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1 Convolution semigroups, projective families,
and canonical processes

Let
E=TR?

and let & = %ga, the Borel o-algebra of R%, and let &(E) be the collection
of Borel probability measures on R?. With the narrow topology, #(FE) is a
Polish SpaceE] For a nonempty set J, we write

&' =Q¢,

teJ

the product o-algebra.

Let A: Ex E — E be A(z1,22) = x1 + 2. For vy,vs € P(F), the
convolution of v; and v; is the pushforward of the product measure v X vy
by A:

vy * v = Ai(vy X 13).

The convolution vy * o is an element of Z(E).
Let
I =R>o.

A convolution semigroup is a family (v;):cs of elements of &?(E) such that
for s,t € I,
Vgyt = Vg * Vy.

From this, it turns out that pg = §0E] A convolution semigroup is called con-
tinuous when the map t — v, is continuous I — Z(F).

1See http://individual.utoronto.ca/jordanbell/notes/narrow.pdf
%http://individual .utoronto.ca/jordanbell/notes/markovkernels.pdf, Theorem 3.
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For v € Z(F) and x € E, and for B € &,

(v 6,)(B) = /E ([E (1 + x2)d6x(:1:1)> dv(zs) = v(B — ),

and we define v* € Z(E) by
V¥ = v x*0,.

For v € Z(F) and for a Borel measurable function f : E — [0, o], write

vf = /Efdu.

For x € F, using the change of variables formulaﬂ and Fubini’s theorem,
Vi f = / fd(v = 6y)
E
= / f o Ad(V X 69{;)
ExXE

:/E(/Ef(xl—kxz)d%(ffz)) dv(z1)
- /E Flar + 2)dv(a).

That is, for v € Z(FE), for f : E — [0, 00] Borel measurable, and for z € F,

v = [ sar = [ fas i), 1)
For nonempty subsets J and K of I with J C K, let
TK,J : EK — EJ

be the projection map. Let & = J£(I) be the collection of finite nonempty
subsets of I. Let (Q,.%, P, (X:)ier) be a stochastic process with state space E.
For J € ¢, with elements t; < ... < t,, we define

XJ:th ®"’®th7

which is measurable # — &7. The joint distribution P; of the family of
random variables (X¢):cs is the distribution of X, i.e.

P;=X,,P.

The family of finite-dimensional distributions of X is the family (Py) e
For J K € % with J C K,

Xy =7k joXk,

3Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 484, Theorem 13.46.



from which
(WK,J)*PK = Pj. (2)

Forgetting the stochastic process X, a family of probability measures Py on &,
for J € , is called a projective family when is true. The Kolmogorov
extension theorenﬂ tells us that if (Py) e is a projective family, then there
is a unique probability measure P; on &’ such that for any J € %,

(m1,0)«Pr = Pj. (3)

Then for Q = B and .Z = &7, (Q,.%, Pr) is a probability space, and for ¢ € I
we define X; : Q — E by

Xi(w) = 71 1y (W) = w(t), (4)

which is measurable . — &, and thus the family (X;):cs is a stochastic process
with state space E. For J € J it is immediate that

XJ = 7T]7J.
For B € &7, applying gives
(Xs.Pr)(B) = ((m1,0)+Pr)(B) = Ps(B),

which means that X;,P; = Pj, namely, (Py)jex is the family of finite-
dimensional distributions of the stochastic process (X;):ecr. We call the stochas-
tic process the canonical process associated with the projective fam-
ily (Py)jex-

Let (v¢)ter be a convolution semigroup and let u € Z(FE). For J € ¢, with
elements t; < ... < t,, and for B € &7, define

P;(B)
:/E/E...‘/E1B($1,...,Scn)dyf::tlnil(gjn)...dytxlo(wl)d'u(xo). (5)

We say that (Pj)jcr is the family of measures induced by the convo-
lution semigroup (v4):ecs. It is proved that (Pj) e is a projective familyﬂ
Therefore, from the Kolmogorov extension theorem it follows that there is a
unique probability measure P* on &7 such that

(m1,0)«P" = Py. (6)

For Q = ET and .# = &7, (Q,.%, P*) is a probability space. For t € I define
X;:Q — E by
Xi(w) = 71 (w) = w(t).

