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1 Relatively compact sets of Borel probability
measures on C[0, 1]

Let E = C[0, 1], let BE be the Borel σ-algebra of E, and let PE be the collection
of Borel probability measures on E. We assign P the narrow topology, the
coarsest topology on PE such that for each F ∈ Cb(E) the map µ 7→

∫
E
Fdµ

is continuous.1

For f ∈ E and δ > 0 we define

ωf (δ) = sup
s,t∈[0,1],|s−t|≤δ

|f(s)− f(t)|.

For f ∈ E, ωf (δ) ↓ 0 as δ ↓ 0, and for δ > 0, f 7→ ωf (δ) is continuous. We shall
use the following characterization of a relatively compact subset A of E, which
is proved using the Arzelà-Ascoli theorem.2

Lemma 1. Let A be a subset of E. A is compact if and only if

sup
f∈A
|f(0)| <∞

and
sup
f∈A

ωf (δ) ↓ 0, δ ↓ 0.

We shall use Prokhorov’s theorem:3 for X a Polish space and for Γ ⊂
PX , Γ is compact if and only if for each ε > 0 there is a compact subset
Kε of X such that µ(Kε) ≥ 1 − ε for all µ ∈ Γ. Namely, a subset of PX is
relatively compact if and only if it is tight. We use Prokhorov’s theorem to

1http://individual.utoronto.ca/jordanbell/notes/narrow.pdf
2http://individual.utoronto.ca/jordanbell/notes/CK.pdf, Lemma 7.
3K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 47, Chapter II, Theorem

6.7.
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prove a characterization of relatively compact subsets of PE , which we then
use to prove the characterization in Theorem 3.4

Lemma 2. Let Γ be a subset of PE. Γ is compact if and only if for each ε > 0
there is some Mε < ∞ and a function δ 7→ ωε(δ) satisfying ωε(δ) ↓ 0 as δ ↓ 0
and such that for all µ ∈ Γ,

µ(Aε) ≥ 1− ε

2
, µ(Bε) ≥ 1− ε

2
,

where

Aε = {f ∈ E : |f(0)| ≤Mε}, Bε = {f ∈ E : ωf (δ) ≤ ωε(δ) for all δ > 0}.

Proof. Suppose that Γ satisfies the above conditions. Because f 7→ |f(0)| is
continuous, Aε is closed. For δ > 0, suppose that fn is a sequence in Bε tending
to some f ∈ E. Because g 7→ ωg(δ) is continuous, ωfn(δ)→ ωf (δ), and because
ωfn(δ) ≤ ωε(δ) for each n, we get ωf (δ) ≤ ωε(δ) and hence f ∈ Bε, showing
that Bε is closed. Therefore Kε = Aε ∩ Bε is closed, i.e. Kε = Kε. The set Kε

satisfies
sup
f∈Kε

|f(0)| ≤Mε

and
lim sup
δ↓0

sup
f∈Kε

ωf (δ) ≤ lim sup
δ↓0

ωε(δ) = 0,

thus by Lemma 1, Kε is compact. For µ ∈ Γ,

µ(Kε) ≥ 1− ε

2
,

and because Kε is compact, this means that Γ is tight, so by Prokhorov’s theo-
rem, Γ is relatively compact.

Now suppose that Γ is relatively compact and let ε > 0. By Prokhorov’s
theorem, there is a compact set Kε in E such that µ(Kε) ≥ 1− ε

2 for all µ ∈ Γ.
Define

Mε = sup
f∈Kε

|f(0)|, ωε(δ) = sup
f∈Kε

ωf (δ), δ > 0.

Because Kε is compact, by Lemma 1 we get that Mε < ∞ and ωε(δ) ↓ 0 as
δ ↓ 0. For µ ∈ Γ,

µ(Aε) ≥ µ(Kε) ≥ 1− ε

2
, µ(Bε) ≥ µ(Kε) ≥ 1− ε

2
,

showing that Γ satisfies the conditions of the theorem.

4K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 213, Chapter VII, Lemma
2.2.
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We now prove the characterization of relatively compact subsets of PE that
we shall use in our proof of Donsker’s theorem.5

Theorem 3 (Relatively compact sets in P). Let Γ be a subset of PE. Γ is
compact if and only if the following conditions are satisfied:

1. For each ε > 0 there is some Mε <∞ such that

µ(f : |f(0)| ≤Mε) ≥ 1− ε

2
, µ ∈ Γ.

