t \in I}$ of probability measures on \mathcal{E} such that for all $s, t \in I$ with $s \leq t$,

$$
P_*(X_t - X_s) = \nu_{t-s}.
$$

In particular, for $s = t$ this implies that $P_*(0) = \nu_0$, hence $\nu_0 = \delta_0$.

A stochastic process is said to have **independent increments** if for any $J \in \mathcal{K}$, with elements $0 = t_0 < t_1 < \cdots < t_n$, the random variables

$$
X_{t_0}, X_{t_1} - X_{t_0}, \ldots, X_{t_n} - X_{t_{n-1}}
$$

are independent.

We now prove that the canonical process associated with the projective family of probability measures induced by a convolution semigroup and any initial distribution has stationary and independent increments.

Theorem 1. Let $(\nu_t)_{t \in I}$ be a convolution semigroup, let $(P_J)_{J \in \mathcal{K}}$ be the family of measures induced by this convolution semigroup, let $\mu \in \mathcal{P}(E)$, and let $(\Omega, \mathcal{F}, P^\mu, (X_t)_{t \in I}), \Omega = E^I$ and $\mathcal{F} = \mathcal{E}^I$, be the associated canonical process. X has stationary increments,

$$
(X_t - X_s)_s P^\mu = \nu_{t-s}, \quad s \leq t,
$$

and has independent increments.

Proof. $\nu_0 = \delta_0$, so (10) is immediate when $s = t$. When $s < t$, let

$$
Y = X_s \otimes X_t = X_{(s,t)} = \pi_{I,(s,t)},
$$

which is measurable $\mathcal{F} \to \mathcal{E} \otimes \mathcal{E}$, and let $q : E \times E \to E$ be $(x_1, x_2) \mapsto x_2 - x_1$, which is continuous and hence Borel measurable. Then $q \circ Y$ is measurable.

\[\mathcal{F} \rightarrow \mathcal{F}, \text{ and for } B \in \mathcal{F}, \]
\[(q \circ Y)^{-1}(B) = \{ \omega \in \Omega : (q \circ Y)(\omega) \in B \} \]
\[= \{ \omega \in \Omega : X_t(\omega) - X_s(\omega) \in B \} \]
\[= (X_t - X_s)^{-1}(B), \]

and thus
\[(q \circ Y)_* P^\mu = (X_t - X_s)_* P^\mu. \tag{11} \]

Now, according to (6),
\[Y_* P^\mu = (\pi_{I,\{s,t\}})_* P^\mu = P_{\{s,t\}}. \]

Therefore, using that \(x_2 - x_1 \in B \) if and only if \(x_2 \in x_1 + B \) and also using \(\nu_{t-s}^E(x_1 + B) = \nu_{t-s}(B) \),
\[(X_t - X_s)_* P^\mu(B) = (q \circ Y)_* P^\mu(B) \]
\[= Y_* P^\mu(q^{-1}(B)) \]
\[= P_{\{s,t\}}(q^{-1}(B)) \]
\[= \int_{E} \int_{E} 1_{q^{-1}(B)}(x_1, x_2) d\nu_{t-s}^E(x_2) d\nu^E_s(x_1) d\mu(x) \]
\[= \int_{E} \int_{E} 1_{x_1 + B}(x_2) d\nu_{t-s}^E(x_2) d\nu^E_s(x_1) d\mu(x) \]
\[= \nu_{t-s}(B) \int_{E} d\nu^E_s(x_1) d\mu(x) \]
\[= \nu_{t-s}(B) \int_{E} d\nu^E_s(d\mu(x)) \]
\[= \nu_{t-s}(B) \int_{E} d\nu^E_s(d\mu(x)) \]
\[= \nu_{t-s}(B) \int_{E} d\mu(x) \]
\[= \nu_{t-s}(B), \]

which shows that
\[(X_t - X_s)_* P^\mu = \nu_{t-s}, \]

and thus that \(X \) has stationary increments.

