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1 Introduction

This note consists of my working through details in the paper Resonances and
small divisors by Étienne Ghys.1 Aside from containing mathematics, Ghys
makes thoughtful remarks about the history of physics, unlike the typically
thoughtless statements people make about the Ptolemaic system. He insightfully
states “Kepler’s zeroth law”: “If the orbit of a planet is bounded, then it is
periodic.” I can certainly draw a three dimensional bounded curve that is not
closed, but that curve is not the orbit of a planet. It is also intellectually lazy to
scorn Kepler’s correspondence between orbits and the Platonic solids (“Kepler’s
fourth law”).

2 Almost periodic functions

Suppose that f : R → C is continuous. For ε > 0, we call T ∈ R an ε-period
of f if

|f(t+ T )− f(t)| < ε, t ∈ R.

T is a period of f if and only if it is an ε-period for all ε > 0.
We say that f is almost periodic if for every ε > 0 there is some Mε > 0

such that if I is an interval of length > Mε then there is an ε-period in I.
If f is periodic, then there is some M > 0 such that if I an interval of length

> M then at least one multiple T of M lies in I, and hence for any t ∈ R we
have f(t+T )−f(t) = f(t)−f(t) = 0. Thus, for every ε > 0, if I is an interval of
length > M then there is an ε-period in I. Therefore, with a periodic function,
the length of the intervals I need not depend on ε, while for an almost periodic
function they may.

1http://perso.ens-lyon.fr/ghys/articles/resonancesmall.pdf
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3 The Gottschalk-Hedlund theorem

The Gottschalk-Hedlund theorem is stated and proved in Katok and Has-
selblatt.2 The following case of the Gottschalk-Hedlund theorem is from Ghys.
We denote by

π1 : R/Z× R→ R/Z, π2 : R/Z× R→ R

the projection maps.

Theorem 1 (Gottschalk-Hedlund theorem). Suppose that u : R/Z → R is
continuous, that ∫ 1

0

u(x)dx = 0,

that x0 ∈ R/Z, and that α is irrational. If there is some C such that∣∣∣∣∣
n∑
k=0

u(x0 + kα)

∣∣∣∣∣ ≤ C, n ≥ 0, (1)

then there is a continuous function v : R/Z→ R such that

u(x) = v(x+ α)− v(x), x ∈ R/Z.

Proof. Say there is some C > 0 satisfying (1). Define g : R/Z× R → R/Z× R
by

g(x, y) = (x+ α, y + u(x)), x ∈ R/Z.

For n ≥ 0,

gn(x0, 0) =
(
x0 + nα,

n∑
k=0

u(x0 + kα)
)

The set {gn(x0, 0) : n ≥ 0}, namely the orbit of (x0, 0) under g, is con-
tained in R/Z × [−C,C]. Let K be the closure of this orbit. Because K is
a metrizable topological space, for (x, y) ∈ K there is a sequence a(n) such that
ga(n)(x0, 0)→ (x, y). As g is continuous we get ga(n)+1(x0, 0)→ g(x, y), which
implies that g(x, y) ∈ K. This shows that K is invariant under g. Let K be
the collection of nonempty compact sets contained in K and invariant under g.
Thus K ∈ K , so K is nonempty. We order K by A ≺ B when A ⊂ B. If
C ⊂ K is a chain, let C0 =

⋂
C∈C C. It follows from K being compact that C0

is nonempty, hence C0 ∈ K and is a lower bound for the chain C . Since every
chain in K has a lower bound in K , by Zorn’s lemma there exists a minimal
element M in K : for every A ∈ K we have M ≺ A, i.e. M ⊂ A. To say that M
is invariant under g means that g(M) ⊂M , and M being a nonempty compact
set contained in K implies that g(M) is a nonempty compact set contained in
K, hence by the minimality of M we obtain g(M) = M .

2Anatole Katok and Boris Hasselblat, Introduction to the Modern Theory of Dynamical
Systems, p. 102, Theorem 2.9.4.
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The set M is nonempty, so take (x, y) ∈ M . Because M is invariant under
g, {gn(x, y) : n ≥ 0} ⊂M . The set

π1{gn(x, y) : n ≥ 0} = {x+ nα : n ≥ 0}

is dense in R/Z, hence π1(M) is dense in R/Z. Moreover, M being compact
implies that π1(M) is closed, so π1(M) = R/Z.

