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1 Lévy’s inequality

Let (2, o7, P) be a probability space. A random variable is a Borel measurable
function Q@ — R. For a random variable X, we denote by X, P the pushforward
measure of P by X. X,P is a Borel probability measure on R, called the
distribution of X. A random variable X is called symmetric when the
distribution of X is equal to the distribution of —X. Because the collection
{(—o0,a] : @ € R} generates the Borel o-algebra of R, the statement that
X.P = (—X).P is equivalent to the statement that for all a € R,

PlweQ: X(w)<a})=PlweQ: —X(w) <a}).
The following is Lévy’s inequality.!

Theorem 1 (Lévy’s inequality). Suppose that xi, k > 1, are independent
symmetric random variables, that U is a real or complex Banach space, and
that up, € U, k > 1. Then for each a > 0 and for each n > 1,

P | max Z Xjujll >a| <2-P Z Xiuji|l > a

1<k<n
1<j<k 1<j<n
Proof. Let Sy =0 and for 1 <k <n,

k
Sk(w) = ij(w)uj, we .
j=1

1Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely Summing Operators, p. 213,
Theorem 11.3.



For 1 < k < n, the function w — (x1(w),...,xx(w)) is Borel measurable
Q — R*.2 The function (t1,...,t;) — Z?:l tju; is continuous R* — U. And
the function u +— |Ju|| is continuous U — R. Therefore w — ||Sk(w)]|, the com-
position of these functions, is Borel measurable 2 — R. This then implies that
w — maxi<k<n ||Sk(w)|| is Borel measurable 2 — R. Let

A={weQ: max [|Si(w)] = a}, B={weQ:||S(w)|=a},
for which B C A. For 1 <k <n, let

A, = ﬂ {we Q:||S;(w)|| < aand [|Sk(w)| > a}.
0<j<k

It is apparent that that Ay, ..., A,, are pairwise disjoint and that A = (J;_, Ag.
For 1 <k <n,let

n n

k
Togow) = Se(w) = D xj(W)uy = ZXj(W)Uj - ) Wy,  we,

j=k+1 j=k+1
in other words, S, + T, 1 = 25). Let
Uk:AkﬂB, Vk:Akﬁ{WGQS ||Tn’k(o.))|| Za}

If w € A, then
150 (W) + Tk (W) = 2| Sk ()] = 2a,

which implies that at least one of the inequalities ||.S, (w)|| > @ or || T,k (w)|| > a
is true. Therefore
A, =U,UV,.

Because X1, - .., Xn are independent, the random vector X = (x1,...,Xn) :
) — R”™ has the pushforward measure

XuP =x1,P X+ X Xn. P,

and for each 1 < k < n, the random vector X = (X1, -+, Xks —Xk+1s- -+, —Xn) :
Q) — R"™ has the pushforward measure

XppuP = X1, P X -+ X P X (=Xh41) P X - (=xn) P
and because each x; is symmetric, these pushforward measures are equal. Define

o, : R¥F = R by

k
orlte, . te) = | Y _tjugl|,  (t,... k) €RF,
j=1

2Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hikers Guide, third ed., p. 152, Lemma 4.49.



define o¢p = 0, and set

Hp = m {(tl,...7tn)€R":Uj(t17...,tj)<a}
0<j<k

N{(t1,...,tn) ER" i op(t1,...,tk) > a,0n(t1,...,tn) > a}.
Because each o; is continuous, H}, is a Borel set in R”. Then we have

P(U,) = P(A, N B)
= P(X "' (Hy))
= (X.P)(Hy)
= (X, P)(Hy)
= P(X; ' (Hy))
=P(ArN{w € Q: |1 x(w)| > a})
= P(Vk);

among the above equalities, the two equalities that deserve chewing on are
P(AyNB) = P(X"'(Hy)) and P(X;'(Hy)) = P(Axn{w € Q: | T ()] > a}).
Thus we have
P(Ay) = P(Uy UW,) < P(Uy) + P(V3,) = 2P(Uy,) = 2P(Ax N B).

Therefore

proving the claim. O

2 Rademacher sums

Suppose that €, : (2,4, P) — (R,%gr,A), n > 1, are independent random
variables each with the Rademacher distribution: for each n,

1 1
neP = -0_ =01,
¢ 01t g%

in other words, P(e, = 1) = % and P(e, = —1) = L.



We now use Lévy’s inequality to prove the following for independent random
variables with the Rademacher distribution.?

Theorem 2. Suppose that X is a real or compler Banach space, and that
xr € X, k> 1. Then for each a > 0 and for each n > 1,
2
Z a) ) '

() o

Proof. Let Sy =0 and for 1 < k < n, define

Sk (w) = Z €j(w)z;, w e Q.

