Schwartz functions, Hermite functions, and the Hermite operator

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto

July 17, 2015

1 Schwartz functions

For $\phi \in C^{\infty}(\mathbb{R}, \mathbb{C})$ and $p \geq 0$, let

$$|\phi|_p = \sup_{0 \le k \le p} \sup_{u \in \mathbb{R}} (1 + u^2)^{p/2} |\phi^{(k)}(u)|.$$

We define \mathscr{S} to be the set of those $\phi \in C^{\infty}(\mathbb{R}, \mathbb{C})$ such that $|\phi|_p < \infty$ for all $p \geq 0$. \mathscr{S} is a complex vector space and each $|\cdot|_p$ is a norm, and because each $|\cdot|_p$ is a norm, a fortiori $\{|\cdot|_p: p \geq 0\}$ is a separating family of seminorms. With the topology induced by this family of seminorms, \mathscr{S} is a Fréchet space. Furthermore, $D: \mathscr{S} \to \mathscr{S}$ defined by

$$(D\phi)(x) = \phi'(x), \qquad x \in \mathbb{R}$$

and $M: \mathcal{S} \to \mathcal{S}$ defined by

$$(M\phi)(x) = x\phi(x), \qquad x \in \mathbb{R}$$

are continuous linear maps.

Let \mathscr{S}' be the collection of continuous linear maps $\mathscr{S} \to \mathbb{C}$. For $\phi \in \mathscr{S}$, define $e_{\phi} : \mathscr{S}' \to \mathbb{C}$ by

$$e_{\phi}(\omega) = \omega(\phi), \qquad \omega \in \mathscr{S}'.$$

The initial topology for the collection $\{e_{\phi}: \phi \in \mathscr{S}\}$ is called the **weak-*topology** on \mathscr{S}' . With this topology, \mathscr{S}' is a locally convex space whose dual space is $\{e_{\phi}: \phi \in \mathscr{S}\}$.²

¹Walter Rudin, Functional Analysis, second ed., p. 184, Theorem 7.4.

²http://individual.utoronto.ca/jordanbell/notes/weak.pdf, Theorem 4.

2 L^2 norms

For $p \geq 0$ and $\phi, \psi \in \mathcal{S}$, let

$$[\phi, \psi]_p = \sum_{k=0}^p \int_{\mathbb{R}} (1+u^2)^p \phi^{(k)}(u) \overline{\psi^{(k)}(u)} du,$$

and let

$$[\phi]_p^2 = [\phi, \phi]_p = \sum_{k=0}^p \int_{\mathbb{R}} (1+u^2)^p |\phi^{(k)}(u)|^2 du.$$

Because $(1+u^2)^p \le (1+u^2)^q$ when $p \le q$, it is immediate that $[\phi]_p \le [\phi]_q$ when $p \le q$.

We relate the norms $|\cdot|_p$ and the norms $[\cdot]_p$.

Lemma 1. For each $p \ge 1$, for all $\phi \in \mathscr{S}$,

$$\frac{1}{p\sqrt{\pi}}|\phi|_{p-1} \le [\phi]_p \le \sqrt{(p+1)\pi}|\phi|_{p+1}.$$

Proof. For $0 \le k \le p$,

$$\begin{split} \int_{\mathbb{R}} (1+u^2)^p |\phi^{(k)}(u)|^2 du &\leq \sup_{u \in \mathbb{R}} ((1+u^2)^{p+1} |\phi^{(k)}(u)|^2) \int_{\mathbb{R}} (1+u^2)^{-1} du \\ &= \sup_{u \in \mathbb{R}} ((1+u^2)^{p+1} |\phi^{(k)}(u)|^2) \cdot \pi \\ &\leq \pi |\phi|_{p+1}^2, \end{split}$$

hence

$$[\phi]_p^2 = \sum_{k=0}^p \int_{\mathbb{R}} (1+u^2)^p |\phi^{(k)}(u)|^2 du$$

$$\leq \sum_{k=0}^p \pi |\phi|_{p+1}^2$$

$$= (p+1)\pi |\phi|_{p+1}^2.$$

For $0 \le k \le p-1$ and $u \in \mathbb{R}$, using the fundamental theorem of calculus