2. For each ε > 0 and δ > 0 there is some η = η(ε, δ) > 0 such that

µ(f : ωf (η) ≤ δ) ≥ 1− ε

2
, µ ∈ Γ.

Proof. Suppose that Γ is compact and let ε > 0. By Lemma 2, there is some
Mε <∞ and a function η 7→ ωε(η) satisfying ωε(η) ↓ 0 as η ↓ 0 and

µ(Aε) ≥ 1− ε

2
, µ(Bε) ≥ 1− ε

2
, µ ∈ Γ.

For δ > 0, there is some η = η(ε, δ) with ωε(η) ≤ δ. Then for µ ∈ Γ,

µ(f : ωf (η) ≤ δ) ≥ µ(f : ωf (η) ≤ ωε(η)) ≥ µ(Bε) ≥ 1− ε

2
.

Now suppose that the conditions of the theorem hold. For each ε > 0 and
n ≥ 1 there is some ηε,n > 0 such that

µ(Fε,n) ≥ 1− ε

2n+1
, µ ∈ Γ,

where

Fε,n =

{
f : ωf (ηε,n) ≤ 1

n

}
.

Let

Kε = {f : |f(0)| ≤Mε} ∩
∞⋂
n=1

Fε,n,

for which
µ(Kε) ≥ µ(f : |f(0)| ≤Mε) ≥ 1− ε

2
, µ ∈ Γ.

For f ∈ Kε, then for each n ≥ 1 we have f ∈ Fε,n, which means that ωf (ηε,n) ≤
1
n , and therefore

sup
f∈Kε

ωf (ηε,n) ≤ 1

n
.

5K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 214, Chapter VII, Theo-
rem 2.2.
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Thus for n ≥ 1, if 0 < η ≤ ηε,n then

sup
f∈Kε

ωf (η) ≤ 1

n
,

which shows supf∈Kε ωf (η) ↓ 0 as η ↓ 0. Then because

sup
f∈Kε

|f(0)| ≤Mε,

applying Lemma 1 we get that Kε is compact. The map f 7→ ωf (ηε,n) is
continuous, so the set Fε,n is closed, and therefore the set Kε is closed. Because
Kε is compact and µ(Kε) ≥ 1− ε

2 for all µ ∈ Γ, it follows from by Prokhorov’s
theorem that Γ is relatively compact.

2 Wiener measure

For t1, . . . , td ∈ [0, 1], t1 < · · · < td, define πt1,...,td : E → Rd by

πt1,...,td(f) = (f(t1), . . . , f(td)), f ∈ E,

which is continuous. We state the following results, which we will use later.6

Theorem 4 (The Borel σ-algebra of E). BE is equal to the σ-algebra generated
by {πt : t ∈ [0, 1]}.

Two elements µ and ν of PE are equal if and only if for any d and any
t1 < · · · < td, the pushforward measures

µt1,...,td = (πt1,...,td)∗µ, νt1,...,td = (πt1,...,td)∗ν

are equal.

Let (ξt)t∈[0,1] be a stochastic process with state space R and sample space
(Ω,F , P ). For t1 < · · · < td, let ξt1,...,td = ξt1 ⊗ · · · ⊗ ξtd and let Pt1,...,td =
(ξt1,...,td)∗P : for B ∈ Bd

R,

Pt1,...,td(B) = ((ξt1,...,td)∗P )(B) = P (ξ−1
t1,...,td

(B)) = P ((ξt1 , . . . , ξtd) ∈ B).

Pt1,...,td is a Borel probability measure on Rd and is called a finite-dimensional
distribution of the stochastic process.7

The Kolmogorov continuity theorem8 tells us that if there are α, β,K >
0 such that for all s, t ∈ [0, 1],

E|ξt − ξs|α ≤ K|t− s|1+β ,

6http://individual.utoronto.ca/jordanbell/notes/CK.pdf, Theorem 6; K. R.
Parthasarathy, Probability Measures on Metric Spaces, p. 212, Chapter VII, Theorem
2.1.