4See http://individual.utoronto.ca/jordanbell/notes/finitedimdistributions.pdf
Shttp://individual.utoronto.ca/jordanbell/notes/markovkernels.pdf, Theorem 4.
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(X4t)ter is a stochastic processes whose family of finite-dimensional distributions
is (Py)jex, ie. for J € # with elements t; < --- < t, and for B € &7,

(X, ® - @ Xy, ) P*)(B)

/ / Lp(@s oo an)dvy 24, (2n) - dvif (21)dp(wo).

Applying this with u = J, yields

(X0, @ © X, ) / / (1, oy ) AV "E () - v (1),

and thus, for any p € Z(E),

/ / / Lo(@1,. - en)dvy 5, (wn) - duf (21)dp()

- /E (Xo, ® - ® X, ) P5) (B)dp(x).

That is, for p € P(E), for J € #, and B € &7,
(X1 PPY(B) = [ (X0 P5)(B)du(a). (")

For Je ', Aye &fort e J, andA:HteJAtthel\JEeﬁzgl,namely
A is a cylinder setﬁlet B=mrj(A) =]l,c; At € &7,
X5 (B) = 5(B) = A,
so by ,
Pr) = [ PP (A)dno) (®)
E

Because this is true for all cylinder sets in the product o-algebra &' and &7 is
generated by the collection of cylinder Setsm is true for all A € &.
Let J € J#, with elements t; < --- < t,, and let o, : E*T! — E™ be

on (0,1, &pn) = (o +T1, 0 + 21 + X2, ..., To + X1 + T2+ + Ty).

For B € & using we obtain by induction

/ / e / 1g(z1,.- -, Tpn_1, xn)dV?Ltl" @) dvf (1) dp(xo)
EJE E

/ / e / 1p(w1, . 1, T+ Tp1)dve, ¢, (Tn) - - - dVE° (21)dpa (o)
EJE E

/ / . / lpoondvy, —y, ,(xn) - dvg, (x1)dp(zo).
EJE E

6See http://individual.utoronto.ca/jordanbell/notes/productmeasure.pdf
7See http://individual.utoronto.ca/jordanbell/notes/productmeasure.pdf
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Thus, with P; the probability measure on & defined in ,

/ 1BdPJ:PJ(B):/ / / lBOUnthn_tn71($n)"'dl/tl(xl)d,u(xo).
EJ EJE E

For f : E™ — [0,00] a Borel measurable function, there is a sequence of mea-
surable simple functions pointwise increasing to f, and applying the monotone
convergence theorem yields

- fdPy = [E [E e /E foondvy, 1, (xn) - dvg, (z1)dp(zg). (9)

2 Increments

Let (Q,.%, P, (X¢)ier) be a stochastic process with state space E. X is said to
have stationary increments if there is a family (v;)¢c; of probability measures
on & such that for all s,t € I with s <,

P(X, — X,) = v_s.

In particular, for s = ¢ this implies that P,(0) = vy, hence vy = do.
A stochastic process is said to have independent increments if for any
J € &, with elements 0 = tg < t; < -+ < t,,, the random variables

Xtoa Xt1 - Xtoa o ath - th—l

are independent.

We now prove that the canonical process associated with the projective
family of probability measures induced by a convolution semigroup and any
initial distribution has stationary and independent incrementsﬁ

Theorem 1. Let (v;)ier be a convolution semigroup, let (Py)jcx be the fam-
ily of measures induced by this convolution semigroup, let p € P(E), and let
(Q, .7, P" (X¢)er), Q= E! and F = &, be the associated canonical process.
X has stationary increments,

(Xt — X))o PF = vy, s <t, (10)
and has independent increments.
Proof. vy = g, s0 is immediate when s = t. When s < t, let

Y =X 0 Xy = X546y = 71 {56}

which is measurable . — &® &, and let ¢ : E X E — E be (z1,x2) — x2 — 1,
which is continuous and hence Borel measurable. Then ¢ o Y is measurable

8Heinz Bauer, Probability Theory, p. 321, Theorem 37.2.



