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1 Relatively compact sets of Borel probability
measures on C|0, 1]

Let E = C0, 1], let g be the Borel g-algebra of E, and let & be the collection
of Borel probability measures on E. We assign & the narrow topology, the
coarsest topology on &g such that for each F' € Cy(E) the map p fE Fdu
is continuous[l

For f € F and 6 > 0 we define

wy(0) = sup |f(s) = F(t)].
s,t€[0,1],]s—t|<é
For f € E, w;(d) L 0as ¢ |0, and for 6 > 0, f — wy(d) is continuous. We shall
use the following characterization of a relatively compact subset A of E, which
is proved using the Arzela-Ascoli theoremE]

Lemma 1. Let A be a subset of E. A is compact if and only if

sup |f(0)] < o0
feA

and

supwy(d) 1 0, 640.
feA

We shall use Prokhorov’s theoremfﬂ for X a Polish space and for I' C
Px, T is compact if and only if for each € > 0 there is a compact subset
K. of X such that u(K.) > 1 — ¢ for all 4 € T. Namely, a subset of Px is
relatively compact if and only if it is tight. We use Prokhorov’s theorem to
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3K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 47, Chapter II, Theorem
6.7.
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prove a characterization of relatively compact subsets of &g, which we then
use to prove the characterization in Theorem

Lemma 2. Let T be a subset of Pg. T is compact if and only if for each € > 0
there is some M, < oo and a function 6 — wc(9) satisfying we(d) L 0 asd ]} 0
and such that for all p € T,

where

Ac={f € E:|f(0)] < M.}, B, ={f € E:w¢() <we(d) for all 6 > 0}.

Proof. Suppose that I' satisfies the above conditions. Because f — |f(0)] is
continuous, A, is closed. For § > 0, suppose that f,, is a sequence in B, tending
to some f € E. Because g — wy(9) is continuous, wy, (6) — wy(d), and because
wy, (0) < we(d) for each n, we get ws(d) < we(d) and hence f € B, showing
that B, is closed. Therefore K, = A, N B, is closed, i.e. K. = K.. The set K,
satisfies

sup [£(0)] < M,

FEK.
and

limsup sup wy(d) < limsupw.(d) =0,
510~ feK. 510

thus by Lemma |1} K, is compact. For p € T,

€

wE) =1 -5,
and because K. is compact, this means that I" is tight, so by Prokhorov’s theo-
rem, [ is relatively compact.

Now suppose that T' is relatively compact and let ¢ > 0. By Prokhorov’s
theorem, there is a compact set K, in E such that u(K.) > 1— 5 forall pel.
Define

M, = sup |f(0)], we(0) = sup wy(0), 4> 0.
fEK. fEK.
Because K, is compact, by Lemma [I| we get that M, < oo and we(d) | 0 as
010. For pel,

w(Ae) = p(Ke) 21— ((Be) > p(Ke) > 11—,

€
2’ -2

showing that I' satisfies the conditions of the theorem. O

4K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 213, Chapter VII, Lemma,
2.2.



We now prove the characterization of relatively compact subsets of &g that
we shall use in our proof of Donsker’s theoremﬂ

Theorem 3 (Relatively compact sets in &). Let I' be a subset of Pg. T is
compact if and only if the following conditions are satisfied:

1. For each € > 0 there is some M, < oo such that

u(f = |F(0)] < M) > 1—; per.

2. For each e > 0 and § > 0 there is some n =n(e,d) > 0 such that

€

5, /LGF

p(f wp(n) <0) 21—

Proof. Suppose that T' is compact and let ¢ > 0. By Lemma |2 there is some
M, < o0 and a function n — w.(n) satisfying w.(n) 4 0 as n | 0 and

n(Ae) 21— w(B)>1-5, pel.

€
27

(=) N

For § > 0, there is some 1 = n(e, §) with w.(n) < J. Then for p € T,

€

plf rwp(n) < 0) 2 u(f :wr(n) S we(m) 2 p(Be) 21— 5.

Now suppose that the conditions of the theorem hold. For each ¢ > 0 and
n > 1 there is some 7, > 0 such that

€

M(Fe,n)21*ﬁ7 perl,

where )
F€7l = : €,n S - .

= { et < 2}

Let .