7http://individual.utoronto.ca/jordanbell/notes/finitedimdistributions.pdf
8K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 216, Chapter VII, Theo-

rem 3.1; http://individual.utoronto.ca/jordanbell/notes/kolmogorovcontinuity.pdf
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then there is a unique µ ∈PE such that for all k and for all t1 < · · · < td,

µt1,...,td = Pt1,...,td .

We now define and prove the existence of Wiener measure.9

Theorem 5 (Wiener measure). There is a unique Borel probability measure W
on E satisfying:

1. W (f ∈ E : f(0) = 0) = 1.

2. For 0 ≤ t0 < t1 < · · · < td ≤ 1 the random variables

πt1 − πt0 , πt2 − πt1 , πt3 − πt2 , πtd − πtd−1

are independent (E,BE ,W )→ (R,BR).

3. If 0 ≤ s < t ≤ 1, the random variable πt − πs : (E,BE ,W )→ (R,BR) is
normal with mean 0 and variance t− s.

Proof. There is a stochastic process (ξt)t∈[0,1] with state space R and some sam-
ple space (Ω,F , P ), such that (i) P (ξ0 = 0) = 1, (ii) (ξt)t∈[0,1] has independent
increments, and (iii) for s < t, ξt − ξs is a normal random variable with mean
0 and variance t − s.10 (Namely, Brownian motion with starting point
0.) Because ξt − ξs has mean 0 and variance t − s, we calculate (cf. Isserlis’s
theorem)

E|ξt − ξs|4 = 3|t− s|2.
Thus using the Kolmogorov continuity theorem with α = 4, β = 1, K = 3, there
is a unique W ∈PE such that for all t1 < · · · < td,

Wt1,...,td = Pt1,...,td ,

i.e. for B ∈ Bd
R,

W (πt1 ⊗ · · · ⊗ πtd ∈ B) = P (ξt1 ⊗ · · · ⊗ ξtd ∈ B).

For t1 < · · · < td and B ∈ Bd
R, with T : Rd → Rd defined by T (x1, . . . , xd) =

(x1, x2 − x1, . . . , xd − xd−1),

W (πt1 ⊗ (πt2 − πt1)⊗ · · · ⊗ (πtd − πtd−1
) ∈ B)

=W (T ◦ (πt1 ⊗ πt2 ⊗ · · · ⊗ πtd) ∈ B)

=W (πt1 ⊗ πt2 ⊗ · · · ⊗ πtd ∈ T−1(B))

=P (ξt1 ⊗ ξt2 ⊗ · · · ⊗ ξtd ∈ T−1(B))

=P (T ◦ (ξt1 ⊗ ξt2 ⊗ · · · ⊗ ξtd) ∈ B)

=P (ξt1 ⊗ (ξt2 − ξt1)⊗ · · · ⊗ (ξtd − ξtd−1
) ∈ B).

9K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 218, Chapter VII, Theo-
rem 3.2.

10http://individual.utoronto.ca/jordanbell/notes/browniansemigroup.pdf, Theorem
3.
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Hence, because ξt1 , ξt2 − ξt1 , . . . , ξtd − ξtd−1
are independent,

(πt1 ⊗ (πt2 − πt1)⊗ · · · ⊗ (πtd − πtd−1
))∗W

=(ξt1 ⊗ (ξt2 − ξt1)⊗ · · · ⊗ (ξtd − ξtd−1
))∗P

=(ξt1)∗P ⊗ (ξt2 − ξt1)∗P ⊗ · · · ⊗ (ξtd − ξtd−1
)∗P

=(πt1)∗W ⊗ (πt2 − πt1)∗W ⊗ · · · ⊗ (πtd − πtd−1
)∗W,

which means that the random variables πt1 , πt2 − πt1 , . . . , πtd − πtd−1
are inde-

pendent.
If s < t and B1, B2 ∈ BR, and for T : R2 → R2 defined by T (x, y) =

(x, y − x),

W ((πs, πt − πs) ∈ (B1, B2)) = W (T ◦ (πs, πt) ∈ (B1, B2))

= P ((ξs, ξt) ∈ T−1(B1, B2))

= P ((ξs, ξt − ξs) ∈ (B1, B2)),

which implies that (πt − πs)∗W = (ξt − ξs)∗P , and because ξt − ξs is a normal
random variable with mean 0 and variance t− s, so is πt − πs.