³Takeyuki Hida, *Brownian Motion*, p. 305, Lemma A.1.

and the Cauchy-Schwarz inequality,

$$\begin{split} |(1+u^2)^{(p-1)/2}\phi^{(k)}(u)| &= \left| \int_{-\infty}^u ((1+t^2)^{(p-1)/2}\phi^{(k)}(t))'dt \right| \\ &\leq \int_{\mathbb{R}} |(p-1)t(1+t^2)^{(p-1)/2-1}\phi^{(k)}(t)|dt \\ &+ \int_{\mathbb{R}} |(1+t^2)^{(p-1)/2}\phi^{(k+1)}(t)|dt \\ &\leq (p-1)\int_{\mathbb{R}} (1+t^2)^{-1/2}(1+t^2)^{(p-1)/2}|\phi^{(k)}(t)|dt \\ &+ \int_{\mathbb{R}} (1+t^2)^{-1/2}(1+t^2)^{p/2}|\phi^{(k+1)}(t)|dt \\ &\leq (p-1)\left(\int_{\mathbb{R}} (1+t^2)^{-1}dt\right)^{1/2}\left(\int_{\mathbb{R}} (1+t^2)^{p-1}|\phi^{(k)}(t)|^2dt\right)^{1/2} \\ &+ \left(\int_{\mathbb{R}} (1+t^2)^{-1}dt\right)^{1/2}\left(\int_{\mathbb{R}} (1+t^2)^{p}|\phi^{(k+1)}(t)|^2dt\right)^{1/2} \\ &\leq (p-1)\sqrt{\pi}[\phi]_{p-1} + \sqrt{\pi}[\phi]_{p} \\ &\leq p\sqrt{\pi}[\phi]_{p}, \end{split}$$

which shows that

$$|\phi|_{p-1} \le p\sqrt{\pi}[\phi]_p.$$

3 Hermite functions

Let λ be Lebesgue measure on \mathbb{R} , and let

$$(f,g)_{L^2} = \int_{\mathbb{R}} f\overline{g}d\lambda.$$

 $L^2(\lambda)$ with the inner product $(\cdot,\cdot)_{L^2}$ is a separable Hilbert space. For $n\geq 0$, let

$$h_n(x) = (-1)^n (2^n n! \sqrt{\pi})^{-1/2} e^{x^2/2} D^n e^{-x^2}$$

the **Hermite functions**, the set of which is an orthonormal basis for $L^2(\lambda)$.⁴ We remark that the Hermite functions belong to \mathscr{S} . For n < 0 we define

$$h_n = 0$$
,

to write some expressions in a uniform way.

We calculate that for $n \geq 0$,

$$Dh_n = \sqrt{\frac{n}{2}}h_{n-1} - \sqrt{\frac{n+1}{2}}h_{n+1}.$$

 $^{^4 \}verb|http://individual.utoronto.ca/jordanbell/notes/hermitefunctions.pdf|$

We define the **Hermite operator** $A: \mathcal{S} \to \mathcal{S}$ by

$$A = -D^2 + M^2 + 1$$
.

A is a densely defined operator in $L^2(\lambda)$ that is symmetric and positive, and satisfies 5

$$Ah_n = (2n+2)h_n.$$

There is a unique bounded linear operator $T: L^2(\lambda) \to L^2(\lambda)$ satisfying

$$Th_n = A^{-1}h_n = (2n+2)^{-1}h_n, \qquad n \ge 0.$$

The operator norm of T is $||T|| = \frac{1}{2}$, and T is self-adjoint. For $p \ge 1$, T^p is a Hilbert-Schmidt operator with Hilbert-Schmidt norm $||T^p||_{HS} = 2^{-p} \sqrt{\zeta(2p)}$.

