Subdifferentials of convex functions

Jordan Bell
jordan.bell@gmail.com
Department of Mathematics, University of Toronto
April 21, 2014

Whenever we speak about a vector space in this note we mean a vector space over \(\mathbb{R} \). If \(X \) is a topological vector space then we denote by \(X^* \) the set of all continuous linear maps \(X \to \mathbb{R} \). \(X^* \) is called the dual space of \(X \), and is itself a vector space.\(^1\)

1 Definition of subdifferential

If \(X \) is a topological vector space, \(f : X \to [\infty, \infty] \) is a function, \(x \in X \), and \(\lambda \in X^* \), then we say that \(\lambda \) is a subgradient of \(f \) at \(x \) if \(f(y) \geq f(x) + \lambda(y - x), \quad y \in X. \)

The subdifferential of \(f \) at \(x \) is the set of all subgradients of \(f \) at \(x \) and is denoted by \(\partial f(x) \). Thus \(\partial f \) is a function from \(X \) to the power set of \(X^* \), i.e. \(\partial f : X \to 2^{X^*} \). If \(\partial f(x) \neq \emptyset \), we say that \(f \) is subdifferentiable at \(x \).

It is immediate that if there is some \(y \) such that \(f(y) = -\infty \), then

\[
\partial f(x) = \begin{cases} X^* & f(x) = -\infty \\ \emptyset & f(x) > -\infty \end{cases}, \quad x \in X.
\]

Thus, little is lost if we prove statements about subdifferentials of functions that do not take the value \(-\infty\).

Theorem 1. If \(X \) is a topological vector space, \(f : X \to [-\infty, \infty] \) is a function and \(x \in X \), then \(\partial f(x) \) is a convex subset of \(X^* \).

\(^1\)In this note, we are following the presentation of some results in Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, third ed., chapter 7. Three other sources for material on subdifferentials are: Jean-Paul Penot, Calculus Without Derivatives, chapter 3; Viorel Barbu and Teodor Precupanu, Convexity and Optimization in Banach Spaces, fourth ed., §2.2, pp. 82-125; and Jean-Pierre Aubin, Optima and Equilibria: An Introduction to Nonlinear Analysis, second ed., chapter 4, pp. 57-73.

\(^2\)\(\infty + \infty = \infty, -\infty - \infty = -\infty, \) and \(\infty - \infty \) is nonsense; if \(a \in \mathbb{R} \), then \(a - \infty = -\infty \) and \(a + \infty = \infty \).
Proof. If \(\lambda_1, \lambda_2 \in \partial f(x) \) and \(0 \leq t \leq 1 \), then of course \((1-t)\lambda_1 + t \lambda_2 \in X^*\). For any \(y \in X \) we have

\[
f(y) = (1-t)f(y) + tf(y) \\
\geq (1-t)f(x) + (1-t)\lambda_1(y-x) + tf(x) + t\lambda_2(y-x) \\
= f(x) + ((1-t)\lambda_1 + t\lambda_2)(y-x),
\]

showing that \((1-t)\lambda_1 + t \lambda_2 \in \partial f(x)\) and thus that \(\partial f(x)\) is convex.

To say that \(0 \in \partial f(x)\) is equivalent to saying that \(f(y) \geq f(x)\) for all \(y \in X\) and so \(f(x) = \inf_{y \in X} f(y)\). This can be said in the following way.

Lemma 2. If \(X\) is a topological vector space and \(f : X \to [-\infty, \infty]\) is a function, then \(x\) is a minimizer of \(f\) if and only if \(0 \in \partial f(x)\).

2 Convex functions

If \(X\) is a set and \(f : X \to [-\infty, \infty]\) is a function, then the **epigraph of** \(f\) is the set

\[
\text{epi} f = \{(x, \alpha) \in X \times \mathbb{R} : \alpha \geq f(x)\},
\]

and the **effective domain of** \(f\) is the set

\[
\text{dom} f = \{x \in X : f(x) < \infty\}.
\]

To say that \(x \in \text{dom} f\) is equivalent to saying that there is some \(\alpha \in \mathbb{R}\) such that \((x, \alpha) \in \text{epi} f\). We say that \(f\) is **finite** if \(-\infty < f(x) < \infty\) for all \(x \in X\).