Finally,
W (f : f(0) = 0) = W (π0 = 0) = P (ξ0 = 0) = 1.

(E,BE ,W ) is a probability space, and the stochastic process (πt)t∈[0,1] is a
Brownian motion.

3 Interpolation and continuous stochastic pro-
cesses

Let (ξt)t∈[0,1] be a continuous stochastic process with state space R and
sample space (Ω,F , P ). To say that the stochastic process is continuous means
that for each ω ∈ Ω the map t 7→ ξt(ω) is continuous [0, 1] → R. Define
ξ : Ω→ E by

ξ(ω) = (t 7→ ξt(ω)), ω ∈ Ω.

For t ∈ [0, 1] and B a Borel set in R,

ξ−1π−1
t B = {ω ∈ Ω : ξt(ω) ∈ B} = ξ−1

t B,

and because ξt : (Ω,F ) → (R,BR) is measurable this belongs to F . But by
Theorem 4, BE is generated by the collection {π−1

t B : t ∈ [0, 1], B ∈ BR}.
Now, for f : X → Y and for a nonempty collection F of subsets of Y ,11

σ(f−1(F )) = f−1(σ(F )).

11Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 140, Lemma 4.23.
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Therefore ξ−1(BE) ⊂ F , which means that ξ : (Ω,F ) → (E,BE) is mea-
surable. This means that a continuous stochastic proess with index set [0, 1]
induces a random variable with state space E. Then the pushforward measure
of P by ξ is a Borel probability measure on E. We shall end up constructing
a sequence of pushforward measures from a sequence of continuous stochastic
processes, that converge in PE to Wiener measure W .

Let (Xn)n≥1 be a sequence of independent identically distributed random
variables on a sample space (Ω,F , P ) with E(Xn) = 0 and V (Xn) = 1, and let
S0 = 0 and

Sk =

k∑
i=1

Xi.

Then E(Sk) = 0 and V (Sk) = k. For t ≥ 0 let

Yt = S[t] + (t− [t])X[t]+1.

Thus, for k ≥ 0 and k ≤ t ≤ k + 1,

Yt = Sk + (t− k)Xk+1

= Sk + (t− k)(Sk+1 − Sk)

= (1− t+ k)Sk + (t− k)Sk+1.

For each ω ∈ Ω, the map t 7→ Yt(ω) is piecewise linear, equal to Sk(ω) when
t = k, and in particular it is continuous. For n ≥ 1, define

X
(n)
t = n−1/2Ynt = n−1/2S[nt] + n−1/2(nt− [nt])X[nt]+1, t ∈ [0, 1]. (1)

For 0 ≤ k ≤ n,

X
(n)
k/n = n−1/2Sk.

For each n ≥ 1, (X
(n)
t )t∈[0,1] is a continuous stochastic process on the sample

space (Ω,F , P ), and we denote by Pn ∈PE the pushforward measure of P by
X(n).

4 Donsker’s theorem

Lemma 6. If Zn and Un are random variables with state space Rd such that
Zn → Z in distribution and Un → 0 in distribution, then Zn + Un → 0 in
distribution.

If Zn are random variables with state space R that converge in distribution
to some random variable Z and cn are real numbers that converge to some real
number c, then cnZn → cZ in distribution.

For σ ≥ 0, let νσ2 be the Gaussian measure on R with mean 0 and variance
σ2.12 The characteristic function of νσ2 is, for σ > 0,

ν̃σ2(ξ) =

∫
R
eiξxdνσ2(x) =

∫
R
eiξx

1

σ
√

2π
e−

x2

2σ2 dx = e−
1
2σ

2ξ2 ,

12http://individual.utoronto.ca/jordanbell/notes/gaussian.pdf, §3.
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and ν̃0(ξ) = 1. One checks that c∗ν1 = νc2 for c ≥ 0.
In following theorem and in what follows, X(n) is the piecewise linear stochas-

tic process defined in (1). We prove that a sequence of finite-dimensional dis-
tributions converge to a Gaussian measure.13

Theorem 7. For 0 ≤ t0 < t1 < t1 < · · · < td ≤ 1, the random vectors

(X
(n)
t1 −X

(n)
t0 , . . . , X

(n)
td
−X(n)

td−1
), (Ω,F , P )→ (Rd,Bd

R),

converge in distribution to νt1−t0 ⊗ · · · ⊗ νtd−td−1
as n→∞.