We define the **creation operator** $B: \mathcal{S} \to \mathcal{S}$ by

$$B = D + M$$

and we define the **annihilation operator** $C: \mathscr{S} \to \mathscr{S}$ by

$$C = -D + M$$

which are continuous linear maps. They satisfy, for n > 0,

$$Bh_n = (2n)^{1/2}h_{n-1}, \qquad Ch_n = (2n+2)^{1/2}h_{n+1}.$$

(We remind ourselves that we have defined $h_{-1}=0$.) It is immediate that BC=A and that B-C=2D. Using the creation operator, we can write the Hermite functions as

$$h_n = (2^n n!)^{-1/2} C^n h_0 = \pi^{-1/4} (2^n n!)^{-1/2} C^n (e^{-x^2/2}).$$

For $\phi, \psi \in \mathscr{S}$, using integration by parts,

$$(D\phi,\psi)_{L^2} = \int_{\mathbb{R}} \phi'(x) \overline{\psi(x)} dx = -\int_{\mathbb{R}} \phi(x) \overline{\psi'(x)} dx = (\phi,(-D)\psi)_{L^2},$$

and

$$(M\phi, \psi)_{L^2} = \int_{\mathbb{R}} x\phi(x)\overline{\psi(x)}dx = (\phi, M\psi)_{L^2}.$$

Thus,

$$(B\phi, \psi)_{L^2} = (D\phi, \psi)_{L^2} + (M\phi, \psi)_{L^2}$$

= $(\phi, (-D)\psi)_{L^2} + (\phi, M\psi)_{L^2}$
= $(\phi, C\psi)_{L^2}$

and

$$(C\phi, \psi)_{L^2} = (\phi, B\psi)_{L^2}.$$

We shall use these calculations to obtain the following lemma.

 $^{^{5} \}verb|http://individual.utoronto.ca/jordanbell/notes/hermitefunctions.pdf, \S 5.$

 $^{^6 \}mathtt{http://individual.utoronto.ca/jordanbell/notes/hermitefunctions.pdf, \S 6.$

Lemma 2. For $p \geq 0$ and for $\phi \in \mathscr{S}$,

$$B^{p}\phi = 2^{p/2} \sum_{n=0}^{\infty} \left(\frac{(n+p)!}{n!} \right)^{1/2} (\phi, h_{n+p})_{L^{2}} h_{n}$$

and

$$C^p \phi = 2^{p/2} \sum_{n=0}^{\infty} (\phi, h_{n-p})_{L^2} \left(\frac{n!}{(n-p)!} \right)^{1/2} h_n.$$

Proof. Because $Ch_n = (2n+2)^{1/2}h_{n+1}$,

$$(\phi, C^p h_n)_{L^2} = (\phi, h_{n+p})_{L^2} \prod_{j=n}^{n+p-1} (2j+2)^{1/2} = (\phi, h_{n+p})_{L^2} 2^{p/2} \left(\frac{(n+p)!}{n!} \right)^{1/2}.$$

With

$$\phi = \sum_{n=0}^{\infty} (\phi, h_n)_{L^2} h_n,$$

and because $(B\phi, \psi)_{L^2} = (\phi, C\psi)_{L^2}$, we have

$$B^{p}\phi = \sum_{n=0}^{\infty} (B^{p}\phi, h_{n})_{L^{2}}h_{n}$$

$$= \sum_{n=0}^{\infty} (\phi, C^{p}h_{n})_{L^{2}}h_{n}$$

$$= \sum_{n=0}^{\infty} (\phi, h_{n+p})_{L^{2}}2^{p/2} \left(\frac{(n+p)!}{n!}\right)^{1/2}h_{n}.$$

