Wiener measure and Donsker’s theorem

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto
September 4, 2015

1 Relatively compact sets of Borel probability measures on $C[0,1]$

Let $E = C[0,1]$, let \mathcal{B}_E be the Borel σ-algebra of E, and let \mathcal{P}_E be the collection of Borel probability measures on E. We assign \mathcal{P} the narrow topology, the coarsest topology on \mathcal{P}_E such that for each $F \in C_b(E)$ the map $\mu \mapsto \int_E F d\mu$ is continuous.

For $f \in E$ and $\delta > 0$ we define

$$\omega_f(\delta) = \sup_{s,t \in [0,1],|s-t| \leq \delta} |f(s) - f(t)|.$$

For $f \in E$, $\omega_f(\delta) \downarrow 0$ as $\delta \downarrow 0$, and for $\delta > 0$, $f \mapsto \omega_f(\delta)$ is continuous. We shall use the following characterization of a relatively compact subset A of E, which is proved using the Arzelà-Ascoli theorem.

Lemma 1. Let A be a subset of E. A is compact if and only if

$$\sup_{f \in A} |f(0)| < \infty$$

and

$$\sup_{f \in A} \omega_f(\delta) \downarrow 0, \quad \delta \downarrow 0.$$

We shall use Prokhorov’s theorem for X a Polish space and for $\Gamma \subset \mathcal{P}_X$, Γ is compact if and only if for each $\epsilon > 0$ there is a compact subset K_ϵ of X such that $\mu(K_\epsilon) \geq 1 - \epsilon$ for all $\mu \in \Gamma$. Namely, a subset of \mathcal{P}_X is relatively compact if and only if it is tight. We use Prokhorov’s theorem to

1.http://individual.utoronto.ca/jordanbell/notes/narrow.pdf
prove a characterization of relatively compact subsets of \mathcal{P}_E, which we then use to prove the characterization in Theorem 3.

Lemma 2. Let Γ be a subset of \mathcal{P}_E. Γ is compact if and only if for each $\epsilon > 0$ there is some $M_\epsilon < \infty$ and a function $\delta \mapsto \omega_\epsilon(\delta)$ satisfying $\omega_\epsilon(\delta) \downarrow 0$ as $\delta \downarrow 0$ and such that for all $\mu \in \Gamma$,

$$\mu(A_\epsilon) \geq 1 - \frac{\epsilon}{2}, \quad \mu(B_\epsilon) \geq 1 - \frac{\epsilon}{2},$$

where

$$A_\epsilon = \{ f \in E : |f(0)| \leq M_\epsilon \}, \quad B_\epsilon = \{ f \in E : \omega_f(\delta) \leq \omega_\epsilon(\delta) \text{ for all } \delta > 0 \}.$$

Proof. Suppose that Γ satisfies the above conditions. Because $f \mapsto |f(0)|$ is continuous, A_ϵ is closed. For $\delta > 0$, suppose that f_n is a sequence in B_ϵ tending to some $f \in E$. Because $g \mapsto \omega_g(\delta)$ is continuous, $\omega_{f_n}(\delta) \rightarrow \omega_f(\delta)$, and because $\omega_{f_n}(\delta) \leq \omega_\epsilon(\delta)$ for each n, we get $\omega_f(\delta) \leq \omega_\epsilon(\delta)$ and hence $f \in B_\epsilon$, showing that B_ϵ is closed. Therefore $K_\epsilon = A_\epsilon \cap B_\epsilon$ is closed, i.e. $K_\epsilon = K_\epsilon$. The set K_ϵ satisfies

$$\sup_{f \in K_\epsilon} |f(0)| \leq M_\epsilon$$

and

$$\limsup_{\delta \downarrow 0} \sup_{f \in K_\epsilon} \omega_f(\delta) \leq \limsup_{\delta \downarrow 0} \omega_\epsilon(\delta) = 0,$$

thus by Lemma 2 K_ϵ is compact. For $\mu \in \Gamma$,

$$\mu(K_\epsilon) \geq 1 - \frac{\epsilon}{2},$$

and because K_ϵ is compact, this means that Γ is tight, so by Prokhorov’s theorem, Γ is relatively compact.

Now suppose that Γ is relatively compact and let $\epsilon > 0$. By Prokhorov’s theorem, there is a compact set K_ϵ in E such that $\mu(K_\epsilon) \geq 1 - \frac{\epsilon}{2}$ for all $\mu \in \Gamma$. Define

$$M_\epsilon = \sup_{f \in K_\epsilon} |f(0)|, \quad \omega_\epsilon(\delta) = \sup_{f \in K_\epsilon} \omega_f(\delta), \quad \delta > 0.$$

Because K_ϵ is compact, by Lemma 2 we get that $M_\epsilon < \infty$ and $\omega_\epsilon(\delta) \downarrow 0$ as $\delta \downarrow 0$. For $\mu \in \Gamma$,

$$\mu(A_\epsilon) \geq \mu(K_\epsilon) \geq 1 - \frac{\epsilon}{2}, \quad \mu(B_\epsilon) \geq \mu(K_\epsilon) \geq 1 - \frac{\epsilon}{2},$$

showing that Γ satisfies the conditions of the theorem. \hfill \Box

We now prove the characterization of relatively compact subsets of \mathcal{P} that we shall use in our proof of Donsker’s theorem.