Proof. For 0 < j ≤ d and n ≥ 1 let

rj,n =
[ntj ]

n
, Uj,n = X

(n)
tj −X

(n)
rj,n ,

and for 0 ≤ j < d and n ≥ 1 let

sj,n =
dntje
n

, Vj,n = X(n)
sj,n −X

(n)
tj ,

with which

(X
(n)
t1 −X

(n)
t0 , . . . , X

(n)
td
−X(n)

td−1
) = (X(n)

r1,n −X
(n)
s0,n , . . . , X

(n)
rd,n
−X(n)

sd−1,n
)

+ (U1,n, . . . , Ud,n) + (V0,n, . . . , Vd−1,n).

Because E(X
(n)
t ) = 0,

E(Uj,n) = 0, E(Vj,n) = 0.

Furthermore,

V (Uj,n)

=V (X
(n)
tj −X

(n)
rj,n)

=n−1V (S[ntj ] + (ntj − [ntj ])X[ntj ]+1 − S[nrj,n] − (nrj,n − [nrj,n])X[nrj,n]+1)

=n−1V (S[ntj ] + (ntj − [ntj ])X[ntj ]+1 − S[ntj ] − ([ntj ]− [ntj ])X[nrj,n]+1)

=n−1(ntj − [ntj ])
2V (X[ntj ]+1)

=n−1(ntj − [ntj ])
2,

and because 0 ≤ ntj−[ntj ] < 1 this tends to 0 as n→∞. Likewise, V (Vj,n)→ 0
as n→∞.

For 1 ≤ j ≤ d,

X(n)
rj,n −X

(n)
sj−1,n

= n−1/2S[nrj,n] + n−1/2(nrj,n − [nrj,n])X[nrj,n]+1

− n−1/2S[nsj−1,n] − n−1/2(nsj−1,n − [nsj−1,n])X[nsj−1,n]+1

= n−1/2S[ntj ] − n
−1/2Sdntj−1e

= n−1/2 ([ntj ]− dntj−1e − 1)1/2

([ntj ]− dntj−1e − 1)1/2

[ntj ]∑
i=dntj−1e+1

Xi.

13Bert Fristedt and Lawrence Gray, A Modern Approach to Probability Theory, p. 368,
§19.1, Lemma 1.
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By the central limit theorem,

([ntj ]− dntj−1e − 1)1/2

[ntj ]∑
i=dntj−1e+1

Xi → ν1

in distribution as n→∞.14 But

n−1/2([ntj ]− dntj−1e − 1)1/2 → (tj − tj−1)1/2

as n→∞, and (tj − tj−1)
1/2
∗ ν1 = νtj−tj−1

, so by Lemma 6,

X(n)
rj,n −X

(n)
sj−1,n

→ νtj−tj−1

in distribution as n→∞.
For sufficiently large n, depending on t0, . . . , td,

t0 ≤ s0,n < r1,n ≤ t1 ≤ s1,n < r2,n ≤ · · · ≤ td−1 ≤ sd−1,n < rd,n ≤ td.

Check that (U1,n, . . . , Ud,n) → 0 in probability and that (V0,n, . . . , Vd−1,n) → 0
in probability, and hence these random vectors converge to 0 in distribution

as n → ∞. The random variables X
(n)
r1,n −X

(n)
s0,n , . . . , X

(n)
rd,n −X

(n)
sd−1,n are inde-

pendent, and therefore their joint distribution is equal to the product of their
distributions. Now, if µn = µ1

n ⊗ · · · ⊗ µdn and µjn → µj as n → ∞, 1 ≤ j ≤ d,
then for ξ ∈ Rd,

µ̃n(ξ) = µ̃1
n(ξ1) · · · µ̃dn(ξd)