Because $Bh_n = (2n)^{1/2}h_{n-1}$, and reminding ourselves that we define $h_n = 0$ for n < 0,

$$(\phi, B^p h_n)_{L^2} = (\phi, h_{n-p})_{L^2} \prod_{j=n-p+1}^n (2j)^{1/2} = (\phi, h_{n-p})_{L^2} 2^{p/2} \left(\frac{n!}{(n-p)!} \right)^{1/2}.$$

Because $(C\phi, \psi)_{L^2} = (\phi, B\psi)_{L^2}$, we have

$$C^{p}\phi = \sum_{n=0}^{\infty} (C^{p}\phi, \psi)_{L^{2}} h_{n}$$

$$= \sum_{n=0}^{\infty} (\phi, B^{p}\psi)_{L^{2}} h_{n}$$

$$= \sum_{n=0}^{\infty} (\phi, h_{n-p})_{L^{2}} 2^{p/2} \left(\frac{n!}{(n-p)!}\right)^{1/2} h_{n}.$$

We define the Fourier transform $\mathscr{F}:\mathscr{S}\to\mathscr{S}$ by

$$(\mathscr{F}\phi)(\xi) = \int_{\mathbb{R}} \phi(x) e^{-i\xi x} \frac{dx}{(2\pi)^{1/2}}, \qquad \xi \in \mathbb{R}.$$

 $\mathscr{F}:\mathscr{S}\to\mathscr{S}$ is a continuous linear map, and satisfies⁷

$$\mathscr{F}M = iD\mathscr{F}, \qquad \mathscr{F}D = iM\mathscr{F}.$$

From these we obtain

$$\mathscr{F}A = A\mathscr{F}, \qquad \mathscr{F}B = iB\mathscr{F}, \qquad \mathscr{F}C = -iC\mathscr{F},$$

and one proves the following using the above.

Lemma 3. For $n \geq 0$,

$$\mathscr{F}h_n = (-i)^n h_n.$$

We further remark that for $\phi \in \mathscr{S}$,

$$\|\phi\|_{\infty} \le 2^{-1/2} (\|\phi\|_{L^2}^2 + \|\phi'\|_{L^2}^2).$$
 (1)

Finally, there is a unique Hilbert space isomorphism $\mathscr{F}:L^2(\lambda)\to L^2(\lambda)$ whose restriction to \mathscr{S} is equal to \mathscr{F} as already defined. Thus for $f\in L^2(\lambda)$, as

$$f = \sum_{n=0}^{\infty} (f, h_n)_{L^2} h_n,$$

we get

$$\mathscr{F}f = \sum_{n=0}^{\infty} (f, h_n)_{L^2} (-i)^n h_n.$$

4 The Hermite operator

For $p \geq 0$ and $f \in L^2(\lambda)$, we define

$$||f||_p^2 = \sum_{n=0}^{\infty} (2n+2)^{2p} |(f,h_n)_{L^2}|^2.$$

We define

$$\mathscr{S}_p = \{ f \in L^2(\lambda) : \|f\|_p < \infty \},$$

and for $f, g \in \mathscr{S}_p$ we define

$$(f,g)_p = \sum_{n=0}^{\infty} (2n+2)^{2p} (f,h_n)_{L^2} \overline{(g,h_n)_{L^2}},$$

for which

$$||f||_p^2 = (f, f)_p.$$

 $^{^7 \}texttt{http://individual.utoronto.ca/jordanbell/notes/hermitefunctions.pdf}, \ \S 7.$