Theorem 3 (Relatively compact sets in \mathcal{P}). Let Γ be a subset of \mathcal{P}. Γ is compact if and only if the following conditions are satisfied:

1. For each $\epsilon > 0$ there is some $M_\epsilon < \infty$ such that
 $$\mu(f : |f(0)| \leq M_\epsilon) \geq 1 - \frac{\epsilon}{2}, \quad \mu \in \Gamma.$$

2. For each $\epsilon > 0$ and $\delta > 0$ there is some $\eta = \eta(\epsilon, \delta) > 0$ such that
 $$\mu(f : \omega_f(\eta) \leq \delta) \geq 1 - \frac{\epsilon}{2}, \quad \mu \in \Gamma.$$

Proof. Suppose that Γ is compact and let $\epsilon > 0$. By Lemma 2 there is some $M_\epsilon < \infty$ and a function $\eta \mapsto \omega_\epsilon(\eta)$ satisfying $\omega_\epsilon(\eta) \downarrow 0$ as $\eta \downarrow 0$ and
 $$\mu(A_\epsilon) \geq 1 - \frac{\epsilon}{2}, \quad \mu(B_\epsilon) \geq 1 - \frac{\epsilon}{2}, \quad \mu \in \Gamma.$$

For $\delta > 0$, there is some $\eta = \eta(\epsilon, \delta)$ with $\omega_\epsilon(\eta) \leq \delta$. Then for $\mu \in \Gamma$,
 $$\mu(f : \omega_f(\eta) \leq \delta) \geq \mu(f : \omega_f(\eta) \leq \omega_\epsilon(\eta)) \geq \mu(B_\epsilon) \geq 1 - \frac{\epsilon}{2}.$$

Now suppose that the conditions of the theorem hold. For each $\epsilon > 0$ and $n \geq 1$ there is some $\eta_{\epsilon,n} > 0$ such that
 $$\mu(F_{\epsilon,n}) \geq 1 - \frac{\epsilon}{2^{n+1}}, \quad \mu \in \Gamma,$$

where
 $$F_{\epsilon,n} = \left\{ f : \omega_f(\eta_{\epsilon,n}) \leq \frac{1}{n} \right\}.$$

Let
 $$K_\epsilon = \left\{ f : |f(0)| \leq M_\epsilon \right\} \cap \bigcap_{n=1}^{\infty} F_{\epsilon,n},$$

for which
 $$\mu(K_\epsilon) \geq \mu(f : |f(0)| \leq M_\epsilon) \geq 1 - \frac{\epsilon}{2}, \quad \mu \in \Gamma.$$

For $f \in K_\epsilon$, then for each $n \geq 1$ we have $f \in F_{\epsilon,n}$, which means that $\omega_f(\eta_{\epsilon,n}) \leq \frac{1}{n}$, and therefore
 $$\sup_{f \in K_\epsilon} \omega_f(\eta_{\epsilon,n}) \leq \frac{1}{n}.$$

Thus for $n \geq 1$, if $0 < \eta \leq \eta_{e,n}$ then

$$\sup_{f \in K} \omega_f(\eta) \leq \frac{1}{n},$$

which shows $\sup_{f \in K} \omega_f(\eta) \downarrow 0$ as $\eta \downarrow 0$. Then because

$$\sup_{f \in K} |f(0)| \leq M,$$

applying Lemma [1] we get that K_ϵ is compact. The map $f \mapsto \omega_f(\eta,\epsilon,n)$ is continuous, so the set $F_{\epsilon,n}$ is closed, and therefore the set K_ϵ is closed. Because K_ϵ is compact and $\mu(K_\epsilon) \geq 1 - \frac{\epsilon}{2}$ for all $\mu \in \Gamma$, it follows from Prokhorov’s theorem that Γ is relatively compact.

\[\square \]

2 Wiener measure

For $t_1, \ldots, t_d \in [0,1]$, $t_1 < \cdots < t_d$, define $\pi_{t_1, \ldots, t_d} : E \to \mathbb{R}^d$ by

$$\pi_{t_1, \ldots, t_d}(f) = (f(t_1), \ldots, f(t_d)),$$

which is continuous. We state the following results, which we will use later. [6]

Theorem 4 (The Borel σ-algebra of E). \mathcal{B}_E is equal to the σ-algebra generated by $\{\pi_t : t \in [0,1]\}$.

Two elements μ and ν of \mathcal{P}_E are equal if and only if for any d and any $t_1 < \cdots < t_d$, the pushforward measures

$$\mu_{t_1, \ldots, t_d} = (\pi_{t_1, \ldots, t_d})_* \mu, \quad \nu_{t_1, \ldots, t_d} = (\pi_{t_1, \ldots, t_d})_* \nu$$

are equal.

Let $(\xi_t)_{t \in [0,1]}$ be a stochastic process with state space \mathbb{R} and sample space (Ω, \mathcal{F}, P). For $t_1 < \cdots < t_d$, let $\xi_{t_1, \ldots, t_d} = \xi_{t_1} \otimes \cdots \otimes \xi_{t_d}$ and let $P_{t_1, \ldots, t_d} = (\xi_{t_1, \ldots, t_d})_* P$: for $B \in \mathcal{B}_\mathbb{R}^d$,

$$P_{t_1, \ldots, t_d}(B) = ((\xi_{t_1, \ldots, t_d})_* P)(B) = P((\xi_{t_1, \ldots, t_d}^{-1}(B)) = P((\xi_{t_1}, \ldots, \xi_{t_d}) \in B).$$

P_{t_1, \ldots, t_d} is a Borel probability measure on \mathbb{R}^d and is called a finite-dimensional distribution of the stochastic process [7].