F — &, and for B € &,

(goY) 7' (B) ={weQ: (goY)(w) € B}
={we Q: Xy(w) — X,(w) € B}
= (Xt - Xs)_l(B)7

and thus
(goY). P = (X; — Xs) PH. (11)

Now, according to @,
Y*PU« = (Trl,{s,t}) Pt = P{G t}-

Therefore, using that zo — 1 € B if and only if zo € x1; + B and also using
Vf_ls(xl + B) = Vt—s(B)a

(Xi — Xs)«P*(B) = (qoY).P*(B)
=Y.P"(q _1(3))
=Py, (¢ 1(B))

B DR —
/E [E [E Loy 4 B(2)diL (w2)di (21)dp()
:Vt—s(B)/E[Edug(xl)dﬂ(x)

— 1_(B) /E vE (B)dp(z)

= v(B) [ duta)
= Vt—s (B)a

which shows that
(Xt - Xs)*P# = Vt—s,

and thus that X has stationary increments.
Let 0 =ty < t1 < -+ < tp, let J = {to,t1,...,tn} € KA, write X;_, = 0,
and let

YO:XtO _Xt_la Y1 :th _Xt(n ey Yn:th _th—l

For the random variables Yj,...,Y,, to be independent means for their joint
distribution to be equal to the product of the distributions of each, i.e. to prove
that X has independent increments, writing

Z=YQ - QY,=7,0(X;; ®--@Xy,)=Tp0X;=T,07m,



with 7, : E"*! — E™ defined by

Tn(ﬂcmxh cee ,!En) = (%;331 — 20y --3Tn — xn71)7

we have to prove that
Z.P" = H

To prove this, it suffices (because the collection of cylinder sets generates the

product o-algebra) to prove that for any Aqg, ..., A, € & and for A = H?:o Aj e
é«)n-&-l,

(Z,P*)(A H Y;, P* ),

i.e. that .
(Z.P*)( H (Y5, P*)(

We now prove this. Using the change of variables theorem and @,
P = [ 1adzp)
En+1
:/ 1a 0 ZdP*
Q
:/ 1AOTnO (Xto ® "'®Xt")dPlL
Q
= / 1la o1pd(X s, PH)
EJ
:/ 1A OTndPJ.
EBJ
Then applying @[) with f =14 07,,
/ lA e} TndPJ
EBEJ
:/ / e / laoTyoont1dve, —t, (@) dvg, (xo)dp(r—_1)
EJE E
:/ / . / la(z_y +xo, 21, .-y xp)dvy, —1, o (Tn) -+ - digy (o) dp(z_1)
EJE E

:/E/E-u/ElAO(x,l+xo)1A1($1)"'1An(xn)

dvt, —t,_, (Tn) -+ dvgy (z0)dp(w—1)

v )) [ [ Laalares o) (ahina),



and because tg = 0 and vy = g,

/ / Lao (@1 + 20)dviy (o) dpa(w_1) = / Lag (21 + 0)d8o (o) dpu(z_1)
/

and therefore

(ZP)(A) = u(Ao) - [ ] ;1,1 (Ay).

j=1
But we have already proved that , which tells us that for each j,

E*P“ = (th — thil)*PlL = th

—tj—1>
and thus .
(Z,P*)(A H (Y5, P*)(

But Yy, P* = Xo,.P" and from (7)) we have

(¥0.P")(A0) = [ (X0 P)(Ao)dn(e) = [ (m0.P5) (Aa)iu(o)

and, from ,

(w0, PP~ (Ag) = /E /E 1ao (0)du (0) 6, (y)

_ /E /E L, (20)d8, (o) d6 (1)

:/ 1Ao(y)d6z(y)
E
= 1140 (33)7
thus
(¥0.P)(do) = [ Lay(@)du(o) = (o)
Therefore
(Z.P")(A) = (Xo. P* ﬁ Y;, P*)( ﬁ Y;, P*)(

which completes the proof that X has independent increments.



3 The Brownian convolution semigroup and Brow-
nian motion

For a € Rand o > 0, let v, ,2 be the Gaussian measure on R, the probability
measure on R whose density with respect to Lebesgue measure is

1 z—a)?
ple,a,0%) = Jg e <_(202)>

For o =0, let
Ya,0 ::6w
Define for t € I,

d
vy = H Y0,t5
k=1

which is an element of &(E). For s,t € I, we calculate

d d d d
Vs * it = (H ’70,s> * <H 'YO,t) = H(Vo,s *Yo,t) = H V0,54t = Vst
k=1 k=1

k=1 k=1

showing that (v¢)icr is a convolution semigroup. It is proved using Lévy’s
continuity theorem that ¢ — 14 is continuous I — Z(FE), showing that (v¢)ier
is a continuous convolution semigroup

We first prove a lemma (which is made explicit in Isserlis’s theorem) about
the moments of random variables with Gaussian distributions[[]

Lemma 2. If 7 : Q — FE is a random variable with Gaussian distribution v,
T > 0, then for each n there is some Cy, > 0 such that

E(|Z]™) = Cp1™.
In particular, Co = d and Cy = d(d + 2).

