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1 Schwartz functions
For ¢ € C*(R,C) and p > 0, let

8], = sup sup(l + u?)P/2|¢" (u)].
0<k<p u€R

We define . to be the set of those ¢ € C*°(R,C) such that |¢|, < oo for all
p > 0. . is a complex vector space and each |- |, is a norm, and because each
| - |p is a norm, a fortiori {| - |, : p > 0} is a separating family of seminorms.
With the topology induced by this family of seminorms, . is a Fréchet spaceE
Furthermore, D : .¥ — .¢ defined by

(Dg)(x) =¢'(z), zeR
and M : . — . defined by
(Mo)(z) = zp(z), z€R

are continuous linear maps.
Let .’ be the collection of continuous linear maps . — C. For ¢ € .7,
define ey : ./ — C by

ep(w) = w(g), we.s.

The initial topology for the collection {ey : ¢ € .} is called the weak-*
topology on .. With this topology, .’ is a locally convex space whose dual

space is {eg : ¢ € Y}ﬂ

IWalter Rudin, Functional Analysis, second ed., p. 184, Theorem 7.4.
%http://individual .utoronto.ca/jordanbell/notes/weak.pdf, Theorem 4.
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2 L2 norms

For p > 0 and ¢,y € ., let

[6,9], = , (14 u?)Pe®) (u)p®) (u)du,
3y

and let )
02 = (6 dly = / (1+ a2 [6® () el
k=0“R

Because (1+u?)? < (1+u?)? when p < g, it is immediate that [¢], < [¢], when

P=gq.
We relate the norms | - |, and the norms HPH

Lemma 1. For each p > 1, for all ¢ € .7,

1
S 7791 < Bl < Vi + Dol

Proof. For 0 < k < p,

/ (14 02?16 (w)Pdu < sup((1 + w27+ 6® () ?) / (1+u?)tdu
R u€eER R

= sup((1 -+ w1 Y) (W) - 7
u€R

S 71—‘¢|12)+17

hence

[l = p (1 +u®)|p™) (u) Pdu
>

P

<> ol
k=0

=(p+ 1)7T|¢|;2;+1-

For 0 < k <p—1and u € R, using the fundamental theorem of calculus

3Takeyuki Hida, Brownian Motion, p. 305, Lemma A.1.



and the Cauchy-Schwarz inequality,
1+ 020w = | [ (@4 0200 0y
< [ 1= -+ 60 )
+ / (14 £2) /2604 (1)
<=1) [ (1487204 2002900

+/(1+t2)*1/2(1+t2)P/2|¢>(k+1>(t)|dt
R

<o-n(farera)” (farerimora)”

+ (/R(l +t2)‘1dt>1/2 </R(1 +]52)1,¢(,€+1)(t)th)l/z

< (p— DV7glp-1 + V7dlp
<

which shows that
|¢‘p—1 < p\/;r[d)]p-

3 Hermite functions

Let A be Lebesgue measure on R, and let

(f.9)2 = /R f7d.

L?(\) with the inner product (-, )2 is a separable Hilbert space. For n > 0, let
ho(z) = (—1)"(2"nly/7) "/ 2e” /2 Dre—"

the Hermite functions, the set of which is an orthonormal basis for LQ(A)H
We remark that the Hermite functions belong to .. For n < 0 we define

hn, =0,

to write some expressions in a uniform way.
We calculate that for n > 0,

n In+1
Dh,, = \/;hnl - 9 thrl'

4http://individual .utoronto.ca/jordanbell/notes/hermitefunctions.pdf
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We define the Hermite operator A : . — . by
A=-D?+ M?+1.

A is a densely defined operator in L?()\) that is symmetric and positive, and
satisfied]
Ahyp, = (2n + 2)hy,.

There is a unique bounded linear operator T : L2(\) — L?(\) satisfying
Thy = A" hy, = (2n+2)"'h,, n > 0.

The operator norm of T'is ||T|| = 1, and T is self-adjoint. For p > 1, TP is a

Hilbert-Schmidt operator with Hilbert-Schmidt norm [|T7|; = 2774/((2p).
We define the creation operator B : . — .% by

B=D+M
and we define the annihilation operator C : .%¥ — . by
C=-D+ M,
which are continuous linear maps. They satisty, for n > 0E|
Bhy, = (20)Y%h, 1, Chy = 20+ 2)Y %Ry y1.