KE = {f : |f(0)| S Me}m ﬂ Fe,n;
n=1
for which

WK = p(f 2 |F(0)] < M) >1— g, perl.

For f € K., then for each n > 1 we have f € F ,,, which means that ws(nen) <
%, and therefore

S|

sup Wy (Men) <
ek,

5K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 214, Chapter VII, Theo-
rem 2.2.



Thus for n > 1, if 0 < n < 1, then

sup wy(n) <
feK.

)

S|

which shows sup ¢ g wys(n) 1 0 as | 0. Then because

sup [f(0)] < M,
JeK.

applying Lemma [1| we get that K, is compact. The map f — Wi (Nen) is
continuous, so the set F, ,, is closed, and therefore the set K. is closed. Because
K. is compact and p(K.) > 1 — § for all u € T, it follows from by Prokhorov’s
theorem that I is relatively compact. O

2 Wiener measure
For t1,...,t4 €[0,1], t1 < --- < tq, define my, . 4, : B — R? by
Tor,ota(f) = (f(t1), ..., f(ta)), feE,

which is continuous. We state the following results, which we will use later[]

Theorem 4 (The Borel o-algebra of E). B is equal to the o-algebra generated
by {m : t €]0,1]}.

Two elements p and v of Pg are equal if and only if for any d and any
t1 < -+ < tq, the pushforward measures

Mty tq = (Trtl,m«,td)*u’ Viy,.ta = (7Tt17'~~7td)*y
are equal.

Let (&t)tefo,1] be a stochastic process with state space R and sample space
(Q,Z,P). Fort; < -+ < tg,let &, 41, =&, @ - @&, and let Py, 4, =
(&4....4,)«P: for B € B4,

Ptlwu,td(B) = ((§t17~~7td)*P)(‘B) = P(&;,l,td(B)) = P((gtu s 7&{1) € B)

P, ...+, is a Borel probability measure on R? and is called a finite-dimensional
distribution of the stochastic processrgEI

The Kolmogorov continuity theorem?®|tells us that if there are o, 8, K >
0 such that for all s,¢ € [0,1],

El& — & < K|t — 8|7,

Shttp://individual.utoronto.ca/jordanbell/notes/CK.pdf, Theorem 6; K. R.
Parthasarathy, Probability Measures on Metric Spaces, p. 212, Chapter VII, Theorem
2.1.

“http://individual .utoronto.ca/jordanbell/notes/finitedimdistributions.pdf
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then there is a unique p € g such that for all k and for all t; < -+ < tg,

Htq,...tq = Ptl,...,td-
We now define and prove the existence of Wiener measureﬂ

Theorem 5 (Wiener measure). There is a unique Borel probability measure W
on E satisfying:

1L W(feE:f(0)=0)=1.

2. For0 <ty <t <---<tyq <1 the random variables

Tty — Ttgy Tty — Ttyy Tty — Tty Tty — Tty 4

are independent (E, Bg, W) — (R, $r).

3. If 0 < s < t <1, the random variable 7y — 7y : (E,Br, W) — (R, Br) is
normal with mean 0 and variance t — s.

Proof. There is a stochastic process ({;)e(0,1] With state space R and some sam-
ple space (2,.7, P), such that (i) P(§o = 0) = 1, (ii) (§:)se[0,1] has independent
increments, and (iii) for s < ¢, & — &, is a normal random variable with mean
0 and variance t — SE (Namely, Brownian motion with starting point
0.) Because & — & has mean 0 and variance ¢ — s, we calculate (cf. Isserlis’s
theorem)

Blg — & = 3|t — s

Thus using the Kolmogorov continuity theorem with « =4, § =1, K = 3, there
is a unique W € £ such that for all t; < --- < tq4,

th,m,td = Ptl,...,td7
ie. for B € %&7
W(m, @ ®@m, € B)=P&, @ - ®&, € B).

Fort; <---<tgand B € %ﬁ,withT:Rd — R? defined by T'(x1, ..., 2q4) =
(1‘171:2 —T1y.--,Td — xd*l)a

W(my, @ (g —74,) @ -+ - @ (M, —me,_,) € B)
=W(To(my, @m, @---@m,) € B)
=W(ny, @y, @--- @7, € T™H(B))
=P(&, ©&4,® - ®&, € T7H(B))

(
P(To (&, ®&,® - ®&,) €B)
=P (&, @ (&, —61) @ @ (&g — §1g_y) € B).

