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1 Critical points

Let U be a nonempty open subset of R" and let ¢ : U — R be smooth. Then
¢ U — ZR™"R) = (R")*. For each z € U, grad ¢(x) is the unique element
of R™ satisfyingﬂ

(grad ¢(z),y) = ¢'(z)(y),  yeR",

and grad ¢ : U — R™ is itself smooth. Hess ¢ : U — Z(R™; R"™) is the derivative
of grad ¢. One checks that

¢" (x)(u)(v) = (Hess ¢(x)(u),v), xecU, wu,veR,

and (Hess ¢(z))* = Hess ¢(x).

We call p € U a critical point of ¢ when grad ¢(p) = 0, and we denote the
set of critical points of ¢ by Cy. For p € Cy and A € R let v(p, A) denote the
dimension of the kernel of Hess ¢(p) — A, and we then define the Morse index
of p to be

mg(p) = > v(p,\).
A<0
In other words, mg(p) is the number of negative eigenvalues of Hess ¢(p) counted
according to geometric multiplicity. We say that p € Cy is nondegenerate when
Hess ¢(p) € Z(R™;R™) is invertible.

For A € Z(R™;R") self-adjoint and for A € R, let v(A\) be the dimension of
the kernel of A=\, Let vy = >\ v(A),let v =37, v(A), and let vy = v(0).
Because A is self-adjoint, v, + v_ + vy = n. We define the signature of A as
sgn (A) = vy —v_. In other words, sgn (A) is the number of positive eigenvalues
of A counted according to geometric multiplicity minus the number of negative
eigenvalues of A counted according to geometric multiplicityﬂ

Thttp://individual.utoronto.ca/jordanbell/notes/gradienthilbert . pdf
2cf. Sylvester’s law of inertia, http://individual.utoronto.ca/jordanbell/notes/
principalaxis.pdf
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We can connect the notions of Morse index and signature. For p € Cl,
write A = Hess ¢(p). For p to be a nondegenerate critical point means that A
is invertible and because R™ is finite-dimensional this is equivalent to vy = 0.
Then v = n —v_ which yields sgn (A) =n — 2v_ = n — 2m4(p).

The Morse lemmaﬁ states that if 0 is a nondegenerate critical point of ¢
then there is an open subset V of U with 0 € V and a C°°-diffeomorphism
®:V =V, ®(0) =0, such that

H(x) = 6(0) + 3 (Fessp(0) (®(x)), ()}, w € V.

2 Stationary phase

Let U be a nonempty connected open subset of R™, and let a,¢ : U — R
be smooth functions such that a has compact support. Suppose that each
p € Cyp Nsuppa is nondegenerateﬁ The stationary phase approximation
states that
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Let A € Z(R™;R") be self-adjoint and invertible and define
1
o(x) = 5 (Az,x), xzeU.

We calculate grad ¢(x) = Az, so Cy = {0}. The Hessian of ¢ is Hess ¢(z) = A,
and because A is invertible, 0 is indeed a nondegenerate critical point of ¢. Thus
we have the following.

Theorem 1. For a nonempty connected open subset of R™ and for smooth
functions a,¢ : U — R such that a has compact support and such that each
p € Cy is nondegenerate,

1 NI n
/Ua(l‘)e§<Am,x>dx = (t) Weglt(Apm)a(p)_'_O(t_i_l)

as t — oo.

3Serge Lang, Differential and Riemannian Manifolds, p. 182, chapter VII, Theorem 5.1.

4In particular, ¢ is called a Morse function if it has no degenerate critical points, and in
this case of course each p € Cy Nsuppa is nondegenerate.

5Liviu Nicolaescu, An Invitation to Morse Theory, second ed., p. 183, Proposition 3.88.



3 The Fourier transform

For A € Z(R™;R™) self-adjoint, the spectral theorem tells us that are A\,..., A\, €
R and an orthonormal basis {v1,...,v,} for R” such that Av; = Ajv;.