(We remind ourselves that we have defined h_y = 0.) It is immediate that
BC = A and that B — C = 2D. Using the creation operator, we can write the
Hermite functions as

hy = (270)) Y20 Ry = 7 V420l TR0 (/2.

For ¢, € .7, using integration by parts,

(D, )12 = / ¢ ()0(@)dz = — / (@)D (@)dx = (b, (— D)) e,

and
(M. 0)12 = [ wola)dl@)de = (6. M)
Thus,
(B(ba 7/1)L2 = (D(ba w)L2 + (M¢7 w)Lz
= (¢, (=D)Y) > + (¢, M) 2
= (¢, Cw)L2
and

(C¢7 ’(/}>L2 = ((ba B’(/})LQ-

We shall use these calculations to obtain the following lemma.

Shttp://individual.utoronto.ca/jordanbell/notes/hermitefunctions.pdf, §5.
Shttp://individual.utoronto.ca/jordanbell/notes/hermitefunctions.pdf, §6.
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Lemma 2. Forp >0 and for ¢ € .7,

0 1/2
Bl = 2P/ Z <(n+‘p)'> (6, hnp) 2l

n:
n=0

and

oo n! 1/2
CPp = op/2 Z(Q hn—p) L2 ((n —p)!) hy,.

n=0

Proof. Because Ch,, = (2n + 2)'/2h,, 1,

i 1/2 o ((n+p)! 12
(¢,CPhn)12 = (6, hnip)L2 jll (27 +2)'% = (6, hnsp) 122"/ <n,> :

With
¢ Z d)? L2 hna

and because (B¢, )2 = (¢, C) 2, we have
B¢ = Z P$, ) 12l

= Z(qs, CPhy) 2hy,

n=0
o 1/2
n+p)!
- Z(¢a hn+p)L22p/2 ((n')) .
n=0

Because Bh,, = (2n)1/ 2h,,_1, and reminding ourselves that we define h,, = 0
for n < 0,

1/2 _ /2 n! 1z
e A (=

(¢7 Bphn) 2 = ((ba hnfp) 2
’ " an N (n —p)!

j=n—p+1
Because (C, )2 = (¢, Bi)r2, we have

oo

CP¢ = (CP¢,¢)12hy,

1
My T

(¢a Bp’l/))l/z hn

(6, ho_p) 122702 ("‘)/h |
o (n—p)! !

3
Il
=]

M

3
Il
o



We define the Fourier transform . : . — . by

0= [ o e Sn fer
F Y — % is a continuous linear map, and satisﬁe&ﬂ
FM=iDZF, FD=iM%.
From these we obtain
FA=AZ, B =iBZ%, FC =—-iCZF,
and one proves the following using the above.

Lemma 3. Forn >0,

Fhy, = (—1)"hy,.
We further remark that for ¢ € .,
_ 2
18]l <27 2(0N 72 + 1/[172)- (1)

Finally, there is a unique Hilbert space isomorphism .# : L2(\) — L2())
whose restriction to . is equal to .# as already defined. Thus for f € L?(\),
as

f= Z frhn) L2l

we get

Ff=> (f hn)g2(—i)"h

n=0

4 The Hermite operator

For p > 0 and f € L?()\), we define

oo

IF15 = D @n+2)%P|(f, hn) 2

n=0

We define
={f e L*N) :|Ifll, < oo},
and for f,g € ., we define

Z (2n +2) 2p (f,h )L2m7
n=0

for which
I£115 = (fs Fp-

“http://individual.utoronto.ca/jordanbell/notes/hermitefunctions.pdf, §7.
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Lemma 4. For ¢ € .7, for eachp >0, ¢ € F,, and
loll, = 1A oll - -

