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1 Lévy’s inequality

Let (Ω,A , P ) be a probability space. A random variable is a Borel measurable
function Ω→ R. For a random variable X, we denote by X∗P the pushforward
measure of P by X. X∗P is a Borel probability measure on R, called the
distribution of X. A random variable X is called symmetric when the
distribution of X is equal to the distribution of −X. Because the collection
{(−∞, a] : a ∈ R} generates the Borel σ-algebra of R, the statement that
X∗P = (−X)∗P is equivalent to the statement that for all a ∈ R,

P ({ω ∈ Ω : X(ω) ≤ a}) = P (ω ∈ Ω : −X(ω) ≤ a}).

The following is Lévy’s inequality.1

Theorem 1 (Lévy’s inequality). Suppose that χk, k ≥ 1, are independent
symmetric random variables, that U is a real or complex Banach space, and
that uk ∈ U , k ≥ 1. Then for each a > 0 and for each n ≥ 1,

P

 max
1≤k≤n

∥∥∥∥∥∥
∑

1≤j≤k

χjuj

∥∥∥∥∥∥ ≥ a
 ≤ 2 · P

∥∥∥∥∥∥
∑

1≤j≤n

χjuj

∥∥∥∥∥∥ ≥ a
 .

Proof. Let S0 = 0 and for 1 ≤ k ≤ n,

Sk(ω) =

k∑
j=1

χj(ω)uj , ω ∈ Ω.

1Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely Summing Operators, p. 213,
Theorem 11.3.
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For 1 ≤ k ≤ n, the function ω 7→ (χ1(ω), . . . , χk(ω)) is Borel measurable

Ω → Rk.2 The function (t1, . . . , tk) 7→
∑k
j=1 tjuj is continuous Rk → U . And

the function u 7→ ‖u‖ is continuous U → R. Therefore ω 7→ ‖Sk(ω)‖, the com-
position of these functions, is Borel measurable Ω→ R. This then implies that
ω 7→ max1≤k≤n ‖Sk(ω)‖ is Borel measurable Ω→ R. Let

A = {ω ∈ Ω : max
1≤k≤n

‖Sk(ω)‖ ≥ a}, B = {ω ∈ Ω : ‖Sn(ω)‖ ≥ a},

for which B ⊂ A. For 1 ≤ k ≤ n, let

Ak =
⋂

0≤j<k

{ω ∈ Ω : ‖Sj(ω)‖ < a and ‖Sk(ω)‖ ≥ a}.

It is apparent that that A1, . . . , An are pairwise disjoint and that A =
⋃n
k=1Ak.

For 1 ≤ k ≤ n, let

Tn,k(ω) = Sk(ω)−
n∑

j=k+1

χj(ω)uj =

k∑
j=1

χj(ω)uj −
n∑

j=k+1

χj(ω)uj , ω ∈ Ω,

in other words, Sn + Tn,k = 2Sk. Let

Uk = Ak ∩B, Vk = Ak ∩ {ω ∈ Ω : ‖Tn,k(ω)‖ ≥ a}.

If ω ∈ Ak, then
‖Sn(ω) + Tn,k(ω)‖ = 2 ‖Sk(ω)‖ ≥ 2a,

which implies that at least one of the inequalities ‖Sn(ω)‖ ≥ a or ‖Tn,k(ω)‖ ≥ a
is true. Therefore

Ak = Uk ∪ Vk.

Because χ1, . . . , χn are independent, the random vector X = (χ1, . . . , χn) :
Ω→ Rn has the pushforward measure

X∗P = χ1∗P × · · · × χn∗P,

and for each 1 ≤ k ≤ n, the random vector Xk = (χ1, . . . , χk,−χk+1, . . . ,−χn) :
Ω→ Rn has the pushforward measure

Xk∗P = χ1∗P × · · ·χk∗P × (−χk+1)∗P × · · · (−χn)∗P,

and because each χj is symmetric, these pushforward measures are equal. Define
σk : Rk → R by

σk(t1, . . . , tk) =

∥∥∥∥∥∥
k∑
j=1

tjuj

∥∥∥∥∥∥ , (t1, . . . , tk) ∈ Rk,

2Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hikers Guide, third ed., p. 152, Lemma 4.49.
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define σ0 = 0, and set

Hk =

 ⋂
0≤j<k

{(t1, . . . , tn) ∈ Rn : σj(t1, . . . , tj) < a}


∩ {(t1, . . . , tn) ∈ Rn : σk(t1, . . . , tk) ≥ a, σn(t1, . . . , tn) ≥ a}.

