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1 Introduction

By N we mean the set of positive integers. In this note we write inner products
as conjugate linear in the first variable, following the notation of Reed and
Simon. The purpose of this note is to make sense of det(I + A) for bounded
trace class operators on a Hilbert space. This definition is consistent with the
definition of the determinant for a finite dimensional Hilbert space.

2 Singular value decomposition

Let H be a Hilbert space with an inner product that is conjugate linear in the
first variable. We do not presume unless we say so that H is separable.1

We denote by B(H) the set of bounded linear operators H → H. For any
A ∈ B(H), A∗A is positive and one proves that it has a unique positive square
root |A| ∈ B(H). We call |A| the absolute value of A.

We say that U ∈ B(H) is a partial isometry if there is a closed subspace X
of H such that the restriction of U to X is an isometry X → U(X) and kerU =
X⊥. One proves that for any A ∈ B(H), there is a unique partial isometry
U satisfying both kerU = kerA and A = U |A|, and A = U |A| is called the
polar decomposition of A. Some useful identities that the polar decomposition
satisfies are

U∗U |A| = |A|, U∗A = |A|, UU∗A = A.

If A ∈ B(H) is compact and self-adjoint, the spectral theorem tells us that
there is an orthonormal set {en : n ∈ N} in H and λn ∈ R, |λ1| ≥ |λ2| ≥ · · · ,
such that

Ax =
∑
n∈N

λn 〈en, x〉 en, x ∈ H.

1Often one assumes separability not because statements are false for nonseparable Hilbert
spaces but because it is notationally easier to talk about separable Hilbert spaces, and this
indolence hides where separability matters. Moreover, whether or not H is separable, it does
not take long to prove that the image of a compact linear operator is separable.
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If A ∈ B(H) is compact, then |A| is compact (the compact operators are an ideal
and |A| = U∗A), so the spectral theorem tells us that there is an orthonormal
set {en : n ∈ N} in H and λn ∈ R, λ1 ≥ λ2 ≥ · · · ≥ 0, such that

|A|x =
∑
n∈N

λn 〈en, x〉 en, x ∈ H.

Write σ(A) = λn(|A|). σn(A) are called the singular values of A.
Using the spectral theorem and the polar decomposition, one proves that

for any compact A ∈ B(H), there are orthonormal sets {en : n ∈ N} and
{fn : n ∈ N} in H such that

Ax =
∑
n∈N

σn(A) 〈fn, x〉 en, x ∈ H.

This is called the singular value decomposition of A.

3 Trace class operators

We denote by B1(H) the set of those A ∈ B(H) that are compact and such
that

‖A‖1 =
∑
n∈N

σn(A) <∞.

Elements of B1(H) are called trace class operators. It can be proved that B1(H)
with the norm ‖·‖1 is a Banach space.

Let E be an orthonormal basis for H. We define tr : B1(H)→ C by

trA =
∑
e∈E

〈e,Ae〉 , A ∈ B1(H).

One proves that the value of this sum is the same for any orthonormal basis of
H, and that tr is a bounded linear operator.

It is a fact that if A ∈ B1(H) then A∗ ∈ B1(H), trA∗ = trA, and ‖A∗‖1 =
‖A‖1. Another fact is that if A ∈ B1(H) and B ∈ B(H), then AB,BA ∈
B1(H), tr (AB) = tr (BA), |tr (BA)| ≤ ‖B‖ ‖A‖1, and ‖AB‖1 ≤ ‖A‖1 ‖B‖,
‖BA‖1 ≤ ‖B‖ ‖A‖1. Finally, if A ∈ B1(H) then ‖A‖ ≤ ‖A‖1.

4 Logarithms

We say that A ∈ B(H) is invertible if A−1 ∈ B(H). If A ∈ B(H) and ‖A‖ < 1,
one checks that I−A is invertible: (I−A)−1 =

∑∞
n=0A

n. Furthermore, suppose
that A ∈ B1(H) and ‖A‖ < 1. Then,

log(I −A) =

∞∑
n=1

−A
n

n
,
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hence

tr log(I −A) =

∞∑
n=1

− tr (An)

n
,

and

exp tr log(I −A) =

∞∏
n=1

exp

(
− tr (An)

n

)
. (1)

Because det expB = exp trB for any B ∈ B(RN ), if A ∈ B(RN ) satisfies
‖A‖ < 1 then det(I−A) = exp tr log(I−A). The above expression makes sense
for any A ∈ B1(H) with ‖A‖ < 1, so it makes sense to define

det(I −A) = exp tr log(I −A)

in this case, for which we have the explicit formula (1). We have not shown
that det has the properties we might expect it to have, but at least in the case
H = RN it is equal to the ordinary determinant, which is the least we could
demand of a function which we denote by det.