For t ∈ R, define τt : R/Z×R→ R/Z×R by τt(x, y) = (x, y+ t). For any t,

τt ◦g(x, y) = τt(x+α, y+u(x)) = (x+α, y+u(x)+ t) = g(x, y+ t) = g ◦τt(x, y),

so τt ◦ g = g ◦ τt. Hence, if A ⊂ R/Z × R and g(A) ⊂ A, then g(τt(A)) =
τt ◦g(A) ⊂ τt(A), namely, if A is invariant under g then τt(A) is invariant under
g. Therefore τt(M) is invariant under g, and so M ∩ τt(M) is invariant under
g. This intersection is compact and is contained in K, so either M ∩ τt(M) = ∅
or by the minimality of M , M ∩ τt(M) = M . Suppose by contradiction that for
some nonzero t, M ∩ τt(M) = M . Then using g(M) = M we get τt(M) = M ,
and hence for any positive integer k we have τkt(M) = τkt (M) = M . But
because M is compact, π2(M) is contained in some compact interval I, and
then there is some positive integer k such that π2(τkt(M)) is not contained
in I, a contradiction. Therefore, when t 6= 0 we have M ∩ τt(M) = ∅. Let
x ∈ R/Z. If there were distinct y1, y2 ∈ R such that (x, y1), (x, y2) ∈ M , then
with t = y2−y1 6= 0 we get τt(x, y1) = (x, y2) ∈M , contradictingM∩τt(M) = ∅.
This shows that for each x ∈ R/Z there is a unique y ∈ R such that (x, y) ∈M ,
and we denote this y by v(x), thus defining a function v : R/Z → R. Then M
is the graph of v, and because M is compact, it follows that the function v is
continuous. Let (x, v(x)) ∈M . As M is invariant under g,

(x+ α, v(x) + u(x)) = g(x, v(x)) ∈M,

and as M is the graph of v we get v(x) + u(x) = v(x+α) and hence v(x+α)−
v(x) = u(x), completing the proof.

4 Cohomology

In this section I am following Tao.3 Suppose that a group (G, ·) acts on a set
X and that (A,+) is an abelian group. A cocycle is a function ρ : G×X → A
such that

ρ(gh, x) = ρ(h, x) + ρ(g, hx), g, h ∈ G, x ∈ X. (2)

If F : X → A is a function, we call the function ρ(g, x) = F (gx) − F (x) a
coboundary. This satisfies

ρ(gh, x)−ρ(g, hx) = F ((gh)x)−F (x)−F (g(hx))+F (hx) = F (hx)−F (x) = ρ(h, x),

3Terence Tao, Cohomology for dynamical systems, http://terrytao.wordpress.com/

2008/12/21/cohomology-for-dynamical-systems/
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showing that a coboundary is a cocycle. We now show how to fit the notions
of cocycle and coboundary into a general sitting of cohomology. We show that
they correspond respectively to a 1-cocycle and a 1-coboundary.

For n ≥ 0, an n-simplex is an element of Gn ×X, i.e., a thing of the form
(g1, . . . , gn, x), for g1, . . . , gn ∈ G and x ∈ X. We denote by Cn(G,X) the free
abelian group generated by the collection of all n-simplices, and an element of
Cn(G,X) is called an n-chain. In particular, the elements of C0(G,X) are
formal Z-linear combinations of elements of X. For n < 0, we define Cn(G,X)
to be the trivial group.

For n > 0, we define the boundary map ∂ : Cn(G,X)→ Cn−1(G,X) by

∂(g1, . . . , gn, x) = (g1, . . . , gn−1, gnx)

+

n−1∑
k=1

(−1)n−k(g1, . . . , gk−1, gkgk+1, gk+2, . . . , gn, x)

+(−1)n(g2, . . . , gn, x).

For n ≤ 0 we define ∂ : Cn(G,X)→ Cn−1(G,X) to be the trivial map. If n ≤ 1
then of course ∂2 = 0. If n ≥ 2, one writes out ∂2(g1, . . . , gn, x) and checks that
it is equal to 0, and hence that ∂2 = 0. Thus the sequence of abelian groups
Cn(G,X) and the boundary maps ∂ : Cn(G,X) → Cn−1(G,X) are a chain
complex.

We denote the kernel of ∂ : Cn(G,X)→ Cn−1(G,X) by Zn(G,X), and ele-
ments of Zn(G,X) are called n-cycles. We denote the image of ∂ : Cn+1(G,X)→
Cn(G,X) by Bn(G,X), and elements of Bn(G,X) are called n-boundaries.
Because ∂2 = 0, an n-boundary is an n-cycle. Zn(G,X) and Bn(G,X) are
abelian groups and Bn(G,X) is contained in Zn(G,X), and we write

Hn(G,X) = Zn(G,X)/Bn(G,X),

and call Hn(G,X) the nth homology group.
We define Cn(G,X,A) = Hom(Cn(G,X), A), which is an abelian group.

Elements of Cn(G,X,A) are called n-cochains. That is, an n-cochain is a
group homomorphism Cn(G,X)→ A. Because Cn(G,X) is a free abelian group
generated by the collection of all n-simplices, an n-cochain is determined by the
values it assigns to n-simplices. We thus identity n-cochains with functions
Gn ×X → A.

We define the coboundary map δ : Cn−1(G,X,A)→ Cn(G,X,A) by

(δF )(c) = F (∂c), F ∈ Cn−1(G,X,A), c ∈ Cn(G,X).