Because each σj is continuous, Hk is a Borel set in Rn. Then we have

P (Uk) = P (Ak ∩B)

= P (X−1(Hk))

= (X∗P )(Hk)

= (Xk∗P )(Hk)

= P (X−1k (Hk))

= P (Ak ∩ {ω ∈ Ω : ‖Tn,k(ω)‖ ≥ a})
= P (Vk);

among the above equalities, the two equalities that deserve chewing on are

P (Ak∩B) = P (X−1(Hk)) and P (X−1k (Hk)) = P (Ak∩{ω ∈ Ω : ‖Tn,k(ω)‖ ≥ a}).

Thus we have

P (Ak) = P (Uk ∪ Vk) ≤ P (Uk) + P (Vk) = 2P (Uk) = 2P (Ak ∩B).

Therefore

P (A) =

n∑
k=1

P (Ak)

≤
n∑
k=1

2P (Ak ∩B)

= 2P (A ∩B)

= 2P (B),

proving the claim.

2 Rademacher sums

Suppose that εn : (Ω,A , P ) → (R,BR, λ), n ≥ 1, are independent random
variables each with the Rademacher distribution: for each n,

εn∗P =
1

2
δ−1 +

1

2
δ1,

in other words, P (εn = 1) = 1
2 and P (εn = −1) = 1

2 .
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We now use Lévy’s inequality to prove the following for independent random
variables with the Rademacher distribution.3

Theorem 2. Suppose that X is a real or complex Banach space, and that
xk ∈ X, k ≥ 1. Then for each a > 0 and for each n ≥ 1,

P

(∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥ ≥ 2a

)
≤ 4

(
P

(∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥ ≥ a
))2

.

Proof. Let S0 = 0 and for 1 ≤ k ≤ n, define

Sk(ω) =
∑

1≤j≤k

εj(ω)xj , ω ∈ Ω.

Let

A =

{
max

1≤k≤n
‖Sk‖ ≥ a

}
, B = {‖Sn‖ ≥ a}, C = {‖Sn‖ ≥ 2a}.

Lévy’s inequality tells us that P (A) ≤ 2P (B).
For 1 ≤ k ≤ n, let

Ak =
⋂

0≤j<k

{‖Sj‖ < a} ∩ {‖Sk‖ ≥ a}

and
Ck = {‖Sn − Sk−1‖ ≥ a}.

If ω ∈ Ak ∩ C, then

‖Sn(ω)− Sk−1(ω)‖ ≥ ‖Sn(ω)‖ − ‖Sk−1(ω)‖ ≥ 2a− a = a,

hence Ak ∩ C ⊂ Ck. Then because C ⊂ A and because A is the disjoint union
of A1, . . . , An,

P (C) = P (A ∩ C) = P

(
n⋃
k=1

(Ak ∩ C)

)
=

n∑
k=1

P (Ak ∩ C) ≤
n∑
k=1

P (Ak ∩ Ck).

Let 1 ≤ k ≤ n. P (ε2k = 1) = 1, so for almost all ω ∈ Ω,∥∥∥∥∥∥
n∑
j=k

εj(ω)xj

∥∥∥∥∥∥ =

∥∥∥∥∥∥εk(ω)

n∑
j=k

εj(ω)xj

∥∥∥∥∥∥ =

∥∥∥∥∥∥xk +

n∑
j=k+1

εk(ω)εj(ω)xj

∥∥∥∥∥∥ .
Thus, for

Dk =


∥∥∥∥∥∥xk +

n∑
j=k+1

εkεjxj

∥∥∥∥∥∥ ≥ a
 ,

3Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely Summing Operators, p. 214,
Lemma 11.4.
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we have
P (Ck4Dk) = 0.

Let (δ1, . . . , δn) ∈ {+1,−1}n. On the one hand, because δ2j = 1 and using that
ε1, . . . , εn are independent,

P (ε1 = δ1, . . . , εk = δk, εkεk+1 = δk+1, . . . , εkεn = δn)

=P (ε1 = δ1, . . . , εk = δk, εk+1 = δkδk+1, . . . , εn = δkδn)

=P (ε1 = δ1) · · ·P (εk = δk)P (εk+1 = δkδk+1) · · ·P (εn = δkδn)

=2−n.

On the other hand, for k + 1 ≤ j ≤ n we have

P (εkεj = δj)

=P (εkεj = δj |εk = 1)P (εk = 1) + P (εkεj = δj |εk = −1)P (εk = −1)

=
1

2
P (εj = δj) +

1

2
P (εj = −δj)

=
1

2
· 1

2
+

1

2
· 1

2

=
1

2
,

and hence

P (ε1 = δ1) · · ·P (εk = δk)P (εkεk+1 = δk+1) · · ·P (εkεn = δn) = 2−n.