The Kolmogorov continuity theorem [8] tells us that if there are $\alpha, \beta, K > 0$ such that for all $s, t \in [0,1]$,

$$E|\xi_t - \xi_s|^\alpha \leq K|t - s|^{1+\beta},$$

then there is a unique $\mu \in \mathcal{P}_E$ such that for all k and for all $t_1 < \cdots < t_d$,

$$\mu_{t_1, \ldots, t_d} = P_{t_1, \ldots, t_d}.$$

We now define and prove the existence of **Wiener measure**

Theorem 5 (Wiener measure). There is a unique Borel probability measure W on E satisfying:

1. $W(f \in E : f(0) = 0) = 1$.

2. For $0 \leq t_0 < t_1 < \cdots < t_d \leq 1$ the random variables

$$\pi_{t_0} - \pi_{t_1}, \quad \pi_{t_2} - \pi_{t_1}, \quad \pi_{t_3} - \pi_{t_2}, \quad \pi_{t_d} - \pi_{t_{d-1}}$$

are independent $(E, \mathcal{B}_E, W) \to (\mathbb{R}, \mathcal{B}_\mathbb{R})$.

3. If $0 \leq s < t \leq 1$, the random variable $\pi_t - \pi_s : (E, \mathcal{B}_E, W) \to (\mathbb{R}, \mathcal{B}_\mathbb{R})$ is normal with mean 0 and variance $t - s$.

Proof. There is a stochastic process $(\xi_t)_{t \in [0,1]}$ with state space \mathbb{R} and some sample space (Ω, \mathcal{F}, P), such that (i) $P(\xi_0 = 0) = 1$, (ii) $(\xi_t)_{t \in [0,1]}$ has independent increments, and (iii) for $s < t$, $\xi_t - \xi_s$ is a normal random variable with mean 0 and variance $t - s$ (Namely, Brownian motion with starting point 0.) Because $\xi_t - \xi_s$ has mean 0 and variance $t - s$, we calculate (cf. Isserlis’s theorem)

$$E[|\xi_t - \xi_s|^4] = 3|t - s|^2.$$

Thus using the Kolmogorov continuity theorem with $\alpha = 4$, $\beta = 1$, $K = 3$, there is a unique $W \in \mathcal{P}_E$ such that for all $t_1 < \cdots < t_d$,

$$W_{t_1, \ldots, t_d} = P_{t_1, \ldots, t_d},$$

i.e. for $B \in \mathcal{B}_\mathbb{R}^d$,

$$W(\pi_{t_1} \otimes \cdots \otimes \pi_{t_d} \in B) = P(\xi_{t_1} \otimes \cdots \otimes \xi_{t_d} \in B).$$

For $t_1 < \cdots < t_d$ and $B \in \mathcal{B}_\mathbb{R}^d$, with $T : \mathbb{R}^d \to \mathbb{R}^d$ defined by $T(x_1, \ldots, x_d) = (x_1, x_2 - x_1, \ldots, x_d - x_{d-1})$,

$$W(\pi_{t_1} \otimes (\pi_{t_2} - \pi_{t_1}) \otimes \cdots \otimes (\pi_{t_d} - \pi_{t_{d-1}}) \in B) = W(T \circ (\pi_{t_1} \otimes \pi_{t_2} \otimes \cdots \otimes \pi_{t_d}) \in B) = W(\pi_{t_1} \otimes \pi_{t_2} \otimes \cdots \otimes \pi_{t_d} \in T^{-1}(B)) = P(\xi_{t_1} \otimes \xi_{t_2} \otimes \cdots \otimes \xi_{t_d} \in T^{-1}(B)) = P(T \circ (\xi_{t_1} \otimes \xi_{t_2} \otimes \cdots \otimes \xi_{t_d}) \in B) = P(\xi_{t_1} \otimes (\xi_{t_2} - \xi_{t_1}) \otimes \cdots \otimes (\xi_{t_d} - \xi_{t_{d-1}}) \in B).$$

10http://individual.utoronto.ca/jordanbell/notes/browniansemigroup.pdf Theorem 3.
Hence, because $\xi_{t_1}, \xi_{t_2} - \xi_{t_1}, \ldots, \xi_{t_d} - \xi_{t_{d-1}}$ are independent,

$$(\pi_{t_1} \otimes (\pi_{t_2} - \pi_{t_1}) \otimes \cdots \otimes (\pi_{t_d} - \pi_{t_{d-1}}))_s W$$

$= (\xi_{t_1} \otimes (\xi_{t_2} - \xi_{t_1}) \otimes \cdots \otimes (\xi_{t_d} - \xi_{t_{d-1}}))_s P$

$= (\xi_{t_1})_s P \otimes (\xi_{t_2} - \xi_{t_1})_s P \otimes \cdots \otimes (\xi_{t_d} - \xi_{t_{d-1}})_s P$

$= (\pi_{t_1})_s W \otimes (\pi_{t_2} - \pi_{t_1})_s W \otimes \cdots \otimes (\pi_{t_d} - \pi_{t_{d-1}})_s W,$

which means that the random variables $\pi_{t_1}, \pi_{t_2} - \pi_{t_1}, \ldots, \pi_{t_d} - \pi_{t_{d-1}}$ are independent.

If $s < t$ and $B_1, B_2 \in \mathcal{B}_R$, and for $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x, y) = (x, y - x)$,

$$W((\pi_s, \pi_t - \pi_s) \in (B_1, B_2)) = W(T \circ (\pi_s, \pi_t) \in (B_1, B_2))$$

$$= P((\xi_s, \xi_t) \in T^{-1}(B_1, B_2))$$

$$= P((\xi_s, \xi_t - \xi_s) \in (B_1, B_2)),$$

which implies that $(\pi_t - \pi_s)_s W = (\xi_t - \xi_s)_s P$, and because $\xi_t - \xi_s$ is a normal random variable with mean 0 and variance $t - s$, so is $\pi_t - \pi_s$.