Lemma 4. For $\phi \in \mathcal{S}$, for each $p \geq 0$, $\phi \in \mathcal{S}_p$, and

$$\|\phi\|_p = \|A^p \phi\|_{L^2} .$$

Proof. $A^p \phi \in \mathcal{S}$, so $||A^p \phi||_{L^2} < \infty$. Because A is a symmetric operator and as $Ah_n = (2n+2)h_n$,

$$||A^{p}\phi||_{L^{2}}^{2} = \sum_{n=0}^{\infty} |(A^{p}\phi, h_{n})_{L^{2}}|^{2}$$

$$= \sum_{n=0}^{\infty} |(\phi, A^{p}h_{n})_{L^{2}}|^{2}$$

$$= \sum_{n=0}^{\infty} (2n+2)^{2p} |(\phi, h_{n})_{L^{2}}|^{2}$$

$$= ||\phi||_{p}^{2}.$$

For $f, g \in L^2(\lambda)$, because T is self-adjoint,

 $(T^{p}f, T^{p}g)_{p} = \sum_{n=0}^{\infty} (2n+2)^{2p} (T^{p}f, h_{n})_{L^{2}} \overline{(T^{p}f, h_{n})_{L^{2}}}$ $= \sum_{n=0}^{\infty} (2n+2)^{2p} (f, T^{p}h_{n})_{L^{2}} \overline{(g, T^{p}h_{n})_{L^{2}}}$ $= \sum_{n=0}^{\infty} (2n+2)^{2p} (f, (2n+2)^{-p}h_{n})_{L^{2}} \overline{(g, (2n+2)^{-p}h_{n})_{L^{2}}}$ $= \sum_{n=0}^{\infty} (f, h_{n})_{L^{2}} \overline{(g, h_{n})_{L^{2}}}$ $= (f, g)_{L^{2}},$

and so $||T^p f||_p = ||f||_{L^2}$, which shows that

$$T^pL^2(\lambda) = \mathscr{S}_p.$$

If $f_i \in \mathscr{S}_p$ is a Cauchy sequence in the norm $\|\cdot\|_p$, then as $\|T^{-p}f_i - T^{-p}f_j\|_{L^2} = \|f_i - f_j\|_p$, $T^{-p}f_i$ is a Cauchy sequence in the norm $\|\cdot\|_{L^2}$ and so there is some $g \in L^2(\lambda)$ for which $\|T^{-p}f_i - g\|_{L^2} \to 0$. We have $T^pg \in \mathscr{S}_p$, and

$$||f_i - T^p g||_p = ||T^{-p} f_i - g||_{L^2} \to 0,$$

thus $f_i \to T^p g$ in the norm $\|\cdot\|_p$, showing that $(\mathscr{S}_p, (\cdot, \cdot)_p)$ is a Hilbert space. Furthermore, $T^p: L^2(\lambda) \to \mathscr{S}_p$ is an isomorphism of Hilbert spaces, and thus $\{T^p h_n: n \geq 0\}$ is an orthonormal basis for $(\mathscr{S}_p, (\cdot, \cdot)_p)$.

For $p \leq q$,

$$||f||_p \leq ||f||_q$$

so $\mathscr{S}_q\subset\mathscr{S}_p.$ For $p\geq q,$ let $i_{q,p}:\mathscr{S}_q\to\mathscr{S}_p$ be the inclusion map.⁸

Theorem 5. For p < q, the inclusion map $i_{q,p} : \mathscr{S}_q \to \mathscr{S}_p$ is a Hilbert-Schmidt operator, with Hilbert-Schmidt norm

$$||i_{q,p}||_{HS} = 2^{-q+p} \sqrt{\zeta(2q-2p)}.$$

Proof. $\{T^q h_n : n \geq 0\}$ is an orthonormal basis for $(\mathscr{S}_q, (\cdot, \cdot)_q)$, and

$$||i_{q,p}||_{HS}^{2} = \sum_{n=0}^{\infty} ||i_{q,p}T^{q}h_{n}||_{p}^{2}$$

$$= \sum_{n=0}^{\infty} ||T^{q}h_{n}||_{p}^{2}$$

$$= \sum_{n=0}^{\infty} ||(2n+2)^{-q}h_{n}||_{p}^{2}$$

$$= \sum_{n=0}^{\infty} (2n+2)^{-2q} (2n+2)^{2p}$$

$$= 2^{-2q+2p} \zeta (2q-2p).$$

5 The Hilbert spaces \mathscr{S}_p

For $f \in L^2(\lambda)$,

$$f = \sum_{n=0}^{\infty} (f, h_n)_{L^2} h_n,$$

and for $N \geq 0$ we define $f_N : \mathbb{R} \to \mathbb{C}$ by

$$f_N(x) = \sum_{n=0}^{N} (f, h_n)_{L^2} h_n(x), \qquad x \in \mathbb{R}$$

which belongs to \mathscr{S} .

