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1 Introduction

If X is a topological vector space, we denote by X™* the set of continuous linear
functionals on X. With the weak-* topology, X* is a locally convex space,
whether or not X is a locally convex space. (But in this note, we only talk
about locally convex spaces.)

The purpose of this note is to collect the material given in Walter Rudin,
Functional Analysis, second ed., chapters 6 and 7, involved in stating and prov-
ing Sobolev’s lemma.

2 Test functions

Suppose that €2 is an open subset of R”. We denote by Z(Q2) the set of all
¢ € C°°(Q) such that supp ¢ is a compact subset of . Elements of 2() are
called test functions. For N =0,1,... and ¢ € 2(R), write

16l = sup{[(D*¢)(z)| : & € Q, |a] < N},

where
Da:D(lxl...Dg", |a‘:a1++an

For each compact subset K of €, we define
Ik ={¢ € 2(Q) : supp¢ C K},

and define 7 to be the locally convex topology on Zk determined by the family
of seminorms {||-||; : N > 0}. One proves that P with the topology 7 is a
Fréchet space. As sets,

2(Q) =] 2«
K



Define § to be the collection of all convex balanced subsets W of 2(Q) such
that for every compact subset K of 2 we have W N Pk € 7k ; to say that W is
balanced means that if ¢ is a complex number with |¢| < 1 then ¢cW C W. One
proves that {¢ + W : ¢ € 2(Q),W € B} is a basis for a topology 7 on 2(2),
that [ is a local basis at 0 for this topology, and that with the topology 7, Z()
is a locally convex spaceEI For each compact subset K of €2, one proves that the
topology 7T is equal to the subspace topology on Zk inherited from @(Q)ﬂ

We write 2/(Q2) = (2(2))*, and elements of 2’(2) are called distributions.
With the weak-* topology, 2'(Q) is a locally convex space.

It is a fact that a linear functional A on 2(2) is continuous if and only if for

every compact subset K of {2 there is a nonnegative integer N and a constant

C such that |[Ag| < C'[|¢| y for all ¢ € @KH
For A € 2'(Q) and « a multi-index, we define

(D*A)(¢) = (-1)*IA(DY¢), ¢ € 2().

Let K be a compact subset of 2. As A is continuous, there is a nonnegative
integer N and a constant C such that |[A¢| < C ||¢||y for all ¢ € Zg. Then

[(D*A)(8)| = |AD*9)| < CIDYlly < CllPllnpjar>

which shows that DA € 2'(Q).
The Leibniz formula is the statement that for all f, g € C°(R"),

(i) = X ()0 N0
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where (2‘) are multinomial coefficients.
For A € 2'(Q) and f € C*(R), we define

(fA)(9) =A(fo), ¢ € 2(Q);
this makes sense because f¢ € 2(Q2) when ¢ € Z(Q). It is apparent that fA is

linear, and in the following lemma we prove that fA is continuous

Lemma 1. If A € 2'(Q) and f € C>*(Q), then fA € Z'(Q).

Proof. Suppose that K is a compact subset of ). Because A is continuous, there
is some nonnegative integer IV and some constant C' such that

Aol < Clidlly, ¢ €k
For |a| < N, by the Leibniz formula, for all ¢ € Pk,

De(10) = 3 ()0 n0)

Ba 8

IWalter Rudin, Functional Analysis, second ed., p. 152, Theorem 6.4; cf. Helmut H.
Schaefer, Topological Vector Spaces, p. 57.

2Walter Rudin, Functional Analysis, second ed., p. 153, Theorem 6.5.

3Walter Rudin, Functional Analysis, second ed., p. 156, Theorem 6.8.

4Walter Rudin, Functional Analysis, second ed., p. 159, §6.15.