Proof. That Z has distribution v, means that
d
Z.P=v, = H%’T'
j=1

Write Z = Z; ® -+ ® Zq4, each of which has distribution 7o, and Z,P =
Hj:1 Z;, P, which means that Zi,...,Z, independent. Let U; = 771/2Z; for
j=1,...,d, and then Uy,...,Uy are independent random variables each with

9http://individual .utoronto.ca/jordanbell/notes/markovkernels.pdf, §6.
10Heinz Bauer, Probability Theory, p. 341, Lemma 40.2.
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distribution vy ;. Then using the multinomial formula,
B(|1Z]*") = B(Z} + -+ Z3)")
= 7" B((Uf + -+ U3)")

! v
=7"-E Z ktnleUJle

Byt hg=n LT 1 Sy
n n! 2%k,
=) T I o™
byt thg=n L d: 1<i<d

For n = 2, since E(U;U;) = E(U;)E(U;) =0 for i # j,

STRED Y | Bl IRt DY/ R S

kifefha=2 T 1<i<d =1 =1
showing that Cy = d. O

A stochastic process (2, %, P, (X¢)ier) with state space F is called a d-
dimensional Brownian motion when:

1. For s <,
(Xt - Xs)*P = Vi—s,

and thus X has stationary increments.
2. X has independent increments.
3. For almost all w € Q, the path ¢ — X;(w) is continuous I — E.

We call X, P the initial distribution of the Brownian motion. When Xy, P =
0, for some x € E, we say that x is the starting point of the Brownian
motion. We now prove that for any Borel probability measure on &, in partic-

ular J,, there is a d-dimensional Brownian motion which has this as its initial
distribution ]

Theorem 3 (Brownian motion). For any p € P(E), there is a d-dimensional
Brownian motion with initial distribution p.

Proof. Let (Pj)jex be the family of measures induced by the Brownian con-
volution semigroup

d
Vt:H’YO,tv t€I7
k=1

and let (Q,.7, P*, (X¢)ier), @ = ET and # = &7, be the associated canonical
process. Theorem [I] tells us that X has stationary increments,

(Xt - XS)*P/L = Vt—s, S S t, (12)

'Heinz Bauer, Probability Theory, p. 342, Theorem 40.3.
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and has independent increments. For 7 =t — s > 0, by and Lemma
E(|X; — X% = d(d +2)r? = d(d + 2)|t — s|*.
Because E(|X; — X;|*) = E(0) = 0, we have that for any s,t € I,
E(1X; — X |*) = d(d +2)|t — s|*.

The initial distribution of X is X, P* = pu. For a« = 4,8 = 1,¢ = d(d + 2),
the Kolmogorov continuity theorenﬁ tells us that there is a continuous
modification B of X. That is, there is a stochastic process (B:)ies such that
for each w € Q, the path t — B;(w) is continuous I — F, namely, B is a
continuous stochastic process, and for each ¢t € I,

P(X:;=B;) =1,

namely, B is a modification of X. Because B is a modification of X, B has
the same finite-dimensional distributions as X E from which it follows that
B satisfies and has independent increments. For A € &, because B is a
modification of X,

(B()*PM)(A) = PH(BO S A) = PM(XO S A) = (XO*PM)(A),

thus By, P* = Xy, P* = p, namely, B has initial distribution p. Therefore, B
is a Brownian motion (indeed, all the paths of B are continuous, not merely
almost all of them) that has initial distribution u, proving the claim. O

For p € Z(E), let (Q,.%, P*,(Bt)ter) be the d-dimensional Brownian mo-
tion with initial distribution g constructed in Theorem [3} we are not merely
speaking about some d-dimensional Brownian motion but about this construc-
tion, for which Q = E’, all whose paths are continuous rather than merely
almost all whose paths are continuous. For a measurable space (A, «7) and topo-
logical spaces X and Y, a function f : X x A — Y is called a Carathéodory
function if for each € X, the map a — f(x,a) is measurable & — By,
and for each a € A, the map = — f(z,a) is continuous X — Y. Tt is a facﬂ
that if X is a separable metrizable space and Y is a metrizable space, then any
Carathéodory function f : X x A — Y is measurable Bx @ &/ — Ay, namely it
is jointly measurable. B : [ x Q — E is a Carathéodory function. I = R>y,
with the subspace topology inherited from R, is a separable metrizable space,
and E = RY is a metrizable space, and therefore the d-dimensional Brownian
motion B is jointly measurable.