→ µ̃1(ξ1) · · · µ̃d(ξd)
= (µ1 ⊗ · · · ⊗ µd)̃ (ξ)

as n→∞, and therefore by Lévy’s continuity theorem, µn → µ1 ⊗ · · · ⊗ µd
as n→∞.15 This means that the joint distribution of X

(n)
r1,n−X

(n)
s0,n , . . . , X

(n)
rd,n−

X
(n)
sd−1,n converges to

νt1−t0 ⊗ · · · ⊗ νtd−td−1

as n → ∞. Because (U1,n, . . . , Ud,n) → 0 in distribution as n → ∞ and
(V0,n, . . . , Vd−1,n) → 0 in distribution as n → ∞, applying Lemma 6 we get
that

(X
(n)
t1 −X

(n)
t0 , . . . , X

(n)
td
−X(n)

td−1
)→ νt1−t0 ⊗ · · · ⊗ νtd−td−1

in distribution as n→∞, completing the proof.

Let t0 = 0 and let 0 < t1 < · · · < td ≤ 1. As X
(n)
0 = 0, the above lemma

tells us that

(X
(n)
t1 , X

(n)
t2 −X

(n)
t1 , . . . , X

(n)
td
−X(n)

td−1
)→ νt1 ⊗ νt2−t1 ⊗ · · · ⊗ νtd−td−1

14http://individual.utoronto.ca/jordanbell/notes/lindeberg.pdf
15http://individual.utoronto.ca/jordanbell/notes/martingaleCLT.pdf, p. 19, Theo-

rem 15.
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in distribution as n→∞. Define g : Rd → Rd by

g(x1, x2, . . . , xd) = (x1, x1 + x2, . . . , x1 + x2 + · · ·+ xd).

The function g is continuous and satisfies

g ◦ (X
(n)
t1 −X

(n)
t0 , . . . , X

(n)
td
−X(n)

td−1
) = (X

(n)
t1 , X

(n)
t2 , . . . , X

(n)
td

).

Then by the continuous mapping theorem,

(X
(n)
t1 , X

(n)
t2 , . . . , X

(n)
td

)→ g∗(νt1 ⊗ νt2−t1 ⊗ · · · ⊗ νtd−td−1
) (2)

in distribution as n→∞.16

We prove a result that we use to prove the next lemma, and that lemma is
used in the proof of Donsker’s theorem.17

Lemma 8. For ε > 0,

lim
δ↓0

lim sup
n→∞

1

δ
P

(
max

1≤j≤[nδ]+1
|Sj | > εn1/2

)
= 0.

Proof. For each δ > 0, by the central limit theorem,18

([nδ] + 1)−1/2S[nδ]+1 → Z

in distribution as n→∞, where Z∗P = ν1. Because ([nδ]+1)1/2

(nδ)1/2
→ 1 as n→∞,

by Lemma 6 we then get that

(nδ)−1/2S[nδ]+1 → Z

in distribution as n → ∞. Now let λ > 0, and there is a sequence φk in Cb(R)
such that φk ↓ 1(−∞,−λ]∪[λ,∞) = χλ pointwise as k → ∞. For each k, writing
X = S[nδ]+1, using the change of variables formula,

P (|X| ≥ λ(nδ)1/2) =

∫
Ω

χλ(nδ)1/2(X(ω))dP (ω)

=

∫
Ω

χλ((nδ)−1/2X(ω))dP (ω)

≤
∫

Ω

φk((nδ)−1/2X(ω))dP (ω)

= E(φk((nδ)−1/2X)).

16Allan Gut, Probability: A Graduate Course, second ed., p. 245, Chapter 5, Theorem 10.4.
17Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second

ed., p. 68, Lemma 4.18.
18http://individual.utoronto.ca/jordanbell/notes/lindeberg.pdf
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Therefore, by the continuous mapping theorem,

lim sup
n→∞

P (|S[nδ]+1| ≥ λ(nδ)1/2) ≤ lim
n→∞

E(φk((nδ)−1/2S[nδ]+1))

= E(φk ◦ Z).

Because φk ↓ χλ pointwise as k →∞, using the monotone convergence theorem
and then using Chebyshev’s inequality,

E(φk ◦ Z)→ E(χλ ◦ Z) = P (|Z| ≥ λ) ≤ λ−3E|Z|3.