Finally,

$$W(f : f(0) = 0) = W(\pi_0 = 0) = P(\xi_0 = 0) = 1.$$

$$(E, \mathcal{B}_E, W)$$ is a probability space, and the stochastic process $(\pi_t)_{t \in [0, 1]}$ is a Brownian motion.

3 Interpolation and continuous stochastic processes

Let $(\xi_t)_{t \in [0, 1]}$ be a continuous stochastic process with state space \mathbb{R} and sample space (Ω, \mathcal{F}, P). To say that the stochastic process is continuous means that for each $\omega \in \Omega$ the map $t \mapsto \xi_t(\omega)$ is continuous $[0, 1] \to \mathbb{R}$. Define $\xi : \Omega \to E$ by

$$\xi(\omega) = (t \mapsto \xi_t(\omega)), \quad \omega \in \Omega.$$

For $t \in [0, 1]$ and B a Borel set in \mathbb{R},

$$\xi^{-1}\pi^{-1}_t B = \{\omega \in \Omega : \xi_t(\omega) \in B\} = \xi^{-1}_t B,$$

and because $\xi_t : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}_\mathbb{R})$ is measurable this belongs to \mathcal{F}. But by Theorem 4, \mathcal{B}_E is generated by the collection $\{\pi^{-1}_t B : t \in [0, 1], B \in \mathcal{B}_\mathbb{R}\}$. Now, for $f : X \to Y$ and for a nonempty collection \mathcal{F} of subsets of Y,

$$\sigma(f^{-1}(\mathcal{F})) = f^{-1}(\sigma(\mathcal{F})).$$

Therefore $\xi^{-1}(\mathcal{B}_E) \subset \mathcal{F}$, which means that $\xi : (\Omega, \mathcal{F}) \to (E, \mathcal{B}_E)$ is measurable. This means that a continuous stochastic process with index set $[0, 1]$ induces a random variable with state space E. Then the pushforward measure of P by ξ is a Borel probability measure on E. We shall end up constructing a sequence of pushforward measures from a sequence of continuous stochastic processes, that converge in \mathcal{P}_E to Wiener measure W.

Let $(X_n)_{n \geq 1}$ be a sequence of independent identically distributed random variables on a sample space (Ω, \mathcal{F}, P) with $E(X_n) = 0$ and $V(X_n) = 1$, and let $S_0 = 0$ and

$$S_k = \sum_{i=1}^{k} X_i.$$

Then $E(S_k) = 0$ and $V(S_k) = k$. For $t \geq 0$ let

$$Y_t = S_{[t]} + (t - [t])X_{[t]+1}.$$

Thus, for $k \geq 0$ and $k \leq t \leq k + 1$,

$$Y_t = S_k + (t - k)X_{k+1}$$

$$= S_k + (t - k)(S_{k+1} - S_k)$$

$$= (1 - t + k)S_k + (t - k)S_{k+1}.$$

For each $\omega \in \Omega$, the map $t \mapsto Y_t(\omega)$ is piecewise linear, equal to $S_k(\omega)$ when $t = k$, and in particular it is continuous. For $n \geq 1$, define

$$X_t^{(n)} = n^{-1/2}Y_{nt} = n^{-1/2}S_{[nt]} + n^{-1/2}(nt - [nt])X_{[nt]+1}, \quad t \in [0, 1].$$

(1)

For $0 \leq k \leq n$,

$$X_{k/n}^{(n)} = n^{-1/2}S_k.$$

For each $n \geq 1$, $(X_{k/n}^{(n)})_{t \in [0, 1]}$ is a continuous stochastic process on the sample space (Ω, \mathcal{F}, P), and we denote by $P_n \in \mathcal{P}_E$ the pushforward measure of P by $X_{(n)}$.

4 Donsker’s theorem

Lemma 6. If Z_n and U_n are random variables with state space \mathbb{R}^d such that $Z_n \to Z$ in distribution and $U_n \to 0$ in distribution, then $Z_n + U_n \to 0$ in distribution.

If Z_n are random variables with state space \mathbb{R} that converge in distribution to some random variable Z and c_n are real numbers that converge to some real number c, then $c_nZ_n \to cZ$ in distribution.

For $\sigma \geq 0$, let ν_{σ^2} be the Gaussian measure on \mathbb{R} with mean 0 and variance σ^2. The characteristic function of ν_{σ^2} is, for $\sigma > 0$,

$$\tilde{\nu}_{\sigma^2}(\xi) = \int_{\mathbb{R}} e^{i\xi x} d\nu_{\sigma^2}(x) = \int_{\mathbb{R}} e^{i\xi x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}} dx = e^{-\frac{1}{2}\xi^2 \sigma^2},$$

and $\tilde{v}_0(\xi) = 1$. One checks that $c_0 \nu_1 = \nu_{c^2}$ for $c \geq 0$.

In following theorem and in what follows, $X^{(n)}$ is the piecewise linear stochastic process defined in [1]. We prove that a sequence of finite-dimensional distributions converge to a Gaussian measure.\footnote{Bert Fristedt and Lawrence Gray, A Modern Approach to Probability Theory, p. 368, §19.1, Lemma 1.}

Theorem 7. For $0 \leq t_0 < t_1 < t_1 < \cdots < t_d \leq 1$, the random vectors

$$(X^{(n)}_{t_1} - X^{(n)}_{t_0}, \ldots, X^{(n)}_{t_d} - X^{(n)}_{t_{d-1}}), \quad (\Omega, \mathcal{F}, P) \rightarrow (\mathbb{R}^d, \mathcal{B}_d),$$

converge in distribution to $\nu_{t_1 - t_0} \otimes \cdots \otimes \nu_{t_d - t_{d-1}}$ as $n \rightarrow \infty$.