Therefore, for each 1 ≤ k ≤ n and for each (δ1, . . . , δn) ∈ {+1,−1}n,

P (ε1 = δ1, . . . , εk = δk, εkεk+1 = δk+1, . . . , εkεn = δn)

=P (ε1 = δ1) · · ·P (εk = δk)P (εkεk+1 = δk+1) · · ·P (εkεn = δn).

But for almost all ω ∈ Ω,

(ε1(ω), . . . , εk(ω), εk(ω)εk+1(ω), . . . , εk(ω)εn(ω)) ∈ {+1,−1}n,

so it follows that
ε1, . . . , εk, εkεk+1, . . . , εkεn

are independent random variables. We check that Ak ∈ σ(ε1, . . . , εk) and Dk ∈
σ(σkσk+1, . . . , σkσn), and what we have just established means that these σ-
algebras are independent, so

P (Ak ∩Dk) = P (Ak)P (Dk).

But
Ak ∩ (Ck4Dk) = (Ak ∩ Ck)4(Ak ∩Dk),

so, because P (Ck4Dk) = 0,

P (Ak ∩ Ck) = P (Ak ∩Dk) = P (Ak)P (Dk) = P (Ak)P (Ck).
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We had already established that P (C) ≤
∑n
k=1 P (Ak ∩ Ck). Using this with

the above, and the fact that A is the disjoint union of A1, . . . , An, we obtain

P (C) ≤
n∑
k=1

P (Ak ∩ Ck)

=

n∑
k=1

P (Ak)P (Ck)

≤

(
n∑
k=1

P (Ak)

)
max

1≤k≤n
P (Ck)

= P

(
n⋃
k=1

Ak

)
max

1≤k≤n
P (Ck)

= P (A) max
1≤k≤n

P (Ck).

As we stated before, we have from Lévy’s inequality that P (A) ≤ 2P (B), with
which

P (C) ≤ 2P (B) max
1≤k≤n

P (Ck).

To prove the claim it thus suffices to show that

max
1≤k≤n

P (Ck) ≤ 2P (B).

Let 1 ≤ k ≤ n. For δ = (δ1, . . . , δk−1) ∈ {+1,−1}k−1, let let Hk,δ,+ be
those (t1, . . . , tn) ∈ Rn such that (i) for each 1 ≤ j ≤ k − 1, tj = δj , (ii)∥∥∥∑n

j=k tjxj

∥∥∥ ≥ a, and (iii) ∥∥∥∥∥∥
n∑
j=1

tjxj

∥∥∥∥∥∥ ≥ a,
and let Hk,δ,− be those (t1, . . . , tn) ∈ Rn satisfying (i) and (ii) and∥∥∥∥∥∥

k−1∑
j=1

tjxj −
n∑
j=k

tjxj

∥∥∥∥∥∥ ≥ a.
Let

X = (ε1, . . . , εn) : Ω→ Rn

and let
Xk = (ε1, . . . , εk−1,−εk, . . . ,−εn) : Ω→ Rn,
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which have the same distribution because ε1, . . . , εn are independent and sym-
metric. Then

P (X−1(Hk,δ,+)) = (X∗P )(Hk,δ,+)

= (Xk∗P )(Hk,δ,+)

= P (X−1k (Hk,δ,+))

= P (X−1(Hk,δ,−)).

Set
Ck,δ,+ = {X ∈ Hk,δ,+}, Ck,δ,− = {X ∈ Hk,δ,−},

for which we thus have
P (Ck,δ,+) = P (Ck,δ,−).

We can write Ck,δ,+ and Ck,δ,− as

Ck,δ,+ =

 ⋂
0≤j<k

{εj = δj}

 ∩ Ck ∩ {‖Sn‖ ≥ a}
and

Ck,δ,− =

 ⋂
0≤j<k

{εj = δj}

 ∩ Ck ∩ {‖Sn − 2Sk−1‖ ≥ a}.

If ω ∈ Ck then, because ‖Sn(ω)− Sk−1(ω)‖ ≥ a,

2a ≤ 2 ‖Sn(ω)− Sk−1(ω)‖
= ‖Sn(ω) + (Sn(ω)− 2Sk−1(ω))‖
≤ ‖Sn(ω)‖+ ‖Sn(ω)− 2Sk−1(ω)‖ ,

so at least one of the inequalities ‖Sn(ω)‖ ≥ a and ‖Sn(ω)− 2Sk−1(ω)‖ ≥ a is
true, and hence

Ck ⊂ {‖Sn‖ ≥ a} ∪ {‖Sn − 2Sk−1‖ ≥ a}.

It follows that

Ck ∩

 ⋂
0≤j<k

{εj = δj}

 = Ck,δ,+ ∪ Ck,δ,−.