Because f € C*(Q), there is some C, such that |(D* ?f)(z)| < C, for 8 < «
and for x € K. Using ¢(z) = 0 for € K, the above statement of the Leibniz
formula, and the inequality just obtained, it follows that there is some C/, such
that [(D*(f¢))(z)| < CL ||¢]l 5 for all z € Q. This gives

Ifélly = sup sup |(D%(f¢))(x)| < sup Colldly =ClI¢lly s

lal<N z€ lal<N

the last equality is how we define C’, which is a maximum of finitely many C’,
and so finite. Then,

(M) (@) = A(fO) < Clifdlly <CC ¢y, &€ Dk
This bound shows that fA is continuous. O

The above lemma shows that fA € 2'(2) when f € C>*(Q2) and A € 2'(Q).
Therefore D*(fA) € 2(12), and the following lemma, proved in Rudin, states
that the Leibniz formula can be used with fAE|

Lemma 2. If f € C*°(Q) and A € 2'(Q), then

(in = 3 (5) 0 o).

Ba

If f:Q — C is locally integrable, define
ro= [ o@)f@ar. oe (@)

For ¢ € D,
A6 < 19l /K flde,

from which it follows that A is continuous. If p is a complex Borel measure on
R"™ or a positive Borel measure on R™ that assigns finite measure to compact
sets, define

AG = /Q bdu, b Q).

For ¢ € D,
|AG| < |9l [l (K),

from which it follows that A is continuous. Thus, we can encode certain functions
and measures as distributions. I will dare to say that we can encode most
functions and measures that we care about as distributions.

If Ay, A € 2'(Q2) and w is an open subset of Q, we say that A; = Ay in w
if Ai¢p = Ag¢ for all ¢ € D(w).

Let A € 2'(Q) and let w be an open subset of . We say that A vanishes
on w if A¢p =0 for all ¢ € Z(w). Taking W to be the union of all open subsets
w of © on which A vanishes, we define the support of A to be the set Q\ W.

5Walter Rudin, Functional Analysis, second ed., p. 160, §6.15.



3 The Fourier transform

Let Cp(R™) be the set of those continuous functions f : R™ — C such that for
every € > 0, there is some compact set K such that |f(z)| < e for x ¢ K. With
the supremum norm ||-|| ., Co(R™) is a Banach space.

Let m,, be normalized Lebesgue measure on R™:

dmy, (z) = (2r) 7" ?d.

Using m,,, we define

1/p
||f||Lp=(/R fl”dmn> C l<p<oo

and

(fxg)(x)= [ flx—y)gly)dmn(y).

Rn
For t € R", define e; : R® — C by

er(x) = exp(it - x), x e R"

The Fourier transform of f € L'(R") is the function f:R™ — C defined by
(FhH)=ft)= [ fe_rdm,, — teR™

Using the dominated convergence theorem, one shows that f is continuous.

For f € C*(R") and N a nonnegative integer, write

pa(f) = sup sup (1+ [2[})N[(Df) ()],
|a|<N z€R™

and let .7, be the set of those f € C°°(R™) such that for every nonnegative
integer N, py(f) < oco. ., is a vector space, and with the locally convex
topology determined by the family of seminorms {py : N > 0} it is a Fréchet
spaceﬂ Further, one proves that .% : ., — ., is a continuous linear mapm

The Riemann-Lebesgue lemma is the statement that if f € L'(R"), then

fe Co(Rn)

The inversion theorewﬂ is the statement that if g € ., then
g(x) = / gegzdmy, z € R",
and that if f € L'(R") and f € L'(R"), and we define f; € Co(R™) by

folz) = fewdmn, r e R",
R’!L

SWalter Rudin, Functional Analysis, second ed., p. 184, Theorem 7.4.
"Walter Rudin, Functional Analysis, second ed., p. 184, Theorem 7.4.
8Walter Rudin, Functional Analysis, second ed., p. 185, Theorem 7.5.
9Walter Rudin, Functional Analysis, second ed., p. 186, Theorem 7.7.