9K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 218, Chapter VII, Theo-
rem 3.2.

Ohttp://individual .utoronto.ca/jordanbell/notes/browniansemigroup.pdf, Theorem
3.
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Hence, because &,,&, — &ty -+, &, — &, , are independent,

(T4, @ (Mg —Tgy) @ -+ @ (Wey — Ty )W
=&, @ (&, — &) @ @ (&g — &tyr )P

=6 ) P ® (& — & )+ P ® -+ @ (&4 — &ty )« P
=(m, )W @ (Mo, = T, )W @ - @ (e, — Ty )W,

which means that the random variables 7, , my, — m,, ..., m, — ™, , are inde-
pendent.
If s <t and By,By € %Bg, and for T : R? — R? defined by T(z,y) =

(z,y — ),
W((ms, me — ms) € (B1, B2)) = W(T o (ms, m) € (Bi, B2))
P((¢s,&) € T~1(B1, By))
= P((&, & — &) € (B, Ba)),
which implies that (m — 7). W = (& — &)« P, and because & — &, is a normal

random variable with mean 0 and variance ¢t — s, so is m; — 7.
Finally,

W(f : £(0) = 0) = W(mo = 0) = P(§ = 0) = 1.
O

(E,#r,W) is a probability space, and the stochastic process (7¢)e0,1] is a
Brownian motion.

3 Interpolation and continuous stochastic pro-
cesses

Let (&t):ef0,1] be a continuous stochastic process with state space R and
sample space (2,.%, P). To say that the stochastic process is continuous means
that for each w € Q the map ¢ — & (w) is continuous [0,1] — R. Define
£:Q — FE by

W) =t &), weQ

For t € [0,1] and B a Borel set in R,
¢ln ' B={weN:&(w) € B =¢ "B,

and because & : (,.7) — (R, %r) is measurable this belongs to .%. But by
Theorem {4, P is generated by the collection {m; 'B : t € [0,1],B € %g}.
Now, for f: X — Y and for a nonempty collection % of subsets of YE

o(f7HF)) = [ o (F).

11Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 140, Lemma 4.23.




Therefore £71(%E) C %, which means that £ : (Q,.F) — (E,%g) is mea-
surable. This means that a continuous stochastic proess with index set [0, 1]
induces a random variable with state space E. Then the pushforward measure
of P by ¢ is a Borel probability measure on £. We shall end up constructing
a sequence of pushforward measures from a sequence of continuous stochastic
processes, that converge in #g to Wiener measure W.

Let (X,,)n>1 be a sequence of independent identically distributed random
variables on a sample space (2,.%, P) with E(X,,) =0 and V(X,,) = 1, and let

So =0 and
k
Sk == ZXZ
i=1

Then E(Sg) =0 and V(Sg) = k. For ¢t > 0 let
Y, = S[t] + (t — [t])X[t]-i-l-
Thus, for k>0and k <t < k+1,
Y, =Sk + (t — k)X
=Sk + (t — k)(Sk+1 — Sk)
=1 —t4+k)Sk+ (t —k)Sk+1-
For each w € €, the map t — Y;(w) is piecewise linear, equal to Si(w) when
t = k, and in particular it is continuous. For n > 1, define
XM =0 V2, =0 28 + 0 2t — [t X e, t€[0,1) (1)
For 0 < k <n,
Xl?}zz = n_1/2Sk.

For each n > 1, (Xt(n))tG[O,l] is a continuous stochastic process on the sample
space (Q,.%, P), and we denote by P,, € &g the pushforward measure of P by
XM,

4 Donsker’s theorem

Lemma 6. If Z, and U, are random variables with state space R® such that
Zn — Z in distribution and U, — 0 in distribution, then Z, + U, — 0 in
distribution.

If Z,, are random wvariables with state space R that converge in distribution
to some random variable Z and c,, are real numbers that converge to some real
number c, then ¢, Z,, — cZ in distribution.

For 0 > 0, let v,2 be the Gaussian measure on R with mean 0 and variance
02[?] The characteristic function of v, is, for o > 0,

~ i€x i€ 1 —LZQ 7l02£2
Up2(€) = | e¥dvs2(x) = [ e e 22dr=e 27°%
R R

oV 2

Znttp://individual.utoronto.ca/jordanbell/notes/gaussian.pdf, §3.
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and 7(§) = 1. One checks that c,vy = v.2 for ¢ > 0.