If \(X\) is a vector space and \(f : X \to [-\infty, \infty]\) is a function, then we say that \(f\) is **convex** if \(\text{epi} f\) is a convex subset of the vector space \(X \times \mathbb{R}\).

If \(X\) is a set and \(f : X \to [-\infty, \infty]\) is a function, we say that \(f\) is **proper** if it does not take only the value \(\infty\) and never takes the value \(-\infty\). It is unusual to talk merely about proper functions rather than proper convex functions; we do so to make clear how convexity is used in the results we prove.

3 Weak-* topology

Let \(X\) be a topological vector space and for \(x \in X\) define \(e_x : X^* \to \mathbb{R}\) by \(e_x \lambda = \lambda x\). The **weak-* topology** on \(X^*\) is the initial topology for the set of functions \(\{e_x : x \in X\}\), that is, the coarsest topology on \(X^*\) such that for each \(x \in X\), the function \(e_x : X^* \to \mathbb{R}\) is continuous.

Lemma 3. If \(X\) is a topological vector space, \(\tau_1\) is the weak-* topology on \(X^*\), and \(\tau_2\) is the subspace topology on \(X^*\) inherited from \(\mathbb{R}^X\) with the product topology, then \(\tau_1 = \tau_2\).
Proof. Let \(\lambda_i \in X^* \) converge in \(\tau_1 \) to \(\lambda \in X^* \). For each \(x \in X \), the function \(e_x : X^* \to \mathbb{R} \) is \(\tau_1 \)-continuous, so \(e_x \lambda_i \to e_x \lambda \), i.e. \(\lambda_i x \to \lambda x \). But for \(f_i \in \mathbb{R}^X \) to converge to \(f \in \mathbb{R}^X \) means that for each \(x \), we have \(f_i(x) \to f(x) \). Thus \(\lambda_i \) converges to \(\lambda \) in \(\tau_2 \). This shows that \(\tau_2 \subseteq \tau_1 \).

Let \(x \in X \), and let \(\lambda_i \in X^* \) converge in \(\tau_2 \) to \(\lambda \in X^* \). We then have \(e_x \lambda_i = \lambda_i x \to \lambda x = e_x \lambda \); since \(\lambda_i \) was an arbitrary net that converges in \(\tau_2 \), this shows that \(e_x \) is \(\tau_2 \)-continuous. Thus, we have shown that for each \(x \in X \), the function \(e_x \) is \(\tau_2 \)-continuous. But \(\tau_1 \) is the coarsest topology for which \(e_x \) is continuous for all \(x \in X \), so we obtain \(\tau_1 \subseteq \tau_2 \). \(\square \)

In other words, the weak-* topology on \(X^* \) is the topology of pointwise convergence. We now prove that at each point in the effective domain of a proper function on a topological vector space, the subdifferential is a weak-* closed subset of the dual space.\(^3\)

Theorem 4. If \(X \) is a topological vector space, \(f : X \to (-\infty, \infty] \) is a proper function, and \(x \in \text{dom } f \), then \(\partial f(x) \) is a weak-* closed subset of \(X^* \).

Proof. If \(\lambda \in \partial f(x) \), then for all \(y \in X \) we have

\[
f(y) \geq f(x) + \lambda(y - x),
\]

so, for any \(v \in X \), using \(y = v + x \),

\[
f(v + x) \geq f(x) + \lambda v,
\]

or,

\[
\lambda v \leq f(x + v) - f(x);
\]

this makes sense because \(f(x) \) is finite. On the other hand, let \(\lambda \in X^* \). If \(\lambda v \leq f(x + v) - f(x) \) for all \(v \in X \), then \(\lambda(v - x) \leq f(v) - f(x) \), i.e. \(f(v) \geq f(x) + \lambda(v - x) \), and so \(\lambda \in \partial f(x) \). Therefore

\[
\partial f(x) = \bigcap_{v \in X} \{ \lambda \in X^* : \lambda v \leq f(x + v) - f(x) \}. \tag{1}
\]