Explicitly, for F ∈ Cn−1(G,X,A) and for an n-simplex (g1, . . . , gn, x),

(δF )(g1, . . . , gn, x) = F (∂(g1, . . . , gn, x))

= F (g1, . . . , gn−1, gnx)

+

n−1∑
k=1

(−1)n−kF (g1, . . . , gk−1, gkgk+1, gk+2, . . . , gn, x)

+(−1)nF (g2, . . . , gn, x).
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For F ∈ Cn−2(G,X,A), write G = δF and take and c ∈ Cn(G,X). Then,

(δ2F )(c) = (δG)(c) = G(∂c) = (δF )(∂c) = F (∂2c) = F (0) = 0,

showing that δ2 = 0. Thus the sequence of abelian groups Cn(G,X,A) and the
coboundary maps δ : Cn−1(G,X,A)→ Cn(G,X,A) are a cochain complex.

We denote the kernel of δ : Cn(G,X,A) → Cn+1(G,X,A) by Zn(G,X,A),
and elements of Zn(G,X,A) are called n-cocycles. We denote the image of
δ : Cn−1(G,X,A)→ Cn(G,X,A) by Bn(G,X,A), and elements of Bn(G,X,A)
are called n-coboundaries. Because δ2 = 0, an n-coboundary is an n-cocycle.
Zn(G,X,A) and Bn(G,X,A) are abelian groups and Bn(G,X,A) is contained
in Zn(G,X,A), and we write

Hn(G,X,A) = Zn(G,X,A)/Bn(G,X,A),

which we call the nth cohomology group.
Take n = 1. We identify C1(G,X,A), the group of 1-chains, with functions

G ×X → A. For ρ ∈ C1(G,X,A), to say that ρ is a 1-cocycle is equivalent to
saying that for any (g, h, x) ∈ G2×X, (δρ)(g, h, x) = 0, i.e. ρ(g, hx)−ρ(gh, x)+
ρ(h, x) = 0, i.e.

ρ(gh, x) = ρ(h, x) + ρ(g, hx).

To say that ρ is a 1-coboundary is equivalent to saying that there is a 0-chain
F (a function X → A) such that ρ = δF , i.e., for any (g, x) ∈ G×X,

ρ(g, x) = (δF )(g, x) = F (gx)− F (x).

5 Small divisors

Suppose that u : R/Z→ R be C∞ and satisfies∫ 1

0

u(x)dx = 0.

For each n ∈ Z, let

û(n) =

∫ 1

0

e−2πinxu(x)dx.

We have û(0) = 0. For any x ∈ R/Z,

u(x) =
∑
n∈Z

û(n)e2πinx,

and
∑
n∈Z |û(n)| <∞; for these statements to be true it suffices merely that u

be Cβ for some β > 1
2 .

Let α be irrational. We shall find conditions under which there exists a
continuous function v : R/Z→ R such that

u(x) = v(x+ α)− v(x), x ∈ R/Z. (3)
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Supposing that for each x, v(x) is equal to its Fourier series evaluated at x and
that its Fourier series converges absolutely,

v(x) =
∑
n∈Z

v̂(n)e2πinx,

then for each x ∈ R/Z,

v(x+ α)− v(x) =
∑
n∈Z

v̂(n)
(
e2πin(x+α) − e2πinx

)
=
∑
n∈Z

v̂(n)(e2πinα − 1)e2πinx.

Then using u(x) = v(x+ α)− v(x) we obtain

û(n) = v̂(n)(e2πinα − 1), n ∈ Z,

or,

v̂(n) =
û(n)

e2πinα − 1
, n 6= 0; (4)

because α is irrational, the denominator of the right-hand side is indeed nonzero
for n 6= 0. The value of v̂(0) is not determined so far. We shall find conditions
under which the continuous function v we desire can be defined using (4).

A real number β is said to be Diophantine if there is some r ≥ 2 and some
C > 0 such that for all q > 0 and p ∈ Z,∣∣∣∣β − p

q

∣∣∣∣ > Cq−r. (5)

It is immediate that a Diophantine number is irrational. Suppose that α satisfies
(5). Let n 6= 0 and let pn be the integer nearest nα. Then

|e2πinα − 1| = |e2πi(nα−pn) − 1|

≥ 2

π
|2π(nα− pn)|

= 4|nα− pn|

= 4|n|
∣∣∣α− pn

n

∣∣∣
> 4|n| · C|n|−r

= 4C|n|−r+1.

Because u ∈ C∞, it is straightforward to prove that for each nonnegative integer
k there is some Ck > 0 such that

|û(n)| ≤ Ck|n|−k, n 6= 0.

Therefore, for each nonnegative integer k, using (4) we have

|v̂(n)| = |û(n)|
|e2πinα − 1|

< Ck|n|−k ·
1

4C|n|−r+1
=
Ck
4C
|n|r−k−1, n 6= 0. (6)
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One can prove that if hn are complex numbers satisfying (6) then the function
defined by

h(x) =
∑
n∈Z

hne
2πinx, x ∈ R/Z

is C∞. Therefore, we have established that if α is Diophantine then there is
some v : R/Z→ R that is C∞ and that satisfies (3).

On the other hand, for α =
∑∞
n=1 10−n!, Ghys constructs a C∞ function

u : R/Z → R such that there is no continuous function v : R/Z → R satisfying
u(x) = v(x+ α)− v(x) for all x ∈ R/Z.
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