In following theorem and in what follows, X (™ is the piecewise linear stochas-
tic process defined in . We prove that a sequence of finite-dimensional dis-
tributions converge to a Gaussian measure

Theorem 7. For 0 <ty <ti <t; <---<tq <1, the random vectors
XM - x L xM o x™M Y (0,7, P) - (R B,

converge in distribution to vy, 4, @ <+ @ Vyy—y, , AS N — OO.

Proof. For 0 < j <dandn >1 let

t.
Tjin = [nnj] ) ijn = Xt(,n) - X(n)

Tjn’

and for 0 < j<dand n>1let

t.
Sim = [nt;] Vi = x(n) —Xt(_?),

i Sin
n Js

with which
(- x L x - X ) = (x - x X - X))

to —1 Sd—1,n

+ Ui, Udgn) + Vons -5 Vam1,n)-
Because E(Xt(n)) =0,

Furthermore,
V(Ujn)
=X - X0
=n"'V(Spur,) + (0t — [05]) Xt 111 = Spory ) = (0750 = [1075.0]) Xr, 1)
="'V (Spue, + (nty — [n85]) X141 — Spne,) — ([nt5] = [085]) Xpr, L 141)
=n"t(nt; — [ntj])QV(X[nthl)
=n""(nt; — [nt;])?,

and because 0 < nt; —[nt;] < 1 this tends to 0 as n — oo. Likewise, V/(V;,,) — 0
as n — oo.

For1<j<d,
XM — XM =n S, 4T P (g — [0 ) X, L1

- n_1/25[n3j_1yn] - n_1/2(n8j71,n - [nsjfl,n])X[nsg'_lﬁn]+l

=72 =TS,
nt;

—np-1/2 ([nt;] = [nt;—1] — 1)1/2 [nt] .

([nt;] — [nt;_1] — 1)1/2 .

i=[nt;1]+1

13Bert Fristedt and Lawrence Gray, A Modern Approach to Probability Theory, p. 368,
§19.1, Lemma 1.



By the central limit theorem,

[nt;]
([nt;] = [nt; 1 =DV Y~ Xi—=n
i:rntj_l-l—‘y-l

in distribution as n — ool But
n 2 (Int;] — [ntj_1] — D2 = (t; — ;)"
as n — oo, and (t; — tj_l)i/le = Vi, —t;,_,, S0 by Lemma@

X(n) — X(n) ” — thftj_l

Tj,n Sj—1,

in distribution as n — co.
For sufficiently large n, depending on g, ..., tq,

to < Son <T1n ST <81 <72 <o <tgo1 < Sg—1,0 < Tadpn < tg.

Check that (U p,...,Uqyn) — 0 in probability and that (Vo ,,...,Va—1,n) = 0
in probability, and hence these random vectors converge to 0 in distribution
as n — oo. The random variables XT(:L),L — XS(QL, e aXr(:,)n — Xs(:zl,n are inde-
pendent, and therefore their joint distribution is equal to the product of their
distributions. Now, if pt,, = pl @ --- @ ud and pf — @/ asn — oo, 1 < j < d,
then for £ € RY,

fin(€) = fip (&) -+ 15 (€a)
— (&) - ()
= (u' @@ pt) ()
as n — 0o, and therefore by Lévy’s continuity theorem, y,, — p' ® - ® p?
as n — 0ol'®| This means that the joint distribution of Xf(f)w —X§Z;L, ... ,Xﬁ?n -

XS(ZZM converges to
Vi—tg @ - @ Vig—ty

as n — oo. Because (Uig,...,Usn) — 0 in distribution as n — oo and
(Vons -+, Va—1,n) — 0 in distribution as n — oo, applying Lemma |§| we get
that