We have established that for each λ > 0,

lim sup
n→∞

P (|S[nδ]+1| ≥ λ(nδ)1/2) ≤ λ−3E|Z|3. (3)

Define
τ = min{j ≥ 1 : |Sj | > n1/2ε}.

For 0 < δ < ε2/2, it is a fact that

P

(
max

0≤j≤[nδ]+1
|Sj | > n1/2ε

)
≤P (|S[nδ]+1| ≥ n1/2(ε− (2δ)1/2))

+

[nδ]∑
j=1

P (|S[nδ]+1| < n1/2(ε− (2δ)1/2)|τ = j)P (τ = j).

If τ(ω) = j and |S[nδ]+1(ω)| < n1/2(ε− (2δ)1/2) then

|Sj(ω)−S[nδ]+1(ω)| ≥ |Sj(ω)|−|S[nδ]+1(ω)| > n1/2ε−n1/2(ε−(2δ)1/2) = (2nδ)1/2.

But by Chebyshev’s inequality and the fact that the random variablesX1, X2, . . .
are independent with mean 0 and variance 1,

P (|Sj − S[nδ]+1| > (2nδ)1/2) ≤ 1

2nδ
E((Sj − S[nδ]+1)2) =

1

2nδ
([nδ]− j) ≤ 1

2
,

so

P (|S[nδ]+1(ω)| < n1/2(ε− (2δ)1/2)|τ = j) ≤ 1

2
.

Therefore,

P

(
max

0≤j≤[nδ]+1
|Sj | > n1/2ε

)

≤P (|S[nδ]+1| ≥ n1/2(ε− (2δ)1/2)) +

[nδ]∑
j=1

1

2
· P (τ = j)

=P (|S[nδ]+1| ≥ n1/2(ε− (2δ)1/2)) +
1

2
P (τ ≤ [nδ])

=P (|S[nδ]+1| ≥ n1/2(ε− (2δ)1/2)) +
1

2
P

(
max

0≤j≤[nδ]+1
|Sj | > n1/2ε

)
,
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so

P

(
max

0≤j≤[nδ]+1
|Sj | > n1/2ε

)
≤ 2P (|S[nδ]+1| ≥ n1/2(ε− (2δ)1/2)).

Now using (3) with λ = (ε− (2δ)1/2)δ−1/2,

lim sup
n→∞

P (|S[nδ]+1| ≥ (ε− (2δ)1/2)δ−1/2(nδ)1/2) ≤ (ε− (2δ)1/2)−3δ3/2E|Z|3,

hence

lim sup
n→∞

P

(
max

0≤j≤[nδ]+1
|Sj | > n1/2ε

)
≤ 2(ε− (2δ)1/2)−3δ3/2E|Z|3.

Dividing both sides by δ and then taking δ ↓ 0 we obtain the claim.

We prove one more result that we use to prove Donsker’s theorem.19

Lemma 9. For T > 0 and ε > 0,

lim
δ↓0

lim sup
n→∞

P

(
max

0≤k≤[nT ]+1
max

1≤j≤[nδ]+1
|Sj+k − Sk| > n1/2ε

)
= 0.

Proof. For 0 < δ ≤ T , let m = dT/δe, so T/m < δ ≤ T/(m− 1). Then

lim
n→∞

[nT ] + 1

[nδ] + 1
=
T

δ
< m,

so for all n ≥ nδ it is the case that [nT ] + 1 < ([nδ] + 1)m. Suppose that ω ∈ Ω
is such that there are 1 ≤ j ≤ [nδ] + 1 and 0 ≤ k ≤ [nT ] + 1 satisfying

|Sj+k(ω)− Sk(ω)| > n1/2ε,

and then let p = [k/([nδ] + 1)], which satisfies 0 ≤ p ≤ m− 1 and

([nδ] + 1)p ≤ k < ([nδ] + 1)(p+ 1).

Because 1 ≤ j ≤ [nδ] + 1, either

([nδ] + 1)p < k + j ≤ ([nδ] + 1)(p+ 1)

or
([nδ] + 1)(p+ 1) < k + j < ([nδ] + 1)(p+ 2).

