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1 Measure and integration theory

Let % be the Borel o-algebra of R, and let % be the Borel o-algebra of
[~00,00] = R U {—00,00}: the elements of Z are those subsets of R of the
form B, BU{—},BU {0}, BU{—00,}, with B € £.

Let (X, 47, u) be a measure space. It is a fact that if f, is a sequence of
o/ — % measurable functions then sup,, f, and inf,, f,, are & — % measurable,
and thus if f, is a sequence of &/ — 2 measurable functions that converge
pointwise to a function f : X — R, then f is &/ — % measurable.r If f1,..., fn
are o/ — % measurable, then so are fi V---V f, and fi A --- A fn, and a
function f : X — R is &/ — 2% measurable if and only if both f* = fVv 0
and f~ = —(f A0) are & — % measurable. In particular, if f is & — %
measurable then so is |f| = f + f~.

A simple function is a function f : X — R that is &/ — % measurable and
whose range is finite. Let F = E (/) be the collection of nonnegative simple
functions. It is straightforward to prove that

wvelE a>0 = oaou, u+tv,u-v,uVo, uAveEFE.
Define I, : E — [0, 00] by

L= am(A,),
i=1

where u has range {a1,...,a,} and A; = u~!(a;). One proves that I, : E —
[0, 0] is positive homogeneous, additive, and order preserving.?
It is a fact® that if u, is a nondecreasing sequence in E and u € E then

u<supu, = IT,u<suplu,.
n n
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It follows that if u, and v, are sequences in E then

supu, =supv, = supl u, =supl,v,. (1)
n n n n

Define E* = E*(/) to be the set of all functions f : X — [0, 0o] for which
there is a nondecreasing sequence u, in E satisfying sup,, u, = f, in other
words, there is a sequence u,, in E satisfying u, 1 f. From (1), for f € E*
and sequences Uy, v, € E with sup,, u, = f and sup,, v, = f, it holds that
sup,, I, un = sup,, I,v,. Also, if v € E then u, = u is a nondecreasing sequence
in F with v = sup, un, so u € E*. Then it makes sense to extend I, from
E — [0,00] to E* — [0,00] by defining I,,f = sup,, I, uy,. One proves* that

[LgeE, a>0 = aof, f+g, f-9 fVg, fAgEE"

and that I, : E* — [0, 00] is positive homogeneous, additive, and order preserv-
ing.

The monotone convergence theorem?® states that if f, is a sequence in
E* then sup,, fn, € E* and

1, (Sup fn) =sup I, fn.

We now prove a characterization of E*.

Theorem 1. E* is equal to the set of functions X — [0,00] that are o/ — %
measurable.

Proof. If f € E*, then there is a sequence u,, in E with u,, T f. Because each
u,, is measurable &/ — %, so is f.

Now suppose that f : X — [0,00] is &/ — % measurable. For n > 1 and
0<i<n2™ -1 let

Aip={fz2n{f<(@+1)27"}={27" < f<(i+1)27"},
and for 7 = n2"™ let
Ai,n = {f Z TL}

Because f is &/ — 2 measurable, the sets A; . belong to &7. For each n, the
sets Ao, ... Anon_1,n, Anan , are pairwise disjoint and their union is equal to
X. It is apparent that

Aip = A2 nt1 U A2i41 nt1, 0<i<n2" -1 (2)

Define

na"

Un = 274,
=0
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which belongs to E. For z € X, either f(x) =00 or 0 < f(z) < co. In the first
case, u,(x) =n for all n > 1. In the second case, u,(z) < f(x) < up(x) +27"
for all n > f(x). Therefore u,(x) 1 f(z) as n — oo, and because this is true for
each x € X, this means u, T f and so f € E*. O

So far we have defined I, : E* — [0, 00]. Suppose that f : X — Ris o/ — %
measurable. Then fT, f~: X — [0, 00] are &/ — % measurable so by Theorem
1, ff,f~ € B*. Then I,fT,1,f~ €[0,00]. We say that a function f: X — R
is y-integrable if it is & — 2 measurable and I, f* < oo and I,f~ < oo.
One checks that a function f : X — R is p-integrable if and only if it is &/ — %
measurable and I,,|f| < oo. If f : X — R is p-integrable, we now define I,,f € R
by

Lf=If"—1.,f".

For example, if u(X) < co and S is a subset of X that does not belong to
o, define f: X - Rby f =15 —1x\s. Then f* =1gand f~ = 1x\g, and
thus f is not &7 — % measurable, so it is not p-integrable. But |f| = 1 belongs
to E, and I,|f| = u(X) < oo by hypothesis, showing that |f| is p-integrable
while f is not.

One proves that if f,g : X — R are p-integrable and a € R then af is
p-integrable and

I;L(af) = alufv

if f 4+ g is defined on all X then f + g is u-integrable and

L(f+g)=1.f + 1.9,

and fV g, f A g are p-integrable.” Furthermore, I,, is order preserving.