Znttp://individual.utoronto.ca/jordanbell/notes/kolmogorovcontinuity.pdf, Theo-
rem 2.

Bhttp://individual.utoronto.ca/jordanbell/notes/kolmogorovcontinuity.pdf,
Lemma 1.

14Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 153, Lemma 4.51.
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The Kolmogorov-Chentsov theorenﬂ says that if a stochastic process
(Xt)ter with state space E satisfies, for a, 8,¢ > 0,

B(| X, — X |*) <t —s]™P,  stel,

and almost every path of X is continuous, then for almost every w € €, for
every 0 < v < g the map ¢t — X;(w) is locally y-Hé6lder continuous: for
each to € I there is some 0 < ¢;, < 1 and some Cy, such that

|Xt(w) — XS(W)| S Ct0|t - S|V, |S - to‘ < €t ‘t - t0| < €to-

For p € Z(E), let (Q,.%, P*,(Bt)ter) be the d-dimensional Brownian motion
with initial distribution p formed in Theorem For s <t, (B;—Bs)«P* = 1y,
and thus Lemma [2] tells us that for each n > 1 there is some C,, with which
E(|B; — Bs|*™) = C,(t — s)" for all s < t. Then E(|B; — Bs|?") < Cp|t — s|®
for all s,£ € I. For n > 1 and for a,, = 2n and 5, =n — 1,

Bn mn-—1

1

an on 2 2n’
and for n > 2, take some % < < 5—: Let N,, be the set of those w € (2 for
which ¢ — Bi(w) is not locally 7,-Hélder continuous. Then the Kolmogorov-
Chentsov theorem yields P#(N,) = 0. Let N = J,,o, Ny, which is a P*-null
set. Forw € Q\N and for any 0 < v < %, there is some 7, satisfying v < v, < %,
and hence the map ¢t — By(w) is locally ~,-Holder continuous, which implies
that this map is locally ~-Holder continuousm We summarize what we have
just said in the following theorem.

Theorem 4. Let p € P (E) and let (2,7, P*,(By)ier) be the d-dimensional
Brownian motion with initial distribution p formed in Theorem[3 For almost
allw € Q, forall0 < v < %, the map t — By(w) s locally v-Holder continuous.

4 Lévy processes

A stochastic process (X;):er with state space F is called a Lévy procesﬂ if
(i) Xo = 0 almost surely, (ii) X has stationary and independent increments, and
(iii) for any a > 0,

lim P(|X¢| > €) = 0.

t10

Because Xy = 0 almost surely and X has stationary increments, (iii) yields for
any t € I,
lim P(|Xs; — Xs| >¢€) =0. (13)

s—t

http://individual .utoronto.ca/jordanbell/notes/kolmogorovcontinuity.pdf, Theo-
rem 4.

16http://individual .utoronto.ca/jordanbell/notes/kolmogorovcontinuity.pdf,
Lemma 3.

17See David Applebaum, Lévy Processes and Stochastic Calculus, p. 39, §1.3.
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In any case, ([13) is sufficient for (iii) to be true. Moreover, (iii) means that
Xs; — X; in the topology of convergence in probability as s — ¢, and
if Xy — X; almost surely then Xy — X, in the topology of convergence in
probability; this is proved using Egorov’s theoremE Thus, a d-dimensioanl
Brownian motion with starting point 0 is a Lévy process; we do not merely
assert that the Brownian motion formed in Theorem [3|is a Lévy process. There
is much that can be said generally about Lévy processes, and thus the fact that
any d-dimensional Brownian motion with starting point 0 is a Lévy process lets
us work in a more general setting in which some results may be more naturally
proved: if we work merely with a Lévy process we know less about the process
and thus have less open moves.

18http://individual .utoronto.ca/jordanbell/notes/LO.pdf, Theorem 3.
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