For $k \geq 0$, we define $C_b^k(\mathbb{R})$ to be the set of those functions $\mathbb{R} \to \mathbb{C}$ that are k-times differentiable and such that for each $0 \leq j \leq k$, $f^{(j)}$ is continuous and bounded. With the norm

$$||f||_{C_b^k} = \sum_{j=0}^k ||f^{(j)}||_{\infty}$$

this is a Banach space. Because the Hermite functions belong to \mathscr{S} , for $f \in L^2(\lambda)$ and for any k and N, the function f_N belongs to $C_b^k(\mathbb{R})$.

⁸Hui-Hsiung Kuo, White Noise Distribution Theory, p. 18, Lemma 3.3.

Lemma 6. If $p \ge 1$ and $f \in \mathscr{S}_p$, then there is some $F \in C_b^{p-1}(\mathbb{R})$ such that f is equal almost everywhere to F.

Proof. Cramér's inequality states that there is a constant K_0 such that for all n, $||h_n||_{\infty} \leq K_0$. For M < N, using this and the Cauchy-Schwarz inequality,

$$||f_N - f_M||_{C_b^0} = \left\| \sum_{n=M+1}^N (f, h_n)_{L^2} h_n \right\|_{\infty}$$

$$\leq K_0 \sum_{n=M+1}^N |(f, h_n)_{L^2}|$$

$$= K_0 \sum_{n=M+1}^N (2n+2)^{-1} (2n+2) |(f, h_n)_{L^2}|$$

$$\leq \left(\sum_{n=M+1}^N (2n+2)^{-2} \right)^{1/2} \left(\sum_{n=M+1}^N (2n+2)^2 |(f, h_n)_{L^2}|^2 \right)^{1/2}$$

$$= \left(\sum_{n=M+1}^N (2n+2)^{-2} \right)^{1/2} ||f_N - f_M||_1.$$

Because $f \in \mathscr{S}_p \subset \mathscr{S}_1$, f_N is a Cauchy sequence in \mathscr{S}_1 , hence f_N is a Cauchy sequence in $C_b^0(\mathbb{R})$, so there is some $F \in C_b^0(\mathbb{R})$ such that f_N converges to F in $C_b^0(\mathbb{R})$. We assert that F = f as elements of $L^2(\lambda)$.

Using

$$Dh_n = \sqrt{\frac{n}{2}}h_{n-1} - \sqrt{\frac{n+1}{2}}h_{n+1},$$

we calculate

$$f'_{N} = -\sqrt{\frac{N}{2}}(f, h_{N-1})_{L^{2}}h_{N} - \sqrt{\frac{N+1}{2}}(f, h_{N})_{L^{2}}h_{N+1} + \sum_{n=0}^{N-1} \left(\sqrt{\frac{n+1}{2}}(f, h_{n+1})_{L^{2}} - \sqrt{\frac{n}{2}}(f, h_{n-1})_{L^{2}}\right)h_{n},$$

hence for M < N,

$$\begin{split} f_N' - f_M' &= -\sqrt{\frac{N}{2}} (f, h_{N-1})_{L^2} h_N - \sqrt{\frac{N+1}{2}} (f, h_N)_{L^2} h_{N+1} \\ &+ \sqrt{\frac{M}{2}} (f, h_{M-1})_{L^2} h_M + \sqrt{\frac{M+1}{2}} (f, h_M)_{L^2} h_{M+1} \\ &+ \sum_{n=M}^{N-1} \left(\sqrt{\frac{n+1}{2}} (f, h_{n+1})_{L^2} - \sqrt{\frac{n}{2}} (f, h_{n-1})_{L^2} \right) h_n, \end{split}$$