Proof. For $0 < j \leq d$ and $n \geq 1$ let

$$r_{j,n} = \left\lceil \frac{nt_j}{n} \right\rceil, \quad U_{j,n} = X^{(n)}_{t_j} - X^{(n)}_{r_{j,n}},$$

and for $0 \leq j < d$ and $n \geq 1$ let

$$s_{j,n} = \left\lfloor \frac{nt_j}{n} \right\rfloor, \quad V_{j,n} = X^{(n)}_{s_{j,n}} - X^{(n)}_{t_j},$$

with which

$$(X^{(n)}_{t_1} - X^{(n)}_{t_0}, \ldots, X^{(n)}_{t_d} - X^{(n)}_{t_{d-1}}) = (X^{(n)}_{r_{1,n}} - X^{(n)}_{s_{0,n}}, \ldots, X^{(n)}_{r_{d,n}} - X^{(n)}_{s_{d-1,n}})$$

$$+ (U_{1,n}, \ldots, U_{d,n}) + (V_{0,n}, \ldots, V_{d-1,n}).$$

Because $E(X^{(n)}_{t_1}) = 0$,

$$E(U_{j,n}) = 0, \quad E(V_{j,n}) = 0.$$

Furthermore,

$$V(U_{j,n})$$

$$= V(X^{(n)}_{r_{j,n}} - X^{(n)}_{r_{j,n}})$$

$$= n^{-1} V(S_{[nt_j]} + (nt_j - [nt_j])X_{[nt_j]+1} - S_{[nr_{j,n}]} - (nr_{j,n} - [nr_{j,n}])X_{[nr_{j,n}]+1})$$

$$= n^{-1} V(S_{[nt_j]} + (nt_j - [nt_j])X_{[nt_j]+1} - S_{[nt_j]} - ([nt_j] - [nt_j])X_{[nr_{j,n}]+1})$$

$$= n^{-1}(nt_j - [nt_j])^2 V(X_{[nt_j]+1})$$

$$= n^{-1}(nt_j - [nt_j])^2,$$

and because $0 \leq nt_j - [nt_j] < 1$ this tends to 0 as $n \rightarrow \infty$. Likewise, $V(V_{j,n}) \rightarrow 0$ as $n \rightarrow \infty$.

For $1 \leq j \leq d$,

$$X^{(n)}_{r_{j,n}} - X^{(n)}_{s_{j-1,n}} = n^{-1/2} S_{[ns_{j-1,n}]} + n^{-1/2}(ns_{j-1,n} - [ns_{j-1,n}])X_{[ns_{j-1,n}]+1}$$

$$- n^{-1/2} S_{[ns_{j-1,n}]} - n^{-1/2}(ns_{j-1,n} - [ns_{j-1,n}])X_{[ns_{j-1,n}]+1}$$

$$= n^{-1/2} S_{[nt_j]} - n^{-1/2} S_{[nt_{j-1}]}$$

$$= n^{-1/2} \left(\left\lfloor nt_j \right\rfloor - \left\lfloor nt_{j-1} \right\rfloor \right)^{1/2} \sum_{i = \left\lfloor nt_{j-1} \right\rfloor + 1}^{\left\lfloor nt_j \right\rfloor} X_i.$$
By the central limit theorem,
\[
([nt_j] - [nt_{j-1}] - 1)^{1/2} \sum_{i=[nt_{j-1}] + 1}^{[nt_j]} X_i \to \nu_1
\]
in distribution as \(n \to \infty \).

But
\[
n^{-1/2}([nt_j] - [nt_{j-1}] - 1)^{1/2} \to (t_j - t_{j-1})^{1/2}
\]
as \(n \to \infty \), and \((t_j - t_{j-1})^{1/2} \nu_1 = \nu_{j - t_{j-1}} \), so by Lemma 6
\[
X_{t_j,n}^{(n)} - X_{s_{j-1},n}^{(n)} \to \nu_{t_j - t_{j-1}}
\]
in distribution as \(n \to \infty \).

For sufficiently large \(n \), depending on \(t_0, \ldots, t_d \),
\[
t_0 \leq s_0, n < t_1 \leq s_1, n < r_2, n \leq \cdots \leq t_{d-1}, n < r_d, n \leq t_d.
\]
Check that \((U_1, \ldots, U_{d,n}) \to 0 \) in probability and that \((V_{0,n}, \ldots, V_{d-1,n}) \to 0 \) in probability, and hence these random vectors converge to 0 in distribution as \(n \to \infty \). The random variables \(X_{r_1,n}^{(n)} - X_{s_{0,n}}^{(n)}, \ldots, X_{r_d,n}^{(n)} - X_{s_{d-1,n}}^{(n)} \) are independent, and therefore their joint distribution is equal to the product of their distributions. Now, if \(\mu_n = \mu_n^1 \otimes \cdots \otimes \mu_n^d \) and \(\mu_n^j \to \mu^j \) as \(n \to \infty \), \(1 \leq j \leq d \), then for \(\xi \in \mathbb{R}^d \),
\[
\tilde{\mu}_n(\xi) = \tilde{\mu}_n^1(\xi_1) \cdots \tilde{\mu}_n^d(\xi_d)
\]
\[
\to \tilde{\mu}^1(\xi_1) \cdots \tilde{\mu}^d(\xi_d)
\]
\[
= (\mu^1 \otimes \cdots \otimes \mu^d)(\xi)
\]
as \(n \to \infty \), and therefore by \textbf{Lévy’s continuity theorem}, \(\mu_n \to \mu^1 \otimes \cdots \otimes \mu^d \) as \(n \to \infty \). This means that the joint distribution of \(X_{r_1,n}^{(n)} - X_{s_{0,n}}^{(n)}, \ldots, X_{r_d,n}^{(n)} - X_{s_{d-1,n}}^{(n)} \) converges to
\[
\nu_{t_1 - t_0} \otimes \cdots \otimes \nu_{t_d - t_{d-1}}
\]
as \(n \to \infty \). Because \((U_{1,n}, \ldots, U_{d,n}) \to 0 \) in distribution as \(n \to \infty \) and \((V_{0,n}, \ldots, V_{d-1,n}) \to 0 \) in distribution as \(n \to \infty \), applying Lemma 6 we get that
\[
(X_{t_1,n}^{(n)} - X_{t_0,n}^{(n)}, \ldots, X_{t_d,n}^{(n)} - X_{t_{d-1},n}^{(n)}) \to \nu_{t_1 - t_0} \otimes \cdots \otimes \nu_{t_d - t_{d-1}}
\]
in distribution as \(n \to \infty \), completing the proof.