Let f : X — C be a function and write f = u+iv. One proves that f is Borel
measurable (i.e. &/ — ¢ measurable), if and only if u and v are measurable
o/ — 9B. We define f to be p-integrable if both u and v are p-integrable, and
define

I.f=ITu+il,v.

2 L2

Let (X, o, ;1) be a measure space and for 1 < p < oo let £P(u) be the collection
of Borel measurable functions f : X — C such that |f|P is p-integrable. For
complex a, b, because z — zP is convex we have by Jensen’s inequality

a+b
2

P 1 1. \? 1 1 1
<[z Zlp < ZlalP + Z|pP = = P blP
so |a + b[P < 2P=1(|a|P + |b|P). Thus if f,g € £P(u) then

[f +glP <2271 fIP + 1glP),

"Heinz Bauer, Measure and Integration Theory, p. 65, Theorem 12.3.




which implies that £?(u) is a linear space.
For Borel measurable f : X — C define

1/p
1l = ( /X fl”du>

For f,g € £P(u), by Holder’s inequality, with % + 1% =1 (for which p’ = 1%),

I +gl?, _/ IS+ gl 1du+/ gllf + 9P du

< Hf”Lp |Hf+g|p 1HLP’ + ||g||LP H|f+g|p 1HLp/
= £l I+ gll22" + llgll o I1f +gll5"

which implies that || f 4+ gll;» < [|fll» + |9l -, and hence [-]|, is a seminorm
on ZP(u).

Let AP (1) be the set of those f € £P(u) such that || f||,, = 0. AP(u) is a
linear subspace of .£?(u), and we define

LP(p) = L2 () [ AP () ={f + AP (n) : f € LP(w)}

LP(p) is a normed linear space with the norm ||-[|,,.

It is a fact that if V is a normed linear space then V is complete if and
only if each absolutely convergent series in V' converges in V. Suppose that
fr is a sequence in ZP(u) with > 7, || fll» < co. Forn > 1 let g,(z) =
(S0, [fe(@)])” and define g : X ~ [0, 00] by

= (ZIM»T)) = lim g, (2),
k=1

which is & — % measurable, being the pointwise limit of a sequence of functions
each of which is &/ — % measurable. Because g1 < go < ---, by the monotone
convergence theorem,

/gdu: lim gndp.
X n—oo X

1/p n oo
( / gndu) - <3 il < S el
X Lr k=1 k=1

which implies that fX gdp < 00, meaning that g : X — [0, 0o] is integrable. The
fact that g is integrable implies pu(E) = 0, where E = {z € X : g(x) = o0} € &.
For z € X \ E, Y p—; |fx(x)| < co and because C is complete this implies that
> ey fu(z) € C, and so it makes sense to define f: X — C by

flz)=1x\p(z ka



which is Borel measurable. Furthermore, |f|? < g, and because g is integrable
this implies that f € ZP(u). For v € X \ E,

n p
dim | fu(@) = f(z)| =0
k=1
and
n P
S ful@) - f(@)| < gla),
k=1
so by the dominated convergence theorem,®
n P
Jdim | > fr(@) = f(z)| du=0.
k=1
Because  — 21/ is continuous this implies
=0.

lim
n—oo

St f
k=1

Hence, if fj is a sequence in LP(u) such that > ;7 || fxll;» < oo then there is
some f € LP(u) such that >}, fx — f in the norm ||-||;,. This implies that
L?(u) is a Banach space.

We say that the o-algebra o7 is countably generated if there is a countable
subset € of & such that & = o(%) and we say that a topological space is
separable if there exists a countable dense subset of it. It can be proved that
if o/ is countably generated and p is o-finite, then for 1 < p < oo there is a
countable collection of simple functions that is dense in LP(u), showing that
LP(p) is separable.”

Lp

Theorem 2. Let (X, 9/, 1) be a measure space and let 1 < p < co. LP(u) with
the norm ||-||;» is a Banach space, and if o is countably generated and p is
o-finite then LP(u) is separable.

For f,g € L?(u), let

(f:9) 2(n) :/Xf'?du-

This is an inner product on L?(p), and thus L?(u) is a Hilbert space.

8Heinz Bauer, Measure and Integration Theory, p. 83, Theorem 15.6.
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3 Product measures

Let (X3,9%,p1) and (X1, 9, 1) be measure spaces and let o/ ® o be the
product o-algebra. For Q C X; x X5, write

Quy = {22 € Xo: (21,22) € Q}, Qz, = {x1 € X1 : (21,22) € Q}.

One proves that if g1 and po are o-finite, then for each Q € @4 ® % the
function x; — p2(Qs,) is @ — % measurable and the function zy + 1 (Qy,)
is ofy — % measurable.'® If ;1 and py are o-finite, one proves'! that there is a
unique measure pu : 2 ® o/ — [0,00] that satisfies

(A1 x Ag) = p1(Ar)pae(A2), A € 1, A € 5.