Let \(0 = t_0 < t_1 < \cdots < t_n \), let \(J = \{t_0, t_1, \ldots, t_n\} \in \mathcal{F} \), write \(X_{t-1} = 0 \), and let
\[Y_0 = X_{t_0} - X_{t-1}, \quad Y_1 = X_{t_1} - X_{t_0}, \quad \ldots, \quad Y_n = X_{t_n} - X_{t_{n-1}}. \]

For the random variables \(Y_0, \ldots, Y_n \) to be independent means for their joint distribution to be equal to the product of the distributions of each, i.e. to prove that \(X \) has independent increments, writing
\[Z = Y_0 \otimes \cdots \otimes Y_n = \tau_n \circ (X_{t_0} \otimes \cdots \otimes X_{t_n}) = \tau_n \circ X_J = \tau_n \circ \pi_{I,J}, \]
with $\tau_n : E^{n+1} \to E^n$ defined by

$$\tau_n(x_0, x_1, \ldots, x_n) = (x_0, x_1 - x_0, \ldots, x_n - x_{n-1}),$$

we have to prove that

$$Z_* P^\mu = \prod_{j=0}^n Y_j^* P^\mu.$$

To prove this, it suffices (because the collection of cylinder sets generates the product σ-algebra) to prove that for any $A_0, \ldots, A_n \in \mathcal{E}$ and for $A = \prod_{j=0}^n A_j \in \mathcal{E}^{n+1},$

$$(Z_* P^\mu)(A) = \left(\prod_{j=0}^n Y_j^* P^\mu \right)(A),$$

i.e. that

$$(Z_* P^\mu)(A) = \prod_{j=0}^n (Y_j^* P^\mu)(A_j).$$

We now prove this. Using the change of variables theorem and (6),

$$\begin{align*}
(Z_* P^\mu)(A) &= \int_{E^{n+1}} 1_A d(Z_* P^\mu) \\
&= \int_{\Omega} 1_A \circ Z dP^\mu \\
&= \int_{\Omega} 1_A \circ \tau_n \circ (X_{t_0} \otimes \cdots \otimes X_{t_n}) dP^\mu \\
&= \int_{E^J} 1_A \circ \tau_n d(X_* P^\mu) \\
&= \int_{E^J} 1_A \circ \tau_n dP_J.
\end{align*}$$

Then applying (9) with $f = 1_A \circ \tau_n,$

$$\begin{align*}
\int_{E^J} 1_A \circ \tau_n dP_J &= \int_{E^J} \cdots \int_E 1_A \circ \tau_n \circ \sigma_{n+1} d\nu_{t_n - t_{n-1}}(x_n) \cdots d\nu_{t_0}(x_0) d\mu(x-1) \\
&= \int_{E^J} \cdots \int_E 1_A(x_{-1} + x_0, x_1, \ldots, x_n) d\nu_{n - t_{n-1}}(x_n) \cdots d\nu_{t_0}(x_0) d\mu(x-1) \\
&= \int_{E^J} \cdots \int_E 1_A(x_{-1} + x_0) 1_A(x_1) \cdots 1_A(x_n) d\nu_{n - t_{n-1}}(x_n) \cdots d\nu_{t_0}(x_0) d\mu(x-1) \\
&= \prod_{j=1}^n \nu_{j - t_{j-1}}(A_j) \int_{E^J} 1_A(x_{-1} + x_0) d\nu_{t_0}(x_0) d\mu(x-1),
\end{align*}$$

7
and because $t_0 = 0$ and $\nu_0 = \delta_0$,

$$\int_E \int_E 1_{A_0}(x - 1 + x_0) d\nu_0(x_0) d\mu(x - 1) = \int_E \int_E 1_{A_0}(x_0 + 1 + x_0) d\delta_0(x_0) d\mu(x - 1)$$

$$= \int_E 1_{A_0}(x_0) d\mu(x - 1)$$

$$= \mu(A_0),$$

and therefore

$$(Z_* P^\mu)(A) = \mu(A_0) \cdot \prod_{j=1}^n \nu_{t_j - t_{j-1}}(A_j).$$

But we have already proved that (10), which tells us that for each j,

$$Y_j^* P^\mu = (X_{t_j} - X_{t_{j-1}})^* P^\mu = \nu_{t_j - t_{j-1}},$$

and thus

$$(Z_* P^\mu)(A) = \mu(A_0) \cdot \prod_{j=1}^n (Y_j^* P^\mu)(A_j).$$

But $Y_0^* P^\mu = X_0^* P^\mu$ and from (7) we have

$$(X_0^* P^\mu)(A_0) = \int_E (X_0^* P^\delta_x)(A_0) d\mu(x) = \int_E (\pi_0^* P^\delta_x)(A_0) d\mu(x),$$

and, from (5),

$$(\pi_0^* P^\delta_x)(A_0) = \int_E \int_E 1_{A_0}(x_0) d\nu_0^\mu(x_0) d\delta_x(y)$$

$$= \int_E \int_E 1_{A_0}(x_0) d\delta_0(x_0) d\delta_x(y)$$

$$= \int_E 1_{A_0}(y) d\delta_x(y)$$

$$= 1_{A_0}(x),$$

thus

$$(X_0^* P^\mu)(A_0) = \int_E 1_{A_0}(x) d\mu(x) = \mu(A_0).$$

Therefore

$$(Z_* P^\mu)(A) = (X_0^* P^\mu)(A_0) \cdot \prod_{j=1}^n (Y_j^* P^\mu)(A_j) = \prod_{j=0}^n (Y_j^* P^\mu)(A_j),$$

which completes the proof that X has independent increments.