then f(z) = fo(x) for almost all z € R™. For g € ./, as § € .%,, the function
f(t) = g(—t) belongs to .#,. The inversion theorem tells us that for all € R™,

o@) = [ altes®dmn(t) = [ s(-tea(-dma(t) = [ e ()dmn (o),

n R

and hence that g = f This shows that % : &, — %, is onto. Using the
inversion theorem, one checks that

f?dmn: f?dmna fageyn;
R‘!L R‘VL

and so ||f||;2 = | Z fll = for f € 7. Tt is a fact that .7}, is a dense subset of
the Hilbert space L*(R™), and it follows that there is a unique bounded linear
operator L?(R™) — L2(R"), that is equal to .# on .#,, and that is unitary. We
denote this Z : L2(R") — L*(R").

It is a fact that Z(R"™) is a dense subset of .7, and that the identity map
i: 2R") = A, is continuousm If Ly, Ly € (S5)* are distinct, then there is
some f € .7, such that Lif # Lof, and as 2(R") is dense in .%,, there is a
sequence f; € Z(R") with f; — f in .%,. As

(Lyoi)(fj) — (L2 od)(fj) = Lifj — Laf; — L1fj — Laf; # 0,

there is some f; with (L1 04)(f;) # (L2 01)(f;), and hence Ly 04 # Ly oi. This
shows that L — L oi is a one-to-one linear map (%,)* — 2'(R"). Elements
of 7'(R™) of the form L oi for L € (,)* are called tempered distributions,
and we denote the set of tempered distributions by .#/. It is a fact that every
distribution with compact support is temperedE

4 Sobolev’s lemma

Suppose that  is an open subset of R”. We say that a measurable function
f:Q — Cis locally L? if [, |f[*dm, < oo for every compact subset K of .
We say that A € /() is locally L? if there is a function g that is locally L? in
Q such that Ap = [, pgdm,, for every ¢ € 2(Q).

The following proof of Sobolev’s lemma follows RudinE

Theorem 3 (Sobolev’s lemma). Suppose that n,p,r are integers, n > 0, p > 0,
and
n
r>p+ 5
Suppose that Q is an open subset of R™, that f : Q — C is locally L?, and that
the distribution derivatives D¥ f are locally L? for 1 < j<mn, 1<k <r. Then
there is some fo € CP(Q) such that fo(x) = f(x) for almost all x € Q).

10Walter Rudin, Functional Analysis, second ed., p. 189, Theorem 7.10.
HWalter Rudin, Functional Analysis, second ed., p. 190, Example 7.12 (a).
12Walter Rudin, Functional Analysis, second ed., p. 202, Theorem 7.25.



Proof. To say that the distribution derivative D;? f is locally L? means that
there is some g;  : 2 — C that is locally L? such that

DiAy = A

95,k "

Suppose that w is an open subset of 2 whose closure K is a compact subset of
Q. There is some ¢ € 2(Q) with ¢(z) = 1 for € K, and we define F : R — C
by

Fla) {w(x)f(w) reQ,

0 T &

in particular, for x € K we have F(x) = f(z), and for ¢ suppt we have
F(x) = 0. Because supp C €2 is compact and f is locally L2,

1/2 1/2
1Pl = ([ osbam) <oty ([ iPama) <o,
supp ¥ supp ¢

and using the Cauchy-Schwarz inequality, || F||;1 < ||[F|| 2 mn(supp¥)'/? < oo,
S0
F € L*(R™) n LY(R™).

Then,
/ \EF2dm,, < co. (1)
Because Ap = ¢ Ay in €2, the Leibniz formula tells us that in €,

T T

Dje = D5 =3 (1) 05 0)oing =3 (1) 05w, )

s=0 s=0
hence, defining H; : R" — C by

H(z) = {Oz_ () (D5 ) (@)g,.(a) > o

we have DiAp = Ap; in Q. It is apparent that H; € L2(R™) N LY(R™).