Therefore, using the fact that for almost all ω ∈ Ω,

(ε1(ω), . . . , εk−1(ω)) ∈ {+1,−1}k−1,

and

Ck,δ,+ =

 ⋂
0≤j<k

{εj = δj}

 ∩ Ck ∩B,
7



we get

P (Ck) =
∑
δ

P

Ck ∩ ⋂
0≤j<k

{εj = δj}


=
∑
δ

P (Ck,δ,+ ∪ Ck,δ,−)

= 2
∑
δ

P (Ck,δ,+)

≤ 2
∑
δ

P

B ∩ ⋂
0≤j<k

{εj = δj}


= 2P (B),

and thus
max

1≤k≤n
P (Ck) ≤ 2P (B),

which proves the claim.

3 Kahane’s inequality

By E(X)r we mean (E(X))r. The following is Kahane’s inequality.4

Theorem 3 (Kahane’s inequality). For 0 < p, q < ∞, there is some Kp,q > 0
such that if X is a real or complex Banach space and xk ∈ X, k ≥ 1, then for
each n,

E

(∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥
q)1/q

≤ Kp,q · E

(∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥
p)1/p

.

Proof. Suppose that 0 < p < q < ∞; when p ≥ q the claim is immediate with
Kp,q = 1. Let

M = E

(∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥
p)1/p

;

if M = 0 we check that the claim is 0 ≤ Kp,q ·0, which is true for, say, Kp,q = 1.
Otherwise, M > 0, and let uk = xk

M , 1 ≤ k ≤ n, for which

E

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥
p)

= E

(∥∥∥∥∥
n∑
k=1

εk
xk
M

∥∥∥∥∥
p)

= 1. (1)

Using Chebyshev’s inequality,

P

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥ ≥ 81/p

)
= P

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥
p

≥ 8

)
≤ 1

8
E

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥
p)

=
1

8
.

4Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely Summing Operators, p. 211,
Theorem 11.1.
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Assume for induction that for some l ≥ 0 we have

P

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥ ≥ 2l · 81/p
)
≤ 1

4
· 2−2

l

; (2)

the above shows that this is true for l = 0. Applying Theorem 2 and then (2),

P

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥ ≥ 2l+1 · 81/p
)
≤ 4

(
P

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥ ≥ 2l · 81/p
))2

≤ 1

4
· 2−2

l+1

,

which shows that (2) is true for all l ≥ 0.
Generally, for 0 < q < ∞, if X : Ω → R is a random variable for which

P (X ≥ 0) = 1, then

E(Xq) =

∫ ∞
0

qsq−1P (X ≥ s)ds;

the right-hand side is finite if and only if X ∈ Lq(P ). Using this,

E

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥
q)

=

∫ ∞
0

qsq−1P

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥ ≥ s
)
ds. (3)

Let α0 = and for l ≥ 1 let αl = 2l−1 · 81/p, and define

f(s) = qsq−1P

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥ ≥ s
)
, s ≥ 0.

Using (3) and then (2),

E

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥
q)

=

∫ ∞
0

f(s)ds

=

∫ α1

0

f(s)ds+

∞∑
l=0

∫ αl+2

αl+1

f(s)ds

≤
∫ α1

0

qsq−1ds+

∞∑
l=0

∫ αl+2

αl+1

qsq−1P

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥ ≥ αl+1

)
ds

≤ αq1 +

∞∑
l=0

∫ αl+2

αl+1

qsq−1
1

4
· 2−2

l

ds

= 8q/p +
1

4

∞∑
l=0

2−2
l

(αql+2 − α
q
l+1),

and we define Kp,q by taking Kq
p,q to be equal to the above. Thus

E

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥
q)1/q

≤ Kp,q,
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and therefore, by (1),

E

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥
q)1/q

≤ Kp,q · E

(∥∥∥∥∥
n∑
k=1

εkuk

∥∥∥∥∥
p)1/p

.

Finally, as uk = xk

M ,

E

(∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥
q)1/q

≤ Kp,q · E

(∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥
p)1/p

,

which proves the claim.

In the above proof of Kahane’s inequality, for p = 1 and q = 2 we have

K2
1,2 = 82 +

1

4

∞∑
l=0

2−2
l

(α2
l+2 − α2

l+1)

= 64 + 16

∞∑
l=0

2−2
l

(22l+2 − 22l)

= 64 + 48

∞∑
l=0

2−2
l

22l,

for which
K1,2 = 14.006 . . . .

In fact, the inequality is true with K1,2 =
√

2 = 1.414 . . ..5

5R. Lata la and K. Oleszkiewicz, On the best constant in the Khinchin-Kahane inequality,
Studia Math. 109 (1994), no. 1, 101–104.
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