(Xt(ln) - X(n) . aXt(‘?) - X(n) ) = Ut —to @ @ Viy—ty 4

to 0 ta_1

in distribution as n — oo, completing the proof. O

Lettg=0andlet 0 <1 < --- <tg <1. As Xé") = 0, the above lemma
tells us that

(x,

XM o ximoxim - x

t1 tq td_l) =V QU @ Q Uyt

http://individual.utoronto.ca/jordanbell/notes/lindeberg. pdf
Bhttp://individual .utoronto.ca/jordanbell/notes/martingaleCLT.pdf, p. 19, Theo-
rem 15.
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in distribution as n — oo. Define g : R* — R? by
g(z1,22,...,2q) = (1,21 + T2y ..., 21 + T2+ - + T4).
The function g is continuous and satisfies
go (XM —x{M xiM o xiMy=(x™M xM L x™).
Then by the continuous mapping theorem,
(Xt(:l)vXt(:)» e »Xt(:)) = gV, @Viy—t, @ QVpyty ) (2)

in distribution as n — o[
We prove a result that we use to prove the next lemma, and that lemma is
used in the proof of Donsker’s theoremm

Lemma 8. Fore > 0,

1
lim lim sup — P ( max |S;| > enl/Q) =0.
310 pooo 0 \1<j<[né]+1
Proof. For each 6 > 0, by the central limit theoremE
([nd] + 1) ™2 Sp511 — Z

([né]+1)!/2

in distribution as n — oo, where Z, P = v;. Because “5 157

—1lasn— oo,
by Lemma [6] we then get that

(né)_l/QS[n5]+1 — 7
in distribution as n — co. Now let A > 0, and there is a sequence ¢y, in Cp(R)

such that ¢r | 1(_co,—AJu[r,00) = X Dointwise as k — oo. For each k, writing
X = S[ns+1, using the change of variables formula,

PUX| = 2(18)'/2) = [ Xy (X () aP(e)
= [ (a2 w)ir)

< Q<bk((n5)_1/2)((w))dp(w)

= B(¢x((nd)~1/2X).

16 Allan Gut, Probability: A Graduate Course, second ed., p. 245, Chapter 5, Theorem 10.4.

17]oannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second
ed., p. 68, Lemma 4.18.

18http://individual.utoronto.ca/jordanbell/notes/lindeberg.pdf
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Therefore, by the continuous mapping theorem,
limsup P(|Spus141] > A(nd)/?) < lim E(¢p((nd) " /2Sps11))
n—o00 n—00
= E(¢r 0 Z).

Because ¢, | x pointwise as kK — 0o, using the monotone convergence theorem
and then using Chebyshev’s inequality,

E(pro0Z) — E(xxo0Z) = P(|Z] > \) < A\ 3E|Z].
We have established that for each A > 0,
limsup P(|Spnsj41| > AM(nd)'/?) < AT2E|Z). (3)

n—oo

Define
T =min{j > 1:|S;| > n'/%}.

For 0 < § < €2/2, it is a fact that

P( max |S\>n )

0<j<[nd]+
<P(|Spspaa] = n/2 (e — (20)2))
[n3)
+ 3 P(ISs] < n'3(e — (28)/%)|7 = j)P(r = j).
j=1

If 7(w) = j and [Sps41(w)| < n/%(e — (26)*/2) then
155(w) = Snsjr1(W)] = 15;(w)|=|Spmaj1 (@) > n'/2e=n'/2(e—(20)!/2) = (2n6)"/.

But by Chebyshev’s inequality and the fact that the random variables X1, Xo, ...
are independent with mean 0 and variance 1,

1 1 1
P(]Sj — Snoj+1l > (2n5)1/2) < %E((Sj - 5[n5]+1)2) = 2756([”5] —J) < >
SO 1
P(|Spnsj+1(w)] < n'/2(e = (20)/%)|7r = 5) < 5.
Therefore,
P( max |5 > n1/26>
0<j<[nd]+1
[nd] 1
<P(|Spsjia| = 02 (e = (26)/%) + 5 Plr=17)
j=1
1
=P(|Sima1| > n'/2(e = (20)/%)) + 5 P(r < [nd])
1
_ > 1/200 _ (95)1/2 1 1/2
P8l 2 w2 = (20)/2) + 3P (| _max 18> ni/%)

11



SO

) 172, <« > /20 _ 1/2y).
P, 155> 0] < 2P(Spsal 2 02 - (20)12)

Now using (3) with A\ = (e — (20)1/2)6-1/2,

limsup P(|Spap41] > (€ — (26)"/2)571/2(n6)'/?) < (e — (20)'/%)7*6*/*E|Z)?,
n—oo

hence
lim sup P ( max |S;] > n1/26> < 2(e — (20)Y3)738%2E|Z)°.
n—o00 0<j<[nd]+1
Dividing both sides by ¢ and then taking J | 0 we obtain the claim. 0