and for $N \ge M + 2$,

$$||f'_{N} - f'_{M}||_{1} = (2N+2)^{2} \frac{N}{2} |(f, h_{N-1})|_{L^{2}}^{2} + (2N+4)^{2} \frac{N+1}{2} |(f, h_{N-1})|_{L^{2}}^{2}$$

$$(2M+2)^{2} \frac{M+1}{2} |(f, h_{M+1})|_{L^{2}}^{2} + (2M+4)^{2} \frac{M+2}{2} |(f, h_{M+1})|_{L^{2}}^{2}$$

$$+ \sum_{n=M+2}^{N-1} (2n+2)^{2} \left| \sqrt{\frac{n+1}{2}} (f, h_{n+1})_{L^{2}} - \sqrt{\frac{n}{2}} (f, h_{n-1})_{L^{2}} \right|^{2}$$

$$= O(||f_{N} - f_{M}||_{2}),$$

whence f'_N is a Cauchy sequence in $C_b^0(\mathbb{R})$, and so f_N is a Cauchy sequence in $C_b^1(\mathbb{R})$.

We prove that for $p \ge 1$ the derivatives of the partial sums f_N are a Cauchy sequence in $L^2(\lambda)$.

Lemma 7. For $p \ge 1$ and $f \in \mathscr{S}_p$, f'_N is a Cauchy sequence in $L^2(\lambda)$.

Proof. Because $f_N \in \mathscr{S}$,

$$f_N' = Df_N = \frac{B - C}{2} f_N.$$

Then

$$||f'_N - f'_M||_{L^2} \le \frac{1}{2} ||Bf_N - Bf_M||_{L^2} + \frac{1}{2} ||Cf_N - Cf_M||_{L^2}.$$

For M < N, as $Bh_n = (2n)^{1/2}h_{n-1}$,

$$||Bf_N - Bf_M||_{L^2}^2 = \left| \left| B \sum_{n=M+1}^N (f, h_n)_{L^2} h_n \right| \right|_{L^2}^2$$

$$= \left| \left| \sum_{n=M+1}^N (f, h_n)_{L^2} (2n)^{1/2} h_{n-1} \right| \right|_{L^2}^2$$

$$= \sum_{n=M+1}^N |(f, h_n)_{L^2}|^2 (2n)$$

$$\leq \sum_{n=M+1}^N (2n+2)^2 |(f, h_n)_{L^2}|^2,$$

⁹Jeremy J. Becnel and Ambar N. Sengupta, *The Schwartz space: a background to white noise analysis*, https://www.math.lsu.edu/~preprint/2004/as20041.pdf, Lemma 7.1.

and as $Ch_n = (2n+2)^{1/2}h_{n+1}$,

$$||Cf_N - Cf_M||_{L^2}^2 = \left| \left| C \sum_{n=M+1}^N (f, h_n)_{L^2} h_n \right| \right|_{L^2}^2$$

$$= \left| \left| \sum_{n=M+1}^N (f, h_n)_{L^2} (2n+2)^{1/2} h_{n+1} \right| \right|_{L^2}^2$$

$$= \sum_{n=M+1}^N |(f, h_n)_{L^2}|^2 (2n+2)$$

$$\leq \sum_{n=M+1}^N (2n+2)^2 |(f, h_n)_{L^2}|^2.$$

Thus

$$||f'_N - f'_M||_{L^2} \le \frac{1}{2} ||f_N - f_M||_1 + \frac{1}{2} ||f_N - f_M||_1 = ||f_N - f_M||_1.$$

Because $f \in \mathscr{S}_p$ and $p \geq 1$, the series $\sum_{n=0}^{\infty} (2n+2)^2 |(f,h_n)_{L^2}|^2$ converges, from which the claim follows.