Let \(t_0 = 0 \) and let \(0 < t_1 < \cdots < t_d \leq 1 \). As \(X_0^{(n)} = 0 \), the above lemma tells us that
\[
(X_{t_1,n}^{(n)}, X_{t_2,n}^{(n)} - X_{t_1,n}^{(n)}, \ldots, X_{t_d,n}^{(n)} - X_{t_{d-1},n}^{(n)}) \to \nu_{t_1} \otimes \nu_{t_2 - t_1} \otimes \cdots \otimes \nu_{t_d - t_{d-1}}
\]

1. \url{http://individual.utoronto.ca/jordanbell/notes/lindeberg.pdf}
2. \url{http://individual.utoronto.ca/jordanbell/notes/martingaleCLT.pdf}
in distribution as $n \to \infty$. Define $g : \mathbb{R}^d \to \mathbb{R}^d$ by
\[g(x_1, x_2, \ldots, x_d) = (x_1, x_1 + x_2, \ldots, x_1 + x_2 + \cdots + x_d). \]
The function g is continuous and satisfies
\[g \circ (X^{(n)}_{t_1} - X^{(n)}_{t_0}, \ldots, X^{(n)}_{t_d} - X^{(n)}_{t_{d-1}}) = (X^{(n)}_{t_1}, X^{(n)}_{t_2}, \ldots, X^{(n)}_{t_d}). \]

Then by the **continuous mapping theorem**,
\[(X^{(n)}_{t_1}, X^{(n)}_{t_2}, \ldots, X^{(n)}_{t_d}) \to g_*(\nu_{t_0} \otimes \nu_{t_2-t_1} \otimes \cdots \otimes \nu_{t_d-t_{d-1}}) \tag{2} \]
in distribution as $n \to \infty$.

We prove a result that we use to prove the next lemma, and that lemma is used in the proof of Donsker’s theorem.

Lemma 8. For $\epsilon > 0$,
\[\lim_{\delta \downarrow 0} \lim_{n \to \infty} \frac{1}{\delta} \mathbb{P} \left(\max_{1 \leq j \leq \lfloor n\delta \rfloor + 1} |S_j| > \epsilon n^{1/2} \right) = 0. \]

Proof. For each $\delta > 0$, by the central limit theorem,
\[([\lfloor n\delta \rfloor] + 1)^{-1/2} S_{\lfloor n\delta \rfloor + 1} \to Z \]
in distribution as $n \to \infty$, where $Z_* P = \nu_1$. Because $\frac{([\lfloor n\delta \rfloor] + 1)^{1/2}}{n^{1/2}} \to 1$ as $n \to \infty$, by Lemma we then get that
\[(n\delta)^{-1/2} S_{\lfloor n\delta \rfloor + 1} \to Z \]
in distribution as $n \to \infty$. Now let $\lambda > 0$, and there is a sequence ϕ_k in $C_{\lambda}(\mathbb{R})$ such that $\phi_k \downarrow 1_{(-\infty, -\lambda] \cup [\lambda, \infty)} = \chi_\lambda$ pointwise as $k \to \infty$. For each k, writing $X = S_{\lfloor n\delta \rfloor + 1}$, using the change of variables formula,
\[P(|X| \geq \lambda(n\delta)^{1/2}) = \int_{\Omega} \chi_{\lambda(n\delta)^{1/2}}(X(\omega)) d\mathbb{P}(\omega) \]
\[= \int_{\Omega} \chi_{\lambda((n\delta)^{-1/2}X(\omega))} d\mathbb{P}(\omega) \]
\[\leq \int_{\Omega} \phi_k((n\delta)^{-1/2}X(\omega)) d\mathbb{P}(\omega) \]
\[= E(\phi_k(\lambda((n\delta)^{-1/2}X))). \]

18 http://individual.utoronto.ca/jordanbell/notes/lindeberg.pdf
Therefore, by the continuous mapping theorem,
\[
\limsup_{n \to \infty} P(|S_{[n\delta]+1}| \geq \lambda (n\delta)^{1/2}) \leq \lim_{n \to \infty} E(\phi_k((n\delta)^{-1/2}S_{[n\delta]+1})) = E(\phi_k \circ Z).
\]
Because \(\phi_k \downarrow \chi_\lambda\) pointwise as \(k \to \infty\), using the monotone convergence theorem and then using Chebyshev’s inequality,
\[
E(\phi_k \circ Z) \to E(\chi_\lambda \circ Z) = P(|Z| \geq \lambda) \leq \lambda^{-3} E|Z|^3.
\]
We have established that for each \(\lambda > 0\),
\[
\limsup_{n \to \infty} P(|S_{[n\delta]+1}| \geq \lambda (n\delta)^{1/2}) \leq \lambda^{-3} E|Z|^3. \tag{3}
\]
Define\(\tau = \min\{j \geq 1 : |S_j| > n^{1/2}\epsilon\}\).