Defining \(e_v : X^* \to \mathbb{R} \) for \(v \in X \) by \(e_v \lambda = \lambda v \), for each \(v \in X \) we have

\[
e_v^{-1}(-\infty, f(x + v) - f(x)] = \{ \lambda \in X^* : \lambda v \leq f(x + v) - f(x) \}.
\]

Because \(e_v \) is continuous, this inverse image is a closed subset of \(X^* \). Therefore, each of the sets in the intersection (1) is a closed subset of \(X^* \), and so \(\partial f(x) \) is a closed subset of \(X^* \). \(\square \)

4 Support points

If X is a set, A is a subset of X, and $f : X \to [-\infty, \infty]$ is a function, we say that $x \in X$ is a minimizer of f over A if

$$f(x) = \inf_{y \in A} f(y),$$

and that x is a maximizer of f over A if

$$f(x) = \sup_{y \in A} f(y).$$

If A is a nonempty subset of a topological vector space X and $x \in A$, we say that x is a support point of A if there is some nonzero $\lambda \in X^*$ for which x is a minimizer or a maximizer of λ over A. Moreover, x is a minimizer of λ over A if and only if x is a maximizer of $-\lambda$ over A. Thus, if we know that x is a support point of a set A, then we have at our disposal both that x is a minimizer of some nonzero element of X^* over A and that x is a maximizer of some nonzero element of X^* over A.

If x is a support point of A and A is not contained in the hyperplane $\{y \in X : \lambda y = \lambda x\}$, we say that A is properly supported at x. To say that A is not contained in the set $\{y \in X : \lambda y = \lambda x\}$ is equivalent to saying that there is some $y \in A$ such that $\lambda y \neq \lambda x$.

In the following lemma, we show that the support points of a set A are contained in the boundary ∂A of the set.

Lemma 5. If X is a topological vector space, A is a subset of X, and x is a support point of A, then $x \in \partial A$.

Proof. Because x is a support point of A there is some nonzero $\lambda \in X^*$ for which x is a maximizer of λ over A:

$$\lambda x = \sup_{y \in A} \lambda y.$$

As λ is nonzero there is some $y \in X$ with $\lambda y > \lambda x$. For any $t > 0$,

$$(1 - t)\lambda x + t\lambda y = \lambda((1 - t)x + ty) = (1 - t)\lambda x + t\lambda y > (1 - t)\lambda x + t\lambda x = \lambda x,$$

hence if $t > 0$ then $(1 - t)\lambda x + ty \notin A$. But $(1 - t)x + ty \to x$ as $t \to 0$ and $x \in A$, showing that $x \in \partial A$.

The following lemma gives conditions under which a boundary point of a set is a proper support point of the set.

Lemma 6. If X is a topological vector space, C is a convex subset of X that has nonempty interior, and $x \in C \cap \partial C$, then C is properly supported at x.

Proof. The Hahn-Banach separation theorem\(^5\) tells us that if \(A\) and \(B\) are disjoint nonempty convex subsets of \(X\) and \(A\) is open then there is some \(\lambda \in X^*\) and some \(t \in \mathbb{R}\) such that

\[
\lambda a < t \leq \lambda b, \quad a \in A, b \in B.
\]

Check that the interior of a convex set in a topological vector space is convex, and hence that we can apply the Hahn-Banach separation theorem to \(\{x\}\) and \(C^o\): as \(x\) belongs to the boundary of \(C\) it does not belong to the interior of \(C\), so \(\{x\}\) and \(C^o\) are disjoint nonempty convex sets. Thus, there is some \(\lambda \in X^*\) and some \(t \in \mathbb{R}\) such that \(\lambda y < t \leq \lambda x\) for all \(y \in C^o\), from which it follows that \(\lambda x \leq \lambda y\) for all \(y \in C\), and \(\lambda \neq 0\) because of the strict inequality for the interior. As \(x \in C\), this means that \(x\) is a maximizer of \(\lambda\) over \(C\), and as \(\lambda \neq 0\) this means that \(x\) is a support point of \(C\). But \(C^o\) is nonempty and if \(y \in C^o\) then \(\lambda x < \lambda y\), hence \(x\) is a proper support point of \(C\). \(\square\)