The measure p satisfies

W@ = [ @) = [ in(@u)dialea)
X1 X2
for Q € 94 ® 9, and is itself o-finite. We write p = 1 ® pe, and call p the
product measure of y; and pus.
Let X’ be a set and let f : X1 x X9 — X’ be a function. For z; € X1, define
far : Xo = X' by
Ja (x2) = f(21, 22), T2 € Xo

and for x9 € Xo, define f,, : X; - X' by

fao(w1) = fla1,22), @1 € Xy

For Q C X7 x Xo,

(1Q)es =1q.,:  (1Q)w = lq.,-

It is straightforward to prove that if (X', /") is a measurable space and f :
(X1 x Xo, 9 @ o) — (X', /') is measurable, then for each z; € X; the
function f,, : Xo — X’ is measurable % — &/’ and for each x2 € X, the
function f,, : X; — X’ is measurable &, — 7’12

Tonelli’s theorem?? states that if (X1, %%, u1) and (X1, 94, 1) are o-finite
measure spaces and f : X; x Xy — [0,00] is @ ® <% — % measurable, then
the functions

To faodptn, Ty fardps
X1 X2

10Heinz Bauer, Measure and Integration Theory, p. 135, Lemma 23.2.
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are oy — 9 measurable and «/; — % measurable respectively, and

/ Fd(un @ pa)
X1 xXo

z/x2 ( . fxgd/u) dpz(w2) (3)

—/( fxlduz)dlil(l’l)-
X1 Xo

Fubini’s theorem!* states that if (X1,.24, 1) and (X», 9%, y2) are o-finite
measure spaces and f: X; x Xo = R is 11 ® peo-integrable then there is some
Ay € o/ with pu1(A;) = 0 such that for x; € X\ Ay the function f,, : Xo = R
is po-integrable, and there is some A; € o with ps(Az) = 0 such that for
T3 € X3\ Ay the function f,, : X; — R is y;-integrable. Furthermore, define
Fi: X1 = Rby Fi(z1) = [y, faydpe for 21 € X1\ Ay and Fi(z1) = 0 for
x1 € A1, and define Fy : X5 — R by Fy(x) = le Judpy for zo € Xo \ Ag
and Fy(xz2) = 0 for 9 € Ay. The functions F; and Fy are pj-integrable and
peo-integrable respectively, and

/ fd(/il ®,U,2) = / F1d/l1 = / FQd,UQ.
X1 X X2 X1 X2

Suppose that (X7, .4, p1) and (Xa, o, ug) are o-finite measure spaces. For
e: X7 —>Cand f: Xy ->C,definee® f: X3 x Xo - C by

(e® f)(w1,29) = e(z1) f(2),

which is Borel measurable X; x Xo — C if e and f are Borel measurable. If
e € L*(u) and f € £?(ua), then by Tonelli’s theorem e ® f : X1 x X3 — C
belongs to .Z?(u; @ uz). For e,e’ € L?(uy) and f, f' € £?(u2), by Fubini’s
theorem,

(€@ f.e @ f) L2 ops)

- / o) (22) @) F@a)d(u © pa) (@1, o)
X1 xXo

-[ (/. | c(anjeanidyn (1) ) o) oz dn(o)
=(e,€)r2guy) (o F ) L2y -

Therefore, if E C #?(u1) is an orthonormal set in L?(u;) and F C £?(uz) is
an orthonormal set in L?(jz), then {e® f:e € E, f € F} C £?(u1 ® pg) is an
orthonormal set in L?(u; @ pz).

Theorem 3. Let (X, 9, p1) and (Xa, o4, 1) be o-finite measure spaces and
suppose that L*(p1) and L*(u2) are separable. If E C £?(u1) is an orthonormal

4 Heinz Bauer, Measure and Integration Theory, p. 139, Corollary 23.7.



basis for L*(u1) and F C £*(p2) is an orthonormal basis for L*(uz), then
®={e®f:e€ E,feF}C L% ®u) is an orthonormal basis for
L2 (1 @ pia).

Proof. To show that ® is an orthonormal basis for L?(u; ® po) it suffices to
prove that if h € £?(u; ® pe) belongs to the orthogonal complement of ®

then h € A2(uy ® p2). Thus, suppose that h € £?(u; ® ps) and that
(h,e® f>L2(u1®u2) =0 foralle € E, f € F. Using Fubini’s theorem,

/X1 e(x1) ( . ha, ($2)f($2)du2(x2)) dyir (1) = 0.

Because this is true for all e € E and E is dense in L?(u), it follows that there
is some Ay € @/ with p;(Ay) = 0 such that fX2 he, fdus = 0 for o1 & Ay. Let
Ay =Uyep Ay, for which py(Ar) = 0. If 21 ¢ Ay then fx2 ha, fdus = 0 for all
f € F, and because F is dense in L%(u2) this implies that h,, = 0 us-almost
everywhere. Then

/ Ihlzd(m@uz):/ </ IhmIQdm) dp (1)
X1 xXo X, Xa
= [ ([ P ) st
X1\ A1 X5

=0,

which implies that h = 0 p1 ® po-almost everywhere. O