Proof. AP¢ € 7, so |AP@|| ;. < co. Because A is a symmetric operator and as
Ah, = (2n + 2)hy,

|AP||7. = §:|<AP¢, )2|?
=" |(¢, APhy,) 2|
n=0
= (2n+2)*|(¢, hn) 2
n=0

= l#ll; -

For f,g € L*(\), because T is self-adjoint,

(2n +2)*P(TP f, hy) 12 (TP f, hy) 12

M8

(Tpf’ Tpg)in =

Il
=]

n

(2n + 2)%P(f,TPhy,) 12 (g, TPhy) 12

s

g il

= Z(Qn +2)(f,(2n 4 2)"Phy)12(g, (20 + 2)"Phy) 12

= Z fa L2 g7 ) 2
= (f)g)L2
and so [[T?f||, = [|f|| 2, which shows that
TPL*(\) = ..

If f; € #p is a Cauchy sequence in the norm ||| ,, then as [ T7Pf; = TP f;|| .. =
Ifi = fill,» T77 fi is a Cauchy sequence in the norm ||-[| ;> and so there is some
g € L*(\) for which |T7Pf; — g||;= — 0. We have TPg € .%,, and

Ifi = TPgll, = |T77fi — g .. =0,

thus f; — TPg in the norm |||, showing that (%}, (-,-),) is a Hilbert space.

Furthermore, T? : L*(\) — .7, is an isomorphism of Hilbert spaces, and thus
{T?h,, : n > 0} is an orthonormal basis for (.%, (-, ")p)-



For p <g,
11l < I F1lg
so .Sy C Sp. For p > q, let iy, : S5 = 7 be the inclusion mapﬁ

Theorem 5. For p < g, the inclusion map iq,p : 4 — S is a Hilbert-Schmidt
operator, with Hilbert-Schmidt norm,

Hiq,p”Hs =279t <(2q - 2p)-
Proof. {T9h,, : n > 0} is an orthonormal basis for (.7, (-,-)q), and

llig.p

o0
2 . 2
HS — Z ||Zq,quhn||p
n=0

=D Tl

n=0

_ ZO [ (2n + 2)—%””2

= i(Qn +2)724(2n 4 2)%

n=0

= 2720F2P((2g — 2p).

5 The Hilbert spaces .¥,
For f € L*(\),
f = Z(fa hn)LZhru
n=0

and for N > 0 we define fy : R — C by

N
fn(@) = (fihn)r2ha(z),  z€ER,
n=0
which belongs to .7
For k > 0, we define CF(R) to be the set of those functions R — C that are
k-times differentiable and such that for each 0 < j < k, f\) is continuous and
bounded. With the norm

oo

k
Il = [+
§=0

this is a Banach space. Because the Hermite functions belong to ., for f €
L%(\) and for any k and N, the function fy belongs to CF(R).

8Hui-Hsiung Kuo, White Noise Distribution Theory, p. 18, Lemma 3.3.



Lemma 6. Ifp > 1 and f € ./, then there is some F' € Cffl(R) such that f
s equal almost everywhere to F.

Proof. Cramér’s inequality states that there is a constant Ky such that for
all n, ||yl < Ko. For M < N, using this and the Cauchy-Schwarz inequality,

N

> (fha)r2h

n=M+1

v = fullco =

oo

N 1/2 N 1/2
§< Z (2n+2)2) < Z (2n+2)2(f,hn)Lz|2>

n=M+1

N 1/2
=< > (2n+2)_2> v = fally -

n=M+1

Because f € ., C .1, fn is a Cauchy sequence in .}, hence fy is a Cauchy
sequence in CP (R), so there is some F' € Cp(R) such that fy converges to F in
CP(R). We assert that F' = f as elements of L?(\).

Using
n n+1
Dhn = 7hn7 - hn )
s =
we calculate

N Ty MR PN LES Ty P
+NZ: (W(f, s =[50 hn_l)m> -
hence for M < N, _
fyn—Tu= —\/f(f, hn-1)r2hn — W(f, hn)r2hn 11
+ \/?(f, har—1)r2har + \/@(ﬁ har)rzhar s
4 3 (W(f, hni1)2 — \/Z(f, hnl)Lz> B,

n=M




and for N > M + 2,

N+1
QT (fyhn—1)|32

M+2

N
Ifx — fully = 2N + 2)2§|(f, hn-1)[72 4+ (2N +4)
M+1
2

(2M + 2)? [(f, harg1) |72 + (2M + 4)? \(fs harsa)|72

HTH(f, hipt1)r2 — \/z(ﬁ hp—1) 2

2

+ Z_: (2n +2)?