5 Tensor products

Suppose that H is a Hilbert space over K with inner product 〈·, ·〉 that is
conjugate linear in the first variable. For each n ∈ N and x1, . . . , xn ∈ H, let
x1 ⊗ · · · ⊗ xn be the multilinear function on Hn defined by

(x1 ⊗ · · · ⊗ xn)(y1, . . . , yn) =

n∏
k=1

〈xk, yk〉 , (y1, . . . , yn) ∈ Hn.

The set of all finite linear combinations of such multilinear functions is a vector
space for which there is a unique inner product that satisfies

〈x1 ⊗ · · · ⊗ xn, y1 ⊗ · · · ⊗ yn〉 =

n∏
k=1

〈xk, yk〉 , x1, . . . , xn, y1, . . . , yn ∈ H.

We denote by
⊗n

H the completion of this vector space using this inner prod-
uct.2 Thus,

⊗n
H is a Hilbert space. We call this a tensor product, but it does

not have the universal property of tensor products, so is not a categorical tensor
product.3

If A ∈ B(H), one proves that there is a unique T ∈ B(
⊗n

H) that satisfies

T (x1 ⊗ · · · ⊗ xn) = Ax1 ⊗ · · · ⊗Axn, x1 ⊗ · · · ⊗ xn ∈
⊗n

H,

and we write T =
⊗n

A. For A,B ∈ B(H) and x1 ⊗ · · · ⊗ xn ∈
⊗n

H, it is
straightforward to check that

(
⊗n

(AB))(x1 ⊗ · · · ⊗ xn) = (
⊗n

A)(
⊗n

B)(x1 ⊗ · · · ⊗ xn),

from which it follows that
⊗n

(AB) =
⊗n

A
⊗n

B.

2See Michael Reed and Barry Simon, Methods of Modern Mathematical Physics, volume
I: Functional Analysis, revised and enlarged ed., p. 50.

3Paul Garrett, http://www.math.umn.edu/~garrett/m/v/nonexistence_tensors.pdf
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6 Exterior powers

Let Sn denote the group of permutations on n symbols and let sgn (π) denote the
sign of the permutation π. For x1, . . . , xn ∈ H, we define x1 ∧ · · · ∧ xn ∈

⊗n
H

by

x1 ∧ · · · ∧ xn = (n!)−1/2
∑
π∈Sn

sgn (π)xπ(1) ⊗ · · · ⊗ xπ(n).

We define
∧n

H to be the closure in
⊗n

H of the set of all finite linear combi-
nations of elements of

⊗n
H of the form x1∧· · ·∧xn.4 Thus,

∧n
H is a Hilbert

space.
For x1 ∧ · · · ∧ xn, y1 ∧ · · · ∧ yn ∈

∧n
H, one proves that5

〈x1 ∧ · · · ∧ xn, y1 ∧ · · · ∧ yn〉 = det(〈xi, yj〉),

where
det(ai,j) =

∑
π∈Sn

sgn (π)a1,π(1) · · · an,π(n).

In particular, if {x1, . . . , xn} is an orthonormal set in H, then ‖x1 ∧ · · · ∧ xn‖ =
1.

For A ∈ B(H) and x1 ∧ · · · ∧ xn ∈
∧n

H, it is apparent that

(
⊗n

A)x1 ∧ · · · ∧ xn = Ax1 ∧ · · · ∧Axn.

It follows that
⊗n

A sends an element of
∧n

H to an element
∧n

H, and hence
that the restriction of

⊗n
A to

∧n
H belongs to B(

∧n
H). We denote this

restriction by
∧n

A. Because
⊗n

(AB) =
⊗n

A
⊗n

B, we also have
∧n

(AB) =∧n
A
∧n

B.