\[\square\]
3 The Brownian convolution semigroup and Brownian motion

For $a \in \mathbb{R}$ and $\sigma > 0$, let γ_{a,σ^2} be the Gaussian measure on \mathbb{R}, the probability measure on \mathbb{R} whose density with respect to Lebesgue measure is

$$p(x, a, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right).$$

For $\sigma = 0$, let $\gamma_{a,0} = \delta_a$.

Define for $t \in I$,

$$\nu_t = \prod_{k=1}^d \gamma_{0,t},$$

which is an element of $\mathcal{P}(E)$. For $s, t \in I$, we calculate

$$\nu_s * \nu_t = \left(\prod_{k=1}^d \gamma_{0,s} \right) * \left(\prod_{k=1}^d \gamma_{0,t} \right) = \prod_{k=1}^d (\gamma_{0,s} * \gamma_{0,t}) = \prod_{k=1}^d \gamma_{0,s+t} = \nu_{s+t},$$

showing that $(\nu_t)_{t \in I}$ is a convolution semigroup. It is proved using Lévy’s continuity theorem that $t \mapsto \nu_t$ is continuous $I \to \mathcal{P}(E)$, showing that $(\nu_t)_{t \in I}$ is a continuous convolution semigroup.

We first prove a lemma (which is made explicit in Isserlis’s theorem) about the moments of random variables with Gaussian distributions.

Lemma 2. If $Z : \Omega \to E$ is a random variable with Gaussian distribution ν_{τ}, $\tau > 0$, then for each n there is some $C_n > 0$ such that

$$E(|Z|^{2n}) = C_n \tau^n.$$

In particular, $C_2 = d$ and $C_4 = d(d+2)$.

Proof. That Z has distribution ν_{τ} means that

$$Z_*P = \nu_{\tau} = \prod_{j=1}^d \gamma_{0,\tau}.$$

Write $Z = Z_1 \otimes \cdots \otimes Z_d$, each of which has distribution $\gamma_{0,\tau}$, and $Z_*P = \prod_{j=1}^d Z_j$, which means that Z_1, \ldots, Z_d independent. Let $U_j = \tau^{-1/2}Z_j$ for $j = 1, \ldots, d$, and then U_1, \ldots, U_d are independent random variables each with

9 [http://individual.utoronto.ca/jordanbell/notes/markovkernels.pdf §6.](http://individual.utoronto.ca/jordanbell/notes/markovkernels.pdf)

distribution $\gamma_{0,1}$. Then using the multinomial formula,

$$
E(|Z|^2n) = E((Z_1^2 + \cdots + Z_d^2)^n) \\
= \tau^n \cdot E((U_1^2 + \cdots + U_d^2)^n) \\
= \tau^n \cdot E\left(\sum_{k_1+\cdots+k_d=n} \frac{n!}{k_1! \cdots k_d!} \prod_{1 \leq i \leq d} U_{j_i}^{2k_i}\right) \\
= \tau^n \cdot \sum_{k_1+\cdots+k_d=n} \frac{n!}{k_1! \cdots k_d!} E\left(\prod_{1 \leq i \leq d} U_{j_i}^{2k_i}\right).
$$

For $n = 2$, since $E(U_i U_j) = E(U_i) E(U_j) = 0$ for $i \neq j$,

$$
\tau^2 \cdot \sum_{k_1+\cdots+k_d=2} \frac{2}{k_1! \cdots k_d!} E\left(\prod_{1 \leq i \leq d} U_i^{2k_i}\right) = \tau^2 \cdot \sum_{j=1}^d E(U_j^2) = \tau^2 \cdot \sum_{j=1}^d 1 = d \tau^2,
$$

showing that $C_2 = d$. \hfill \Box

A stochastic process $(\Omega, \mathcal{F}, P, (X_t)_{t \in I})$ with state space E is called a d-dimensional Brownian motion when:

1. For $s \leq t$,

$$
(X_t - X_s)_* P = \nu_{t-s},
$$

and thus X has stationary increments.