We call A € Z(R"™;R") positive when it is self-adjoint and satisfies (Ax, z) >
0 for all x € R™. In this case, the eigenvalues of A are nonnegative, thus the
signature of A is 0(A) = n. Suppose furthermore that A is invertible, and let
P =(vy,...,v,) and A = diag(A1,...,A,). Then

PTAP = A, AY/2 = diag(/\}m, o )\711/2)’ AL/2 — ppAY/2pT.

For £ € R™ and t > 0, using the change of variables formula with the fact that
| det P| =1 and then using Fubini’s theorem,

/ exp (;t (Az,x) — i (P{,x)) dx
:/ exp (—;t <A1/2PTx,A1/2PTx> — i (P¢, x)) dx
1
:/ exp (—2t<A1/2PTPy,A1/2PTPy> —z’(P§,Py>) | det P|dy
1 2
=/ exp (—tHA”QyH —i<£7y>> dy
o 2
j=1
UsingEI
2
/ emaw’ tbeteg, \/?exp (b + c) , Rea > 0,b,c € C,
R a 4a
1, 1 27\ &2
/Rexp (—2t)\jyj — zijj> dy; = F (t) exp _Qt)\j ,

n
1 .
/ exp <—2t/\jy]2- - Zﬁjl/j) dy;.
=1 /R
and using det A = [T7_, A\; we have

gives

Shttp://individual.utoronto.ca/jordanbell/notes/bochnertheorem.pdf
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and because )
_ Ny _ NS
A=Y T (W=7

j=1""

J=1

<

this becomes
/ exp <—;t (Az, ) — i <P§,x>> dx
_1yp (27 " Lo
() (- 00

n/2
() (- a7 pe).

and so, as P is invertible we get the following.

Theorem 2. When A € Z(R™;R") is positive and invertible, for t > 0 and
£ € R™ we have

/n exp <;t (Az,z) —i <§,x>) da
—(det A)71/2 (27t 1)"% exp <—2lt <A‘1§,§>) :

4 Gaussian integrals

Let A € Z(R™;R"™) be positive and invertible and let b € R™. As above,

/n exp (; (Az,z) + <Pb,:17>> dr = /n exp <; HA1/2H2 + (b, y>) dy

- 1
= H /]Rexp <—2>\jy]2- + bjyj) dyj
j=1
o (2m)1/2 b2
=11 ( 1)/2 exp <2)\J
=1 A J

RN
_ —1/2(0,yn/2 1%
(det A) (2m)™ % exp 5 E ;
Jj=1
1
= (det A)~Y2(2m)"/2 exp <2 (A7'Pb, Pb>> )

which gives the followingm

7cf.  Gaussian measures on R™: http://individual.utoronto.ca/jordanbell/notes/
gaussian.pdf
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Theorem 3. If A € L (R"™;R") is positive and invertible, then for b € R™,
1 ~1/2(0_\n/2 Ly
exp { —3 (Az,z) + (b,x) | do = (det A) (2m)"“ exp 3 (A7'b,b) ).

5 Laplace’s method

Let D be the open ball in R™ with center 0 and radius 1 and let S: D — R be
smooth, attain its minimum value only at 0, and satisfy det Hess S(x) > 0 for
all z € D. Let g : D — R be smooth and for ¢ > 0 let

J(t)z/De_tS(z)g(x)dx.

Laplace’s method?| tells us
J(t) = (2nt= )2 (det Hess §(0)) /27O g(0)(1 + Ot 1))

as t — oo.
Let A € Z(R™;R™) be positive and invertible. Define S : D — R by

S(x) = % (Az, z) .

Then as above PTAP = A, with which S(z) = 1 (PAPTz,z) = 1 ||[AY2PT|”.
We get the following from according Laplace’s method.

Theorem 4. Let A € Z(R™;R"™) be positive and invertible and let g : D — R
be smooth. Then

J(t) = (2mt~ )" 2 (det A)72g(0)(1+ O(t71)),

ast — oo.

8Peter D. Miller, Applied Asymptotic Analysis, p. 92, Exercise 3.16 and R. Wong, Asymp-
totic Approzimations of Integrals, p. 495, Theorem 3.
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