For \(0 < \delta < \epsilon^2/2\), it is a fact that
\[
P\left(\max_{0 \leq j \leq [n\delta]+1} |S_j| > n^{1/2}\epsilon\right)
\leq P(|S_{[n\delta]+1}| \geq n^{1/2}(\epsilon - (2\delta)^{1/2}))
+ \sum_{j=1}^{[n\delta]} P(|S_{[n\delta]+1}| < n^{1/2}(\epsilon - (2\delta)^{1/2})|\tau = j)P(\tau = j).
\]
If \(\tau(\omega) = j\) and \(|S_{[n\delta]+1}(\omega)| < n^{1/2}(\epsilon - (2\delta)^{1/2})\) then
\[
|S_j(\omega) - S_{[n\delta]+1}(\omega)| \geq |S_j(\omega)| - |S_{[n\delta]+1}(\omega)| > n^{1/2}\epsilon - n^{1/2}(\epsilon - (2\delta)^{1/2}) = (2n\delta)^{1/2}.
\]
But by Chebyshev’s inequality and the fact that the random variables \(X_1, X_2, \ldots\) are independent with mean 0 and variance 1,
\[
P(|S_j - S_{[n\delta]+1}| > (2n\delta)^{1/2}) \leq \frac{1}{2n\delta} E((S_j - S_{[n\delta]+1})^2) = \frac{1}{2n\delta} ([n\delta] - j) \leq \frac{1}{2},
\]
so
\[
P(|S_{[n\delta]+1}| < n^{1/2}(\epsilon - (2\delta)^{1/2})|\tau = j) \leq \frac{1}{2}.
\]
Therefore,
\[
P\left(\max_{0 \leq j \leq [n\delta]+1} |S_j| > n^{1/2}\epsilon\right)
\leq P(|S_{[n\delta]+1}| \geq n^{1/2}(\epsilon - (2\delta)^{1/2})) + \sum_{j=1}^{[n\delta]} \frac{1}{2} \cdot P(\tau = j)
=P(|S_{[n\delta]+1}| \geq n^{1/2}(\epsilon - (2\delta)^{1/2})) + \frac{1}{2} P(\tau \leq [n\delta])
=P(|S_{[n\delta]+1}| \geq n^{1/2}(\epsilon - (2\delta)^{1/2})) + \frac{1}{2} P\left(\max_{0 \leq j \leq [n\delta]+1} |S_j| > n^{1/2}\epsilon\right),
\]
so
\[P \left(\max_{0 \leq j \leq [n\delta]+1} |S_j| > n^{1/2}\epsilon \right) \leq 2P(|S_{[n\delta]+1}| \geq n^{1/2}(\epsilon - (2\delta)^{1/2})) . \]

Now using (3) with \(\lambda = (\epsilon - (2\delta)^{1/2})\delta^{-1/2} \),
\[
\limsup_{n \to \infty} P(|S_{[n\delta]+1}| \geq (\epsilon - (2\delta)^{1/2})\delta^{-1/2}(n\delta)^{1/2}) \leq (\epsilon - (2\delta)^{1/2})^{-3}\delta^{3/2}E|Z|^3 ,
\]

hence
\[
\limsup_{n \to \infty} P \left(\max_{0 \leq j \leq [n\delta]+1} |S_j| > n^{1/2}\epsilon \right) \leq 2(\epsilon - (2\delta)^{1/2})^{-3}\delta^{3/2}E|Z|^3 .
\]

Dividing both sides by \(\delta \) and then taking \(\delta \downarrow 0 \) we obtain the claim. \(\square \)

We prove one more result that we use to prove Donsker’s theorem.

Lemma 9. For \(T > 0 \) and \(\epsilon > 0 \),
\[
\lim_{n \to \infty} \limsup_{\delta \downarrow 0} P \left(\max_{0 \leq k \leq [nT]+1} \max_{1 \leq j \leq [n\delta]+1} |S_{j+k} - S_k| > n^{1/2}\epsilon \right) = 0 .
\]

Proof. For \(0 \leq \delta \leq T \), let \(m = \lceil T/\delta \rceil \), so \(T/m < \delta \leq T/(m-1) \). Then
\[
\lim_{n \to \infty} \frac{[nT] + 1}{[n\delta] + 1} = \frac{T}{\delta} < m,
\]
so for all \(n \geq n\delta \) it is the case that \([nT] + 1 < ([n\delta] + 1)m \). Suppose that \(\omega \in \Omega \) is such that there are \(1 \leq j \leq [n\delta] + 1 \) and \(0 \leq k \leq [nT] + 1 \) satisfying
\[
|S_{j+k}(\omega) - S_k(\omega)| > n^{1/2}\epsilon,
\]
and then let \(p = \lfloor k/([n\delta] + 1) \rfloor \), which satisfies \(0 \leq p \leq m - 1 \) and
\[
([n\delta] + 1)p \leq k < ([n\delta] + 1)(p + 1) .
\]
Because \(1 \leq j \leq [n\delta] + 1 \), either
\[
([n\delta] + 1)p < k + j \leq ([n\delta] + 1)(p + 1)
\]
or
\[
([n\delta] + 1)(p + 1) < k + j < ([n\delta] + 1)(p + 2) .
\]
We separate the first case into the cases
\[
|S_k(\omega) - S_{([n\delta]+1)p}(\omega)| > \frac{1}{2}n^{1/2}\epsilon
\]
\[\text{[Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second ed., p. 69, Lemma 4.19.]}\]
and