2. X has independent increments.

3. For almost all $\omega \in \Omega$, the path $t \mapsto X_t(\omega)$ is continuous $I \to E$.

We call $X_0_* P$ the initial distribution of the Brownian motion. When $X_0_* P = \delta_x$ for some $x \in E$, we say that x is the starting point of the Brownian motion. We now prove that for any Borel probability measure on \mathcal{E}, in particular δ_x, there is a d-dimensional Brownian motion which has this as its initial distribution.11

Theorem 3 (Brownian motion). For any $\mu \in \mathcal{P}(E)$, there is a d-dimensional Brownian motion with initial distribution μ.

Proof. Let $(P_j)_{j \in \mathcal{E}}$ be the family of measures induced by the Brownian convolution semigroup

$$
\nu_t = \prod_{k=1}^d \gamma_{0,t}, \quad t \in I,
$$

and let $(\Omega, \mathcal{F}, P^\mu, (X_t)_{t \in I})$, $\Omega = E^I$ and $\mathcal{F} = \mathcal{E}^I$, be the associated canonical process. Theorem11 tells us that X has stationary increments,

$$
(X_t - X_s)_* P^\mu = \nu_{t-s}, \quad s \leq t, \quad (12)
$$

11Heinz Bauer, *Probability Theory*, p. 342, Theorem 40.3.
and has independent increments. For \(\tau = t - s > 0 \), by \(\text{[12]} \) and Lemma \(\text{[2]} \),

\[
E(|X_t - X_s|^4) = d(d + 2)r^2 = d(d + 2)|t - s|^2.
\]

Because \(E(|X_t - X_s|^4) = E(0) = 0 \), we have that for any \(s, t \in I \),

\[
E(|X_t - X_s|^4) = d(d + 2)|t - s|^2.
\]

The initial distribution of \(X \) is \(X_0, P^\mu = \mu \). For \(\alpha = 4, \beta = 1, c = d(d + 2) \), the Kolmogorov continuity theorem\(\text{[13]} \) tells us that there is a continuous modification \(B \) of \(X \). That is, there is a stochastic process \((B_t)_{t \in I} \) such that for each \(\omega \in \Omega \), the path \(t \mapsto B_t(\omega) \) is continuous \(I \rightarrow E \), namely, \(B \) is a continuous stochastic process, and for each \(t \in I \),

\[
P(X_t = B_t) = 1,
\]

namely, \(B \) is a modification of \(X \). Because \(B \) is a modification of \(X \), \(B \) has the same finite-dimensional distributions as \(X \)\(\text{[13]} \) from which it follows that \(B \) satisfies \(\text{[12]} \) and has independent increments. For \(A \in \mathcal{E} \), because \(B \) is a modification of \(X \),

\[
(B_0, P^\mu)(A) = P^\mu(B_0 \in A) = P^\mu(X_0 \in A) = (X_0, P^\mu)(A),
\]

thus \(B_0, P^\mu = X_0, P^\mu = \mu \), namely, \(B \) has initial distribution \(\mu \). Therefore, \(B \) is a Brownian motion (indeed, all the paths of \(B \) are continuous, not merely almost all of them) that has initial distribution \(\mu \), proving the claim. \(\square \)

For \(\mu \in \mathcal{P}(E) \), let \((\Omega, \mathcal{F}, P^\mu, (B_t)_{t \in I})\) be the \(d \)-dimensional Brownian motion with initial distribution \(\mu \) constructed in Theorem \(\text{[3]} \) we are not merely speaking about some \(d \)-dimensional Brownian motion but about this construction, for which \(\Omega = E^I \), all whose paths are continuous rather than merely almost all whose paths are continuous. For a measurable space \((A, \mathcal{A})\) and topological spaces \(X \) and \(Y \), a function \(f : X \times A \rightarrow Y \) is called a Carathéodory function if for each \(x \in X \), the map \(a \mapsto f(x, a) \) is measurable \(\mathcal{A} \rightarrow \mathcal{B}_Y \), and for each \(a \in A \), the map \(x \mapsto f(x, a) \) is continuous \(X \rightarrow Y \). It is a fact\(\text{[13]} \) that if \(X \) is a separable metrizable space and \(Y \) is a metrizable space, then any Carathéodory function \(f : X \times A \rightarrow Y \) is measurable \(\mathcal{B}_X \otimes \mathcal{A} \rightarrow \mathcal{B}_Y \), namely it is jointly measurable. \(B : I \times \Omega \rightarrow E \) is a Carathéodory function. \(I = \mathbb{R}_{\geq 0} \), with the subspace topology inherited from \(\mathbb{R} \), is a separable metrizable space, and \(E = \mathbb{R}^d \) is a metrizable space, and therefore the \(d \)-dimensional Brownian motion \(B \) is jointly measurable.