5 Subdifferentials of convex functions

If \(f : X \to (-\infty, \infty]\) is a proper function then there is some \(y \in X\) for which \(f(y) < \infty\), and for \(f\) to have a subgradient \(\lambda\) at \(x\) demands that \(f(y) \geq f(x) + \lambda(y - x)\), and hence that \(f(x) < \infty\). Therefore, if \(f\) is a proper function then the set of \(x\) at which \(f\) is subdifferentiable is a subset of \(\text{dom}\, f\).

We now prove conditions under which a function is subdifferentiable at a point, i.e., under which the subdifferential at that point is nonempty.\(^6\)

Theorem 7. If \(X\) is a topological vector space, \(f : X \to (-\infty, \infty]\) is a proper convex function, \(x\) is an interior point of \(\text{dom}\, f\), and \(f\) is continuous at \(x\), then \(f\) has a subgradient at \(x\).

Proof. Because \(f\) is convex, the set \(\text{dom}\, f\) is convex, and the interior of a convex set in a topological vector space is convex so \((\text{dom}\, f)^o\) is convex. \(f\) is proper so it does not take the value \(-\infty\), and on \(\text{dom}\, f\) it does not take the value \(\infty\), hence \(f\) is finite on \(\text{dom}\, f\). But for a finite convex function on an open convex set in a topological vector space, being continuous at a point is equivalent to being continuous on the set, and is also equivalent to being bounded above on an open neighborhood of the point.\(^7\) Therefore, \(f\) is continuous on \((\text{dom}\, f)^o\) and is bounded above on some open neighborhood \(V\) of \(x\) contained in \((\text{dom}\, f)^o\), say \(f(y) \leq M\) for all \(y \in V\). \(V \times (M, \infty]\) is an open subset of \(X \times \mathbb{R}\), and is contained in \(\text{epi}\, f\). This shows that \(\text{epi}\, f\) has nonempty interior. Since \(f(x) < \infty\), if \(\epsilon > 0\) then \((x, f(x) - \epsilon) \notin \text{epi}\, f\), and since \(f(x) > -\infty\) we have \((x, f(x)) \in \text{epi}\, f\), and therefore \((x, f(x)) \in \text{epi}\, f \cap \partial(\text{epi}\, f)\). We can now apply Lemma 6: \(\text{epi}\, f\) is a convex subset of the topological vector space \(X \times \mathbb{R}\) with nonempty interior and

\(^5\)Gert K. Pedersen, *Analysis Now*, revised printing, p. 65, Theorem 2.4.7.

Lemma 6 shows that there is some \(\Lambda \in (X \times \mathbb{R})^\ast \) such that

\[
\Lambda(x, f(x)) = \sup_{(y, \alpha) \in \text{epi } f} \Lambda(y, \alpha),
\]

and there is some \((y, \alpha) \in \text{epi } f\) for which \(\Lambda(x, f(x)) > \Lambda(y, \alpha)\). Now, there is some \(\lambda \in X^\ast\) and some \(\beta \in \mathbb{R}^\ast = \mathbb{R}\) such that \(\Lambda(y, \alpha) = \lambda y + \beta \alpha\) for all \((y, \alpha) \in X \times \mathbb{R}\). Thus, there is some nonzero \(\lambda \in X^\ast\) and some \(\beta \in \mathbb{R}\) such that

\[
\lambda x + \beta f(x) = \sup_{(y, \alpha) \in \text{epi } f} \lambda y + \beta \alpha.
\]