1<5<k

n

g €LTE

k=1

n

g €L Tk

k=1

Let
A={max Isel 2o} B= (IS, z el C= {1,122}

Lévy’s inequality tells us that P(A) < 2P(B).
For 1 <k <n,let

Ae= () {ISill < a} 0 {[ISkll > a}
0<j<k

and
Cr ={lISn — Sk—1l = a}-

Ifwe Ay NC, then
[9n (W) = Sk—1(W)[| = [|Sn(W)]| = [|Sk-1(W)[| = 2a — a =a,
hence Ay N C C Cj. Then because C' C A and because A is the disjoint union
of A1,..., Ay,
P(C)=P(ANC)=P <U(Ak m0)> =Y P(A4NC) <Y P(ANCy).
k=1 = k=1

1

Let 1 <k <mn. P(e2 =1) =1, so for almost all w € Q,

n

D ei(w)as|| = [ler(w) D ei(w)as|| = |fzx + D exlw)e;(w)z;
j=k

j=k j=k+1

Thus, for

n
Dy = Tk + E €ELE;T|| > a o,
j=k+1

3Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely Summing Operators, p. 214,
Lemma 11.4.



we have

P(CLADy) = 0.

Let (81,...,9n) € {+1,—1}". On the one hand, because 5]2- = 1 and using that
€1,...,€, are independent,

Pler = 01,...,€p = Ok, €k€pt1 = Ok 1y - -+ Ex€En = On)
=P(e1 = 01,..., 6k = Opy €hy1 = OkOkq1,. .., €n = Oplp)
ZP(€1 = 51) ce P(Ek = 5k)P(€k+1 = 5k6k+1) s P(€n = 5k5n)
=2"".

On the other hand, for £ 4+ 1 < j < n we have

P(ere; = 0;)

=P(erej = djle = 1)P(ep, = 1) + P(ere; = djlep = —1)P(e, = —1)
1 1

=5P(ej =6;) + 5P(e; = —0;)

RO

22 2 2

1

=5

and hence
P(€1 = 51) cee P(ek = 5k)P(Ek€k+1 = 5k+1) cee P(eken = 5n) =27".
Therefore, for each 1 < k < n and for each (d1,...,0,) € {+1,—1}",

Pley =01, .. €, = Ok, €x€kt1 = Oky1, .., €RER = Op)
:P(Gl = (51) e P(Ek = 5k)P(€k€k+1 = 6k+1) s P(eken = 5n)

But for almost all w € €,
(61(0.)), teey Ek(W), Ek(w)GkJrl(w)v ceey Ek(W)Gn(CU)) € {+1a _1}71’

so it follows that

€1,y €ky ELELYL, - - -, ELER
are independent random variables. We check that Ay € o(e1,...,€;) and Dy €
0(0pOkt1,--.,0k0,), and what we have just established means that these o-

algebras are independent, so
P(Ak N Dk) = P(Ak)P(Dk)

But
AN (CkADk) = (Ak N Ck)A(Ak N Dk),

so, because P(CyADy) =0,
P(A N Cy) = P(Ax N Dy) = P(Ag)P(Dy) = P(Ap)P(Cy).



We had already established that P(C) < >~7_, P(A; N Cy). Using this with
the above, and the fact that A is the disjoint union of A4, ..., A,, we obtain

P(C) < f: P(AxNCy)

max P(Cy)

1<k<n

A
N/
M:

sl

=
~

O Ak> max P(Ok)

1<k<n

= P(A) max P(Cy).

1<k<n

As we stated before, we have from Lévy’s inequality that P(A4) < 2P(B), with
which
P(C) <2P(B) max P(Cy).

- 1<k<n

To prove the claim it thus suffices to show that

max P(Cj) < 2P(B).

1<k<n

Let 1 <k <n. For 6 = (61,...,0k-1) € {—l—l,—l}k_l, let let Hy 5.4 be
those (t1,...,t,) € R™ such that (i) for each 1 < j < k —1, t; = 9;, (ii)

HE?:k tyw]| = a, and (i)

n
Z tjxj > a,
j=1

and let Hy 5 be those (t1,...,t,) € R" satistying (i) and (ii) and

k—1 n
thl‘j — thl'j Z a.
j=1 j=k

Let
X =(e1,...,6n): Q> R"

and let
Xk = (€1, €h—1,—€ky...,—€n) : 1 = R",



which have the same distribution because €1, ..., ¢, are independent and sym-
metric. Then

Set
Crst ={X €Hrs1}),  Crs— ={X € Hs_},

for which we thus have
P(Cs4) = P(Cys,-)-

We can write C 5+ and Cj 5 as

Cror=| [) {5 =0} | NCun{]|Snll > a}
0<j<k
and
Crs—=| () {& =0} NCrn{]|Sn — 2Sk_1]| > a}.
0<j<k