We prove one more result that we use to prove Donsker’s theoremE

Lemma 9. ForT >0 and e > 0,

lim lim sup P < max max  |Sjyr — Sk| > n1/26> = 0.
10 nsoo 0<k<[nT]+1 1< <[nd]+1
Proof. For 0 <6 <T,let m=[T/5],s0T/m < d <T/(m—1). Then

T/+1 T
lim [T +

n—oo [nd] + 1 :g<m,

so for all n > ns it is the case that [nT]+ 1 < ([nd] + 1)m. Suppose that w € Q
is such that there are 1 < j < [nd]+ 1 and 0 < k < [nT] + 1 satisfying

1S4k (w) — Sk(w)| > n'/?e,
and then let p = [k/([nd] + 1)], which satisfies 0 < p <m — 1 and
(8] + Dp < k < ([nd] + 1)(p+1).
Because 1 < j < [nd] + 1, either
([nd] +1)p <k +j < ([nd]+1)(p+1)

or
(O] + D(p+1) < k+ 74 < ([nd] +1)(p +2).

We separate the first case into the cases

1
[Sk(w) = S(pnanp(@)] > 5n'/%e

19Toannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second
ed., p. 69, Lemma 4.19.

12



and )
1Si k(W) = S(inoy+1)p(W)] > §n1/267

and we separate the second case into the cases

1
Sk = S(maj+1yp(@)] > 372,
and
L o1
IS(ns)+1)p (W) = S((ne1+1)(p+1) (W)] > 3n e
and
L o1
IS(ns]+1)(p+1) (@) = S(ints1+1)(p+2) (W)] > 3n e

It follows that?]

max max [ — S| > n'/%e
1<5<[nd]+1 0<k<[nT]+1

1
< U { s 55w = Seunnl > o).

For0<p<m-—-1,

1
P _ g 1/2
(125 St = S > '

1
§P< max |S|> n/26>
1<j<[nd]+

SO

P{ |Sj+k — Sk| > nl/ZE}
1<J<[n5]+1 O<k<[nT+

— 1 1/2
<3 (a1 5)

p=0

1
=mP ( max  |S;] > ’I’L1/26> .
1<j<[nd]+1 3

Lemma [§ tells us

1 1
%iinlimsupp< max |S;] > 3n1/2e> =0,

n—oo 0 1<j<[nd)+1
and because m < L +1 =T+
lim lim sup P max Siiw — Skl >n'%eb =0,
10y {1<]<[n6]+1 0<kelnr]+1 |Si+k — Skl }
proving the claim. 0

20This should be worked out more carefully. In Karatzas and Shreve, there is m + 1 where
I have m.
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In the following, P, € &5 denotes the pushforward measure of P by X ™),
for X(™) defined in (I). We now prove Donsker’s theorem

Theorem 10 (Donsker’s theorem). P, — W.

Proof. We shall use Theorem [3| to prove that ' = {P,, : n > 1} is relatively
compact in Zg. For n > 1,

Po(f € E:|f(0)] = 0) = Plwe Q: [X{"(w)| =0) =1,

thus the first condition of Theorem [3| is satisfied with M, = 0. For the second
condition of Theorem [3| to be satisfied it suffices that for each € > 0,

lim lim sup P sup XM (s) = XM (#)] >e| =0.
010 n—oo 0<s,t<1,|s—t|<6

Now,
P sup |x () — Xt(n)| >e¢| =P sup [V, — Vi| > n'/2e ] .
0<s,t<1,|s—t|<d 0<s,t<n,|s—t|<nd
Also,
sip [Ya-Yi< s [V —s—Y
0<s,t<n,|s—t|<nd 0<s,t<n,|s—t|<nd
<  max max |S;1r — Skl

T 1< <[né]+1 0<k<n+1

so applying Lemma [J]

lim lim sup P < sup |x{m - Xt(n)| > 6)

10 n—oo 0<s,t<1,]s—t[<5
<limlimsup P max max |Sjyr — Sk| > n'/%e
510 n—oo 1<j<[né]+1 0<k<n+1

—0,

from which we get that I' is tight in Zg. O

21Toannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second
ed., p. 70, Theorem 4.20.
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