Now we establish that if $p \geq 1$ and $f \in \mathscr{S}_p$ then there is some $F \in C_b^0(\mathbb{R})$ such that f is equal almost everywhere to F, F is differentiable almost everywhere, and $F' \in \mathscr{S}_{p-1}$.¹⁰

Theorem 8. For $p \geq 1$ and $f \in \mathscr{S}_p$, there is some $F \in C_b^0(\mathbb{R})$ such that f is equal almost everywhere to F, F is differentiable almost everywhere, f'_N converges to F' in the norm $\|\cdot\|_{L^2}$, and $F' \in \mathscr{S}_{p-1}$.

Proof. Lemma 7 tells us that f'_N is a Cauchy sequence in the norm $\|\cdot\|_{L^2}$, and hence there is some $g \in L^2(\lambda)$ to which f'_N converges in the norm $\|\cdot\|_{L^2}$. For $x \leq y$, by the fundamental theorem of calculus,

$$f_N(y) = f_N(x) + \int_0^1 f_N'(x + t(y - x)) \cdot (y - x) dt.$$

By the Cauchy-Schwarz inequality,

$$\int_{0}^{1} |f'_{N}(x+t(y-x)) \cdot (y-x) - g(x+t(y-x)) \cdot (y-x)| dt$$

$$= \int_{x}^{y} |f'_{N}(u) - g(u)| du$$

$$\leq \sqrt{y-x} \|f'_{N} - g\|_{L^{2}}.$$

¹⁰ Jeremy J. Becnel and Ambar N. Sengupta, *The Schwartz space: a background to white noise analysis*, https://www.math.lsu.edu/~preprint/2004/as20041.pdf, Theorem 7.3.

Because $||f'_N - g||_{L^2} \to 0$ as $N \to \infty$,

$$\int_0^1 f_N'(x + t(y - x)) \cdot (y - x)dt \to \int_0^1 g(x + t(y - x)) \cdot (y - x)dt.$$

Then by Lemma 6, taking $N \to \infty$, for any y > x we have

$$F(y) = F(x) + \int_0^1 g(x + t(y - x)) \cdot (y - x) dt = F(x) + \frac{1}{y - x} \int_x^y g(s) ds.$$

By the **Lebesgue differentiation theorem**, for almost all $x \in \mathbb{R}$,

$$\frac{1}{y-x} \int_x^y g(s) ds \to g(x), \qquad y \to x.$$

Therefore for almost all $x \in \mathbb{R}$,

$$F'(x) = g(x).$$

Thus F'=g in $L^2(\lambda),$ and as $f'_N\to g$ in $L^2(\lambda),$

$$F' = \lim_{N \to \infty} f'_N$$

$$= \lim_{N \to \infty} \left(\frac{B - C}{2} \right) \sum_{n=0}^{N} (f, h_n)_{L^2} h_n$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} (f, h_n)_{L^2} ((2n)^{1/2} h_{n-1} - (2n+2)^{1/2} h_{n+1})$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \left((2n+2)^{1/2} (f, h_n)_{L^2} - (2n)^{1/2} (f, h_{n-1})_{L^2} \right) h_n,$$

for which

$$||F'||_{p-1}^{2} = \frac{1}{4} \sum_{n=0}^{\infty} (2n+2)^{2p-2} \left| (2n+2)^{1/2} (f,h_{n})_{L^{2}} - (2n)^{1/2} (f,h_{n-1})_{L^{2}} \right|^{2}$$

$$\leq \frac{1}{2} \sum_{n=0}^{\infty} (2n+2)^{2p-2} \left((2n+2)|(f,h_{n})_{L^{2}}|^{2} + 2n|(f,h_{n-1})_{L^{2}}|^{2} \right),$$

which is finite because $f \in \mathscr{S}_p$. Therefore $F' \in \mathscr{S}_{p-1}$.