If w € Cy, then, because ||.S,(w) — Sg—1(w)| > a,

2a < 2||Sp(w) = Sk-1(w)]|
= [|Sn(w) + (Sn(w) = 251 (W)l
< [Sn(@)ll + [[Sn(w) = 2551 (W)l

so at least one of the inequalities ||S,(w)|| > a and [|Sy,(w) — 2Sk_1(w)|| > a is
true, and hence

Crk CHlISnll =z a} U{lISn — 2Sk-1] = a}.
It follows that
Cen | () {e =06} | = Crist UCros.—.
0<j<k
Therefore, using the fact that for almost all w € €,
(e1(w), ... ep_1(w)) € {+1,—1}F71,

and

Ck;’(s’Jr = ﬂ {Gj = 5j} NC,NB,

0<j<k



we get

P(C) =Y _P(Ckn [ {e=6;}
5

0<j<k

==§:f%C%@+LJCh&—)

5
=2 Z P(Crs.+)
§
<2> P|Bn () {g =0}
s 0<j<k
— 2P(B),
and thus
max P(Cj) < 2P(B),
1<k<n
which proves the claim. O

3 Kahane’s inequality

By E(X)" we mean (E(X))". The following is Kahane’s inequality.*

Theorem 3 (Kahane’s inequality). For 0 < p,q < oo, there is some Kp 4 > 0
such that if X is a real or complex Banach space and xy, € X, k > 1, then for

each n,
n q\ 1/q n p\ 1/p
E ( Zekxk ) <K,, FE ( Zekxk > .
k=1 k=1

Proof. Suppose that 0 < p < ¢ < co; when p > ¢ the claim is immediate with
S

K,,=1. Let
py\ 1/p
M=F ( ) ;
k=1

if M = 0 we check that the claim is 0 < K, ; -0, which is true for, say, K, ; = 1.
Otherwise, M > 0, and let ux = 35, 1 < k < n, for which

(gef)Esl)

Using Chebyshev’s inequality,
n P 1 P 1
> <-F =-.
Z ELUL = 8) =3 < > 3
k=1

P[] 29) <o S o
k=1 k=1

4Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely Summing Operators, p. 211,
Theorem 11.1.

n

n

g ELUE

k=1

n

e

k=1




Assume for induction that for some [ > 0 we have

d

the above shows that this is true for [ = 0. Applying Theorem 2 and then (2),

2
P( Z2l+1'81/p> §4<P< 22l81/p>> Si.2,21+1,

which shows that (2) is true for all [ > 0.
Generally, for 0 < ¢ < oo, if X :  — R is a random variable for which
P(X >0) =1, then

n

E €U

k=1

1 ,
> 2! ~81/P> <7 -2, (2)

n

E ELUEK

k=1

n

E €LUE

k=1

E(X?) :/ qsT I P(X > s)ds;
0

the right-hand side is finite if and only if X € LI(P). Using this,

E ( q) = /OOO qsi'P ( ) ds. (3)

Let ap = and for [ > 1 let oy = 2!~ - 8/7 and define

Zs)7 s> 0.

n

E €LUL

k=1

n

§ LUK

k=1

n

E LUK

k=1

f(s) = qsq‘1P<

Using (3) and then (2),

n q 00
E( Zekuk ) z/ f(s)ds
k=1
O¢l+2
/ f(s ds+2 /
Qj41
< gs? lds + / qs? P
A Z Q41
<aof+ Z/ gs?™ 1 272 s

ol
=8ur 4 1 22 *(ofyn —aliy),
1=0

n

g ELUL

k=1

> az+1> ds

and we define K, ; by taking K} , to be equal to the above. Thus

q\ /4

n

g E€LUL

k=1




and therefore, by (1),

i

aq\ 1/q py\ 1/p
> S Kp7q ' E ( > .
Finally, as up = &,

q\ 1/q p\ 1/p

which proves the claim. O

n

E LUK

k=1

n

g ELUL

k=1

n

E €L

k=1

n

E €T

k=1

In the above proof of Kahane’s inequality, for p = 1 and ¢ = 2 we have
N
Kf, =8+ 1 22 “afs —afyy)
1=0

=64+16) 272 (22142 — 92)
=0

=64+48> 27222,
=0

for which
K2 =14.006....

In fact, the inequality is true with K o = /2 = 1.414....°

5R. Latata and K. Oleszkiewicz, On the best constant in the Khinchin-Kahane inequality,
Studia Math. 109 (1994), no. 1, 101-104.
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