The Kolmogorov-Chentsov theorem17 says that if a stochastic process $(X_t)_{t \in I}$ with state space E satisfies, for $\alpha, \beta, c > 0$,

$$E(|X_s - X_t|^\alpha) \leq c|t - s|^{1+\beta}, \quad s, t \in I,$$

and almost every path of X is continuous, then for almost every $\omega \in \Omega$, for every $0 < \gamma < \frac{n}{2}$ the map $t \mapsto X_t(\omega)$ is locally γ-Hölder continuous: for each $t_0 \in I$ there is some $0 < \epsilon_{t_0} < 1$ and some C_{t_0} such that

$$|X_t(\omega) - X_s(\omega)| \leq C_{t_0}|t - s|^{\gamma}, \quad |s - t_0| < \epsilon_{t_0}, |t - t_0| < \epsilon_{t_0}.$$

For $\mu \in \mathcal{P}(E)$, let $(\Omega, \mathcal{F}, P^\mu, (B_t)_{t \in I})$ be the d-dimensional Brownian motion with initial distribution μ formed in Theorem3. For $s \leq t$, $(B_t - B_s)_n = \mu_{t-s}$, and thus Lemma2 tells us that for each $n \geq 1$ there is some C_n with which $E(|B_t - B_s|^{2n}) = C_n(t - s)^n$ for all $s < t$. Then $E(|B_t - B_s|^{2n}) \leq C_n|t - s|^n$ for all $s, t \in I$. For $n > 1$ and for $\alpha_n = 2n$ and $\beta_n = n - 1$,

$$\frac{\beta_n}{\alpha_n} = \frac{n - 1}{2n} = \frac{1}{2} - \frac{1}{2n},$$

and for $n > 2$, take some $\frac{\beta_n - 1}{\alpha_n - 1} < \gamma_n < \frac{\beta_n}{\alpha_n}$. Let N_n be the set of those $\omega \in \Omega$ for which $t \mapsto B_t(\omega)$ is not locally γ_n-Hölder continuous. Then the Kolmogorov-Chentsov theorem yields $P^\mu(N_n) = 0$. Let $N = \bigcup_{n \geq 2} N_n$, which is a P^μ-null set. For $\omega \in \Omega \setminus N$ and for any $0 < \gamma < \frac{1}{2}$, there is some γ_n satisfying $\gamma \leq \gamma_n < \frac{1}{2}$, and hence the map $t \mapsto B_t(\omega)$ is locally γ_n-Hölder continuous, which implies that this map is locally γ-Hölder continuous. We summarize what we have just said in the following theorem.

Theorem 4. Let $\mu \in \mathcal{P}(E)$ and let $(\Omega, \mathcal{F}, P^\mu, (B_t)_{t \in I})$ be the d-dimensional Brownian motion with initial distribution μ formed in Theorem3. For almost all $\omega \in \Omega$, for all $0 < \gamma < \frac{1}{2}$, the map $t \mapsto B_t(\omega)$ is locally γ-Hölder continuous.

4 Lévy processes

A stochastic process $(X_t)_{t \in I}$ with state space E is called a Lévy process17 if (i) $X_0 = 0$ almost surely, (ii) X has stationary and independent increments, and (iii) for any $a > 0$,

$$\lim_{t \uparrow 0} P(|X_t| \geq \epsilon) = 0.$$

Because $X_0 = 0$ almost surely and X has stationary increments, (iii) yields for any $t \in I$,

$$\lim_{s \rightarrow t} P(|X_s - X_s| \geq \epsilon) = 0. \quad (13)$$

17See David Applebaum, *Lévy Processes and Stochastic Calculus*, p. 39, §1.3.
In any case, (13) is sufficient for (iii) to be true. Moreover, (iii) means that $X_s \to X_t$ in the **topology of convergence in probability** as $s \to t$, and if $X_s \to X_t$ almost surely then $X_s \to X_t$ in the topology of convergence in probability; this is proved using Egorov’s theorem.\(^{18}\) Thus, a d-dimensional Brownian motion with starting point 0 is a Lévy process; we do not merely assert that the Brownian motion formed in Theorem 3 is a Lévy process. There is much that can be said generally about Lévy processes, and thus the fact that any d-dimensional Brownian motion with starting point 0 is a Lévy process lets us work in a more general setting in which some results may be more naturally proved: if we work merely with a Lévy process we know less about the process and thus have less open moves.

\(^{18}\)http://individual.utoronto.ca/jordanbell/notes/L0.pdf Theorem 3.