n=M+2

= O(lfn = fally),

whence f is a Cauchy sequence in Cp(R), and so fy is a Cauchy sequence in
CLR).
O

We prove that for p > 1 the derivatives of the partial sums fy are a Cauchy
sequence in L2(\)[7]

Lemma 7. Forp>1 and f € .%,, f§ is a Cauchy sequence in L*()).
Proof. Because fy € .7,

B-C

fv=Dfn = 5

I

Then 1 1
v = farllee < S IBfN = Bfullpe + 5 1CF N = Chull 2
For M < N, as Bh,, = (2n)"/?h,,_1,

N

B Z (fa hn)LZhn

n=M+1

IBfn — Bfule =

L2
N
Y (frhn)(2n) PRy
n=M+1
N
= > (i ha)elP(2n)
n=M+1
N
< Y @n+2P(f ha) el

n=M+1

L2

9Jeremy J. Becnel and Ambar N. Sengupta, The Schwartz space: a background to white
noise analysis, https://www.math.lsu.edu/~preprint/2004/as20041.pdf, Lemma 7.1.
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and as Ch, = (2n + 2)1/2hn+1,

N

C Y (frhn)r2hn

n=M+1

ICfx = Chulle =

L2
N

Z (f7 hon)r2(2n + 2)1/2hn+1
n=M+1

L2

D 1(fha)a (20 +2)
n=M+1
N

< 30 @+ 2 bl

n=M+1

Thus
’ / 1 1
Ifn = Faellpe < 5 N = Fully + 5 I~ = fully = v = Fully -

Because f € .7, and p > 1, the series >, (2n+2)?|(f, k) 12|? converges, from
which the claim follows. O

Now we establish that if p > 1 and f € .7, then there is some F' € CP(R) such
that f is equal almost everywhere to F', F' is differentiable almost everywhere,
and F’ € yp—lm

Theorem 8. For p > 1 and f € .%,, there is some F € CP(R) such that
[ is equal almost everywhere to F, F is differentiable almost everywhere, fy
converges to F' in the norm ||-|| 2, and F' € Sp_1.

Proof. Lemma (7| tells us that f}; is a Cauchy sequence in the norm ||-||;., and
hence there is some g € L?()\) to which f} converges in the norm |[-||,.. For
x <y, by the fundamental theorem of calculus,

fn(y) = fvlz) + / fola + 1y —2)) - (y — z)dt.

By the Cauchy-Schwarz inequality,
1
ittty =)+ (v = ) = gl + tly — ) - (g~ <)l
0

Y
= [ 1#() — glald
<VIT=E Ikl

10 Jeremy J. Becnel and Ambar N. Sengupta, The Schwartz space: a background to white
noise analysis, https://www.math.lsu.edu/~preprint/2004/as20041.pdf, Theorem 7.3.
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Because || fyy — g/, = 0 as N — oo,

/fz’v(w+t(y—x))~(y—x)dt—>/ oo+ ty — ) - (y — 2)dt.
0 0

Then by Lemma 6] taking N — oo, for any y > z we have

1 1 Yy
Fly) = F@)+ [ (et =) - =)t = P+ —— [ g(s)as.

By the Lebesgue differentiation theorem, for almost all z € R,

1
Yy—x

Yy

/ g(8)ds — g(x), Yy — .
x

Therefore for almost all x € R,

Fl(z) = g().

Thus F’ = g in L?()\), and as fy — g in L?()),

, B-C\ &
-t (%5) Srno

n=0

for which

2

1 & _
1" ey = 3 D20+ 272 @+ 2)Y2(f hn) 12 — (20)2(f R ) 12
n=0

IN

>+ 2 (204 2o+ 20l a1 ).
n=0

which is finite because f € .#,. Therefore F' € .,_1.

12



	Schwartz functions
	L2 norms
	Hermite functions
	The Hermite operator
	The Hilbert spaces Sp