Let ¢ € Z(R™). There are ¢1, ¢2 € Z(R"™) with ¢ = ¢1+¢2 and supp ¢1 C €,
supp ¢2 C R™ \ supp¢{°| We have just established that (DjAr)¢1 = Am,¢1.
For ¢, it is apparent that

(DjAR)o2 = Mp(Djon) = [ (D5éa)(a)Fladmaa) = 0

and
Ap, 2 = - ¢2(z)Hj(z)dmy(xz) = 0.

1341 and ¢ are constructed using a partition of unity. See Walter Rudin, Functional
Analysis, second ed., p. 162, Theorem 6.20.



Hence (D}AFr)(¢) = Am,;¢. It is apparent that Ag, has compact support, so
DiAr = Ap; are tempered distributions. Let { € ./, and take ¢ € ., with

& = ¢. Then,
(DiAr)p = ApDi¢
[ (D56 @F)dm, (@

| #5010 Fwin. )

| e Fsamato),

and

o~

Ao = [ o) H@)dma(w) = | €)H;(3)dma(y)

It follows that (zyj)Tﬁ(y) = fI\](y) for all y € R™. But I/{\j € L*(R"), so
[ B @Pdm, ) <. 1<i<n. e
R’n

Using (1)), (2), and the inequality
A+ <@n+2)"L+y" +---+w),  yeR",
we get

7= [ QI ) < .

Let 0,1 be surface measure on S"~! with o,_1(S"™1) = 13&7//22) Using the

Cauchy-Schwarz inequality and the change of variable y = tu, u € S"~1, ¢ > 0,

([aswrFeimw) = ([ ol s my-anw)

IN

7 [ sl am )

= J(27T)—n/2/ / (1 + t)2p—2rtn—1do,n71(u)dt
0 Sn—1

2J /OO 2p—2ryn—1
= (14 )%= 2rgn =1t
I'(n/2) Jo
This integral is finite if and only if 2p —2r +n —1 < —1, and we have assumed
that r > p + 3. Therefore,

[ s i F@ldma) < .

from which we get that y®F(y) is in L*(R") for |a| < p.



Define
F,(x) = ﬁemdmn, x € R".
R”L
(Note that F depends on w.) F, Fe L'(R™) so by the inversion theorem we
have F(z) = F,(x) for almost all z € R". F,, € Co(R™). If p > 1, then we shall
show that F,, € CP(Q)). Take ey to be the standard basis for R™. For 1 < k; <n
and € # 0,

F,(x+ee,)— F,(x) 1/ ~

. - F(y) (exp(ieeg, - y) — 1) exp(ix - y)dm, (y)

) R eieykl -1
/ zyle(y)Wex(y)dmn(y).

. ~ Peyp, -~ ~
But |ige, F(y) <o =Lea ()] < Iy, P(y)] and i, F(y) belongs to L1 (R") (sup-
posing p > 1) so we can apply the dominated convergence theorem, which gives

us

(Dlew)(J?) — lim Fw(l’ + eekl) - Fw(z) _ /n Zyklﬁ(y)eqp(y)dmn(y)

e—0 €

From the above expression, it is apparent that Dy, F,, is continuous. This is
true for all 1 < ky < n, so F,, € C1(R"). If p > 2, then yy, yr, F(y) is in L*(R")
for any 1 < ks < n, and repeating the above argument we get F,, € C?(R"). In
this way, F,, € CP(R™).

For all z € w, f(z) = F(z), so f(z) = F,(z) for almost all x € w. If ' is an
open subset of 2 whose closure is a compact subset of Q and wNw’ # @, then
F,, F, € CP(R™) satisfy f(x) = F,(x) for almost all z € w and f(x) = F,(x)
for almost all z € W', so F,(z) = F,,(x) for almost all z € wNw’. Since F,,, F
are continuous, this implies that F,(z) = F,/(z) for all z € w Nw’. Thus, it
makes sense to define fyo(x) = F, () for z € w. Because every point in Q has
an open neighborhood of the kind w and the restriction of fy to each w belongs
to CP(w), it follows that fo € CP(Q). O
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