Self-adjoint linear operators on a finite dimensional complex vector space

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto
April 3, 2014

Let V be a finite dimensional vector space over \mathbb{C} with an inner product $(\cdot, \cdot) : V \times V \to \mathbb{C}$. For $x \in V$, $|x|^2 = (x, x)$.

Let $A : V \times V \to \mathbb{C}$ be linear in its first argument and conjugate linear in its second argument. Then we check that for all $x, y \in V$,

$$A(x, y) = \frac{1}{4} \left(A(x + y, x + y) + iA(x + iy, x + iy) \
- A(x - y, x - y) - iA(x - iy, x - iy) \right).$$

This is called the polarization identity, or the parallelogram law. A useful instance is for $A(x, y) = (x, y)$. Then,

$$(x, y) = \frac{1}{4} \left(|x + y|^2 + i|x + iy|^2 - |x - y|^2 - i|x - iy|^2 \right).$$

This can be useful for proving a statement about an inner product that one has only verified for a norm.

If $T : V \to V$ is linear, one checks that there is a unique linear $T^* : V \to V$ such that if $x, y \in V$ then

$$(Tx, y) = (x, T^*y).$$

T^* is called the adjoint of T. If $T = T^*$ then we say that T is self-adjoint.

An operator being self-adjoint is similar to a complex number being real. Let $T : V \to V$ be linear and define $T_1 = \frac{T + T^*}{2}$ and $T_2 = \frac{T - T^*}{2i}$. Then T_1, T_2 are self-adjoint. This resembles writing a complex number as a sum of a real number and i times a real number.

We say that a self-adjoint operator $T : V \to V$ is positive if for all $x \in V$ we have $(Tx, x) \geq 0$. Like for complex numbers, for any linear $T : V \to V$, TT^* is positive (in particular it is self-adjoint).

We say that a linear $U : V \to V$ is unitary if $UU^* = U^*U = \text{id}_V$. If $z \in \mathbb{C}$ and $\bar{z}z = 1$ then $|z| = 1$. An operator being unitary is similar to a complex
number have absolute value 1, in other words a complex number being on the
unit circle. For linear $T : V \to V$, the exponential $\exp(T) : V \to V$ is defined by

$$\exp(T)x = \sum_{k=0}^{\infty} \frac{T^k x}{k!}.$$

If T is self-adjoint then $\exp(iT)$ is unitary:

$$(\exp(iT))^* = \left(\sum_{k=0}^{\infty} \frac{(iT)^k}{k!} \right)^* = \sum_{k=0}^{\infty} \frac{(-i)^k T^k}{k!} = \sum_{k=0}^{\infty} \frac{(-iT)^k}{k!} = \exp(-iT),$$

hence

$$\exp(iT)^* = (\exp(iT))^{-1},$$

which shows that $\exp(iT)$ is unitary.

The eigenvalues of a self-adjoint operator are all real, and the eigenvalues of
a unitary operator all have absolute value 1.

Fact: If H is positive then its eigenvalues are nonnegative, and if H is
self-adjoint and has nonnegative eigenvalues then it is positive. Say V has
dimension n. On the one hand, if H is positive, suppose that $Hv = \lambda v$. Then
$(Hv,v) = (\lambda v,v) = \lambda (v,v)$. Since H is positive this is nonnegative, and (v,v)
is nonnegative so it follows that λ is nonnegative too. On the other hand, let H
be self-adjoint and let all the eigenvalues of H be nonnegative. Since H is
self-adjoint it has an orthonormal eigenbasis with real eigenvalues (this is the
spectral theorem), $He_j = \lambda_j e_j$ for $1 \leq j \leq n$. Let $x \in V$. We can write x
as $x = a_1 e_1 + \cdots + a_n e_n$. We have, using that e_1, \ldots, e_n is an orthonormal
eigenbasis for H_1

$$(Hx,x) = (a_1 H e_1 + \cdots + a_n H e_n, a_1 e_1 + \cdots + a_n e_n)$$
$$= (a_1 H e_1, a_1 e_1) + \cdots + (a_n H e_n, a_n e_n)$$
$$= |a_1|^2 (H e_1, e_1) + \cdots + |a_n|^2 (H e_n, e_n)$$
$$= \lambda_1 |a_1|^2 + \cdots + \lambda_n |a_n|^2$$
$$\geq 0.$$

Thus H is positive.

Fact: If T is positive then there is a positive H such that $H^2 = T$. Let $T e_j = \lambda_j e_j$, $1 \leq j \leq n$. T has an eigenbasis with real eigenvalues because T
is self-adjoint, and by the above fact the eigenvalues are nonnegative since T is
positive. Define H by $H e_j = \sqrt{\lambda_j} e_j$. Then H is positive, and $H^2 = T$. Thus,
if an operator is positive then it has a positive square root.

Now, let $T : V \to V$ be linear and invertible. TT^* is positive so it has
a positive square root H. Since T is invertible, so is T^* and thus so is TT^* and
so is H. Define $U = H^{-1} T$.

$$UU^* = H^{-1} T (H^{-1} T)^* = H^{-1} T T^* (H^{-1})^* = H^{-1} T T^* (H^*)^{-1} = H^{-1} H^2 H^{-1} = \text{id}_V.$$
Hence U is unitary. Thus we can write any invertible linear $T : V \to V$ as a HU where H is positive and U is unitary, like how we can write a nonzero complex number as the product of a positive real number and a complex number that has absolute value 1.