7 Finite dimensional Hilbert spaces

Suppose that H is an n-dimensional Hilbert space and that A ∈ B(H). If H
has dimension n and {e1, . . . , en} is an orthonormal basis for H, one proves that

{ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ n}

is an orthonormal basis for
∧k

H, and hence that
∧k

H has dimension
(
n
k

)
. So∧n

H has dimension 1, and as
∧n

A ∈ B(
∧n

H), there is some scalar α such
that (

∧n
A)v = αv for all v ∈

∧n
H. (A linear map from a one dimensional

vector space to itself is multiplication by a scalar.) On the one hand,

〈e1 ∧ · · · ∧ en, (
∧n

A)(e1 ∧ · · · ∧ en)〉 = 〈e1 ∧ · · · ∧ en, αe1 ∧ · · · ∧ en〉
= α 〈e1 ∧ · · · ∧ en, e1 ∧ · · · ∧ en〉
= α.

4cf. Paul Garrett, http://www.math.umn.edu/~garrett/m/algebra/notes/28.pdf
5Michael Reed and Barry Simon, Methods of Modern Mathematical Physics, volume IV:

Analysis of Operators, p. 321.
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On the other hand,

〈e1 ∧ · · · ∧ en, (
∧n

A)(e1 ∧ · · · ∧ en)〉 = 〈e1 ∧ · · · ∧ en, Ae1 ∧ · · · ∧Aen〉
= detA.

Thus,
∧n

A is the map v 7→ det(A)v.6

Still taking H to be n-dimensional, take A ∈ B(H), and let e1, . . . , en be an
orthonormal basis for H such that Vk = span{e1, . . . , ek} and such that A(Vk) =
Vk for k = 1, . . . , n; such a basis is obtained using the Schur decomposition of
A.

The equality

tr (
∧k

A) =
∑

1≤i1<···<ik≤n

〈
ei1 ∧ · · · ∧ eik , (

∧k
A)(ei1 ∧ · · · ∧ eik)

〉
=

∑
1≤i1<···ik≤n

〈ei1 ∧ · · · ∧ eik , Aei1 ∧ · · · ∧Aeik〉

=
∑

1≤i1<···<ik≤n

det(
〈
eii , Aeij

〉
)

=
∑

1≤i1<···<ik≤n

λi1 · · ·λik

and the equality

det(I +A) = 〈e1 ∧ · · · ∧ en, (I +A)e1 ∧ · · · ∧ (I +A)en〉
= det(〈ei, (I +A)ej〉)

=

n∏
j=1

(1 + λj)

together give

det(I +A) =

n∑
j=0

tr (
∧j
A).

If H is infinite dimensional we define det(I+A) for A ∈ B1(H) following the
above formula. For this definition to make sense we use the following lemma.7

It is stated in Reed and Simon for separable Hilbert spaces. In reading the
proof I don’t see how separability is essential to proving the result, but with-
out carefully working out the proof and refreshing myself about the singular
value decomposition, it would be dishonest to assert that the result is true for
nonseparable Hilbert spaces.

6Michael Reed and Barry Simon, Methods of Modern Mathematical Physics, volume IV:
Analysis of Operators, p. 321, Lemma 2.

7Michael Reed and Barry Simon, Methods of Modern Mathematical Physics, volume IV:
Analysis of Operators, p. 323, Lemma 3.
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Lemma 1. Let H be a separable Hilbert space and let A ∈ B1(H). For any

k ∈ N we have
∧k

A ∈ B1(
∧k

H), and∥∥∥∧k A∥∥∥
1

=
∑

i1<···<ik

µi1 · · ·µik ,

and ∥∥∥∧k A∥∥∥
1
≤
‖A‖k1
k!

.

Definition 2. If H is a separable Hilbert space and A ∈ B1(H), we define

det(I +A) =

∞∑
k=0

tr (
∧k

A).

We call det the Fredholm determinant on H.

For a separable Hilbert space, Reed and Simon also prove that8

|det(I +A)| ≤ exp(‖A‖1), A ∈ B1(H),

that

det(I +A) det(I +B) = det(I +A+B +AB), A,B ∈ B1(H),

and that for A ∈ B1(H), I +A is invertible if and only if det(I +A) 6= 0.9

8Michael Reed and Barry Simon, Methods of Modern Mathematical Physics, volume IV:
Analysis of Operators, p. 323, Lemma 4.

9Michael Reed and Barry Simon, Methods of Modern Mathematical Physics, volume IV:
Analysis of Operators, p. 325, Theorem XIII.105.
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