\[|S_{j+k}(\omega) - S_{([n\delta]+1)p}(\omega)| > \frac{1}{2}n^{1/2}\epsilon, \]

and we separate the second case into the cases

\[|S_k - S_{([n\delta]+1)p}(\omega)| > \frac{1}{3}n^{1/2}\epsilon, \]

and

\[|S_{([n\delta]+1)p}(\omega) - S_{([n\delta]+1)(p+1)}(\omega)| > \frac{1}{3}n^{1/2}\epsilon, \]

and

\[|S_{([n\delta]+1)(p+1)}(\omega) - S_{([n+\delta]+1)(p+2)}(\omega)| > \frac{1}{3}n^{1/2}\epsilon. \]

It follows that

\[\left\{ \max_{1 \leq j \leq [n\delta]+1} \max_{0 \leq k \leq [nT]+1} |S_j - S_k| > n^{1/2}\epsilon \right\} \]

\[\subset \bigcup_{p=0}^{m-1} \left\{ \max_{1 \leq j \leq [n\delta]+1} |S_{j+([n\delta]+1)p} - S_{([n\delta]+1)p}| > \frac{1}{3}n^{1/2}\epsilon \right\}. \]

For \(0 \leq p \leq m-1,\)

\[P \left(\max_{1 \leq j \leq [n\delta]+1} |S_{j+([n\delta]+1)p} - S_{([n\delta]+1)p}| > \frac{1}{3}n^{1/2}\epsilon \right) \]

\[\leq P \left(\max_{1 \leq j \leq [n\delta]+1} |S_j| > \frac{1}{3}n^{1/2}\epsilon \right), \]

so

\[P \left\{ \max_{1 \leq j \leq [n\delta]+1} \max_{0 \leq k \leq [nT]+1} |S_j - S_k| > n^{1/2}\epsilon \right\} \]

\[\leq \sum_{p=0}^{m-1} P \left(\max_{1 \leq j \leq [n\delta]+1} |S_j| > \frac{1}{3}n^{1/2}\epsilon \right) \]

\[= mP \left(\max_{1 \leq j \leq [n\delta]+1} |S_j| > \frac{1}{3}n^{1/2}\epsilon \right). \]

Lemma 8 tells us

\[\lim_{\delta \downarrow 0} \lim_{n \to \infty} \frac{1}{\delta} P \left(\max_{1 \leq j \leq [n\delta]+1} |S_j| > \frac{1}{3}n^{1/2}\epsilon \right) = 0, \]

and because \(m \leq \frac{T+\delta}{\delta} + 1 = \frac{T+\delta}{\delta},\)

\[\lim_{\delta \downarrow 0} \lim_{n \to \infty} P \left\{ \max_{1 \leq j \leq [n\delta]+1} \max_{0 \leq k \leq [nT]+1} |S_{j+k} - S_k| > n^{1/2}\epsilon \right\} = 0, \]

proving the claim. \(\square\)

\footnote{This should be worked out more carefully. In Karatzas and Shreve, there is \(m+1\) where I have \(m\).}
In the following, $P_n \in \mathcal{P}_E$ denotes the pushforward measure of P by $X^{(n)}$, for $X^{(n)}$ defined in \[1\]. We now prove Donsker’s theorem\[21\]

Theorem 10 (Donsker’s theorem). $P_n \rightarrow W$.

Proof. We shall use Theorem 3 to prove that $\Gamma = \{P_n : n \geq 1\}$ is relatively compact in \mathcal{P}_E. For $n \geq 1$,

$$P_n(f \in E : |f(0)| = 0) = P(\omega \in \Omega : |X_0^{(n)}(\omega)| = 0) = 1,$$

thus the first condition of Theorem 3 is satisfied with $M_\epsilon = 0$. For the second condition of Theorem 3 to be satisfied it suffices that for each $\epsilon > 0$,

$$\lim_{\delta \downarrow 0} \limsup_{n \to \infty} P\left(\sup_{0 \leq s, t \leq 1, |s-t| \leq \delta} |X_s^{(n)} - X_t^{(n)}| > \epsilon \right) = 0.$$

Now,

$$P\left(\sup_{0 \leq s, t \leq 1, |s-t| \leq \delta} |X_s^{(n)} - Y_s| > \epsilon \right) = P\left(\sup_{0 \leq s, t \leq 1, |s-t| \leq \delta} |Y_s - Y_t| > n^{1/2} \epsilon \right).$$

Also,

$$\sup_{0 \leq s, t \leq 1, |s-t| \leq \delta} |Y_s - Y_t| \leq \sup_{0 \leq s, t \leq n, |s-t| \leq n\delta} |Y - s - Y_t| \leq \max_{1 \leq j \leq [n\delta] + 1} \max_{0 \leq k \leq n+1} |S_{j+k} - S_k|,$$

so applying Lemma 9,

$$\lim_{\delta \downarrow 0} \limsup_{n \to \infty} P\left(\sup_{0 \leq s, t \leq 1, |s-t| \leq \delta} |X_s^{(n)} - X_t^{(n)}| > \epsilon \right) \leq \lim_{\delta \downarrow 0} \limsup_{n \to \infty} P\left(\max_{1 \leq j \leq [n\delta] + 1} \max_{0 \leq k \leq n+1} |S_{j+k} - S_k| > n^{1/2} \epsilon \right) \rightarrow 0,$$

from which we get that Γ is tight in \mathcal{P}_E. \[\square\]