If \(\beta > 0\) then the right-hand side would be \(\infty\) while the left-hand side is constant and \(< \infty\), so \(\beta \leq 0\). Suppose by contradiction that \(\beta = 0\). Then \(\lambda x \geq \lambda y\) for all \(y \in \text{dom } f\), and as \(\lambda \neq 0\) this means that \(x\) is a support point of \(\text{dom } f\), and then by Lemma 5 we have that \(x \in \partial(\text{dom } f)\), contradicting \(x \in (\text{dom } f)^\circ\). Hence \(\beta < 0\), so

\[
\lambda x + \beta f(x) \geq \lambda y + \beta f(y), \quad y \in \text{dom } f,
\]

i.e.,

\[
f(y) \geq f(x) - \frac{\lambda}{\beta}(y - x), \quad y \in \text{dom } f.
\]

Furthermore, if \(y \notin \text{dom } f\) then \(f(y) = \infty\), for which the above inequality is true. Therefore, \(f(y) \geq f(x) - \frac{\lambda}{\beta}(y - x)\) for all \(y \in X\), showing that \(-\frac{\lambda}{\beta}\) is a subgradient of \(f\) at \(x\). \(\square\)

6 Directional derivatives

Lemma 8. If \(X\) is a vector space, \(f : X \to (-\infty, \infty]\) is a proper convex function, \(x \in \text{dom } f\), \(v \in X\), and \(0 < h' < h\), then

\[
\frac{f(x + h'v) - f(x)}{h'} \leq \frac{f(x + hv) - f(x)}{h}.
\]

Proof. We have

\[
x + h'v = \frac{h'}{h}(x + hv) + \frac{h - h'}{h}x,
\]

and because \(f\) is convex this gives

\[
f(x + h'v) \leq \frac{h'}{h}f(x + hv) + \frac{h - h'}{h}f(x),
\]

i.e.

\[
f(x + h'v) - f(x) \leq \frac{h'}{h}(f(x + hv) - f(x)).
\]
Dividing by \(h' \),
\[
\frac{f(x + h'v) - f(x)}{h'} \leq \frac{f(x + h v) - f(x)}{h}.
\]
\[
\square
\]

If \(f : X \to (-\infty, \infty] \) is a proper convex function, \(x \in \text{dom} \, f \), and \(v \in X \), then the above lemma shows that
\[
\begin{align*}
\lim_{h \to 0^+} f(x + hv) - f(x)
\end{align*}
\]
is an increasing function \((0, \infty) \to (-\infty, \infty]\), and therefore that
\[
\lim_{h \to 0^+} \frac{f(x + hv) - f(x)}{h}
\]
exists; it belongs to \([0, \infty]\), and if there is at least one \(h > 0 \) for which \(f(x + hv) < \infty \) then the limit will be \(< \infty \). We define the one-sided directional derivative of \(f \) at \(x \) to be the function \(d^+ f(x) : X \to [-\infty, \infty] \) defined by\(^8\)
\[
d^+ f(x)v = \lim_{h \to 0^+} \frac{f(x + hv) - f(x)}{h}, \quad v \in X.
\]

Lemma 9. If \(X \) is a topological vector space, \(f : X \to (-\infty, \infty] \) is a proper convex function, \(x \in (\text{dom} \, f)^\circ \), \(f \) is continuous at \(x \), and \(v \in X \), then \(-\infty < d^+ f(x) v < \infty \).

Proof. Because \(x \in (\text{dom} \, f)^\circ \), there is some \(h > 0 \) for which \(x + hv \in \text{dom} \, f \) and hence for which \(f(x + hv) < \infty \). This implies that \(d^+ f(x) v < \infty \).

Let \(h > 0 \). By Theorem 7, the subdifferential \(\partial f(x) \) is nonempty, i.e. there is some \(\lambda \in X^* \) for which \(f(y) \geq f(x) + \lambda(y - x) \) for all \(y \in X \). Thus, for all \(v \in X \) we have, with \(y = x + hv \),
\[
f(x + hv) \geq f(x) + \lambda hv,
\]
i.e.,
\[
\lambda v \leq \frac{f(x + hv) - f(x)}{h}.
\]
Since this difference quotient is bounded below by \(\lambda v \), its limit as \(h \to 0^+ \) is \(> -\infty \), and therefore \(d^+ f(x) v > -\infty \). \(\square \)

\(^8\)We are following the notation of Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitchhiker’s Guide*, third ed., p. 266.