We separate the first case into the cases

|Sk(ω)− S([nδ]+1)p(ω)| > 1

2
n1/2ε

19Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second
ed., p. 69, Lemma 4.19.
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and

|Sj+k(ω)− S([nδ]+1)p(ω)| > 1

2
n1/2ε,

and we separate the second case into the cases

|Sk − S([nδ]+1)p(ω)| > 1

3
n1/2ε,

and

|S([nδ]+1)p(ω)− S([nδ]+1)(p+1)(ω)| > 1

3
n1/2ε,

and

|S([nδ]+1)(p+1)(ω)− S([n+δ]+1)(p+2)(ω)| > 1

3
n1/2ε.

It follows that20{
max

1≤j≤[nδ]+1
max

0≤k≤[nT ]+1
|Sj+k − Sk| > n1/2ε

}
⊂
m−1⋃
p=0

{
max

1≤j≤[nδ]+1
|Sj+([nδ]+1)p − S([nδ]+1)p| >

1

3
n1/2ε

}
.

For 0 ≤ p ≤ m− 1,

P

(
max

1≤j≤[nδ]+1
|Sj+([nδ]+1)p − S([nδ]+1)p| >

1

3
n1/2ε

)
≤P

(
max

1≤j≤[nδ]+1
|Sj | >

1

3
n1/2ε

)
,

so

P

{
max

1≤j≤[nδ]+1
max

0≤k≤[nT ]+1
|Sj+k − Sk| > n1/2ε

}
≤
m−1∑
p=0

P

(
max

1≤j≤[nδ]+1
|Sj | >

1

3
n1/2ε

)
=mP

(
max

1≤j≤[nδ]+1
|Sj | >

1

3
n1/2ε

)
.

Lemma 8 tells us

lim
δ↓0

lim sup
n→∞

1

δ
P

(
max

1≤j≤[nδ]+1
|Sj | >

1

3
n1/2ε

)
= 0,

and because m ≤ T
δ + 1 = T+δ

δ ,

lim
δ↓0

lim sup
n→∞

P

{
max

1≤j≤[nδ]+1
max

0≤k≤[nT ]+1
|Sj+k − Sk| > n1/2ε

}
= 0,

proving the claim.

20This should be worked out more carefully. In Karatzas and Shreve, there is m+ 1 where
I have m.
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In the following, Pn ∈PE denotes the pushforward measure of P by X(n),
for X(n) defined in (1). We now prove Donsker’s theorem.21

Theorem 10 (Donsker’s theorem). Pn →W .

Proof. We shall use Theorem 3 to prove that Γ = {Pn : n ≥ 1} is relatively
compact in PE . For n ≥ 1,

Pn(f ∈ E : |f(0)| = 0) = P (ω ∈ Ω : |X(n)
0 (ω)| = 0) = 1,

thus the first condition of Theorem 3 is satisfied with Mε = 0. For the second
condition of Theorem 3 to be satisfied it suffices that for each ε > 0,

lim
δ↓0

lim sup
n→∞

P

(
sup

0≤s,t≤1,|s−t|≤δ
|X(n)(s)−X(n)(t)| > ε

)
= 0.

Now,

P

(
sup

0≤s,t≤1,|s−t|≤δ
|X(n)

s −X(n)
t | > ε

)
= P

(
sup

0≤s,t≤n,|s−t|≤nδ
|Ys − Yt| > n1/2ε

)
.

Also,

sup
0≤s,t≤n,|s−t|≤nδ

|Ys − Yt| ≤ sup
0≤s,t≤n,|s−t|≤nδ

|Y − s− Yt|

≤ max
1≤j≤[nδ]+1

max
0≤k≤n+1

|Sj+k − Sk|,

so applying Lemma 9,

lim
δ↓0

lim sup
n→∞

P

(
sup

0≤s,t≤1,|s−t|≤δ
|X(n)

s −X(n)
t | > ε

)

≤ lim
δ↓0

lim sup
n→∞

P

(
max

1≤j≤[nδ]+1
max

0≤k≤n+1
|Sj+k − Sk| > n1/2ε

)
→0,

from which we get that Γ is tight in PE .

21Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second
ed., p. 70, Theorem 4.20.

14


	Relatively compact sets of Borel probability measures on C[0,1]
	Wiener measure
	Interpolation and continuous stochastic processes
	Donsker's theorem

