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1 Introduction

In this note I am writing out some of the material from Paul Halmos, Hilbert
Space Problem Book, on shift operators. The reason I’m doing this is because
shift operators are standard objects in operator theory and every analyst should
know their properties and their spectra. A reference to Problem n of Halmos is
a reference to Problem n in this book. An orthonormal basis for a Hilbert space
is an orthonormal set whose span is a dense subset of H. The dimension of a
Hilbert space is the cardinality of an orthonormal basis for H. It is a fact that
a Hilbert space is separable if and only if its dimension is countable (Problem
11 of Halmos). Let N be the set of nonnegative integers.

2 The Hilbert space `2(I)

If I is a set, let `2(I) be the set of functions x : I → C such that x(i) = 0 for
all but countably many i ∈ I and such that∑

i∈I
|x(i)|2 <∞,

and let `∞(I) be the set of functions x : I → C such that x(i) = 0 for all but
countably many i ∈ I and such that

sup
i∈I
|x(i)| <∞.

`∞(I) ⊆ `2(I), and this containment is strict if and only if I is infinite. With
the inner product

〈x, y〉 =
∑
i∈I

x(i)y(i),

`2(I) is a Hilbert space, and ei(j) = δi,j is an orthonormal basis for it. It follows
that `2(I) is separable if and only if I is countable.
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It is often useful that for x ∈ `2(I) and i ∈ I, we have

〈x, ei〉 =
∑
j∈I

x(j)ei(j) =
∑
j∈I

x(j)δi,j = x(i),

and thus (this takes time to prove)

x =
∑
i∈I

x(i)ei.

We will be interested in countable orthonormal bases for a Hilbert space, so
in this note we take H to be a separable complex Hilbert space. Let fi, i ∈ I
be an orthonormal basis for H, where I is countable. `2(I) is a Hilbert space
with orthonormal basis ei, ei(j) = δi,j . We define a map U : H → `2(I) in the
following way. For v ∈ H, define (Uv)(i) = 〈v, fi〉, and thus by the definition of
norm in `2(I) and by Parseval’s identity we have

‖Uv‖2 =
∑
i∈I
|(Uv)(i)|2 =

∑
i∈I
| 〈v, fi〉 |2 = ‖v‖2 <∞,

so indeed Uv ∈ `2(I). One checks that U is a linear map and hence, as it
is an isometry by the above calculation, 〈Uv,Uw〉 = 〈v, w〉 for all v, w ∈ H.1

Moreover, as U is an isometry it is injective.
The image of an isometry is closed: let xn ∈ imU and say xn → x ∈ `2(I).

Then there are vn ∈ H, Uvn = xn. xn is a Cauchy sequence, and because U
is an isometry it follows that vn is a Cauchy sequence. As H is a complete
metric space, vn converges to some v ∈ H. U is continuous so Uvn → Uv.
And Uvn = xn → x, so x = Uv, showing that imU is closed in `2(I). But
(Ufi)(j) = 〈fi, fj〉 = δi,j and ei(j) = δi,j so Ufi = ei.

2 As imU is closed and
it contains an orthonormal basis for `2(I), it follows that imU = `2(I). We
already found that U is linear and injective, so U is a linear isomorphism.

We have shown that U : H → `2(I) is a linear isomorphism and 〈Uv,Uw〉 =
〈v, w〉 for all v, w ∈ H. We call such a map a unitary isomorphism. Unitary

1It is a fact that if H,K are Hilbert spaces and V : H → K is a linear map, then V is an
isometry if and only if 〈V f, V g〉 = 〈f, g〉 for all f, g ∈ H. This is proved using the polarization
identity and tinkering with real and imaginary parts. A proof is given in John B. Conway, A
Course in Functional Analysis, second ed., p. 19, Theorem 5.2. Equivalently, a linear map
V : H → K is an isometry if and only if V ∗V = idH ; if also V V ∗ = idK , called being a
coisometry, then V is a unitary isomorphism.

2Merely defining U by Ufi = ei and then extending by linearity would have been inade-
quate. A Hamel basis for a vector space is a maximal linearly independent set in the vector
space, and it is a fact that every vector in the vector space is a finite linear combination of
elements of the Hamel basis. We can find a Hamel basis for H that includes the orthonormal
basis fj . If H is infinite then any Hamel basis will have cardinality larger than that of the or-
thonormal basis; see Problem 5 of Halmos. A linear map can be specified uniquely by defining
it on elements of a Hamel basis. Thus the values of a linear map on an orthonormal basis do
not uniquely the linear map determine it. For the values of a linear map on an orthonormal
basis to uniquely determine the linear map, one must show that the map is continuous on the
span of the orthonormal basis, and then since the span is dense this will determine the map
on the entire Hilbert space.
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isomorphisms are isomorphisms in the category of Hilbert spaces.3 Anything
we wish to say about the Hilbert space H can be said just as well about the
Hilbert space `2(I).

Rather than merely saying that H has a basis vi, i ∈ I for some countable
set I, the type of operations that we want to talk about involve ordering I and
talking about sending a basis element to the next or the previous basis element.
Depending on our purpose, we will take either I = N or I = Z. In this note we
deal with I = N.

3 Definition of the unilateral shift and determi-
nation of its adjoint

Define U : `2(N)→ `2(N) in the following way. For x ∈ `2(N), define Ux by

(Ux)(n) =

{
x(n− 1) n ≥ 1,

0 n = 0.

U shifts a sequence one step to the right. We call U a unilateral shift.
U is linear, and

‖Ux‖2 =

∞∑
n=0

|(Ux)(n)|2 = 0 +

∞∑
n=0

|x(n)|2 = ‖x‖ ,

so U is an isometry. A linear map that is an isometry preserves the inner
product, so U preserves the inner product of `2(N), and thus is an isometry.
But U is not a unitary isomorphism because it is not surjective, as e0 6∈ imU .
For j ≥ 0, we have, because δj+1,0 = 0,

(Uej)(n) =

{
ej(n− 1) n ≥ 1,

0 n = 0

=

{
δj,n−1 n ≥ 1,

0 n = 0.

=

{
δj+1,n n ≥ 0,

0 n = 0.

= δj+1,n

= ej+1(n).

Thus for all j ∈ N we have Uej = ej+1.
Whenever we have our hands on a specific operator, we would also like to

get a workable expression for its adjoint. U∗ satisfies

〈Uei, ej〉 = 〈ei, U∗ej〉 .
3cf. http://math.ucr.edu/home/baez/quantum/node3.html
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Now, Uei = ei+1 and 〈ei+1, ej〉 = δi+1,j and

δi+1,j =

{
δi,j−1 j ≥ 1,

0 j = 0.

Hence the adjoint satisfies

U∗ej(i) =

{
δj−1,i j ≥ 1,

0 j = 0.

If j ≥ 1 then U∗ej = ej−1, and U∗e0 = 0. Thus, for x ∈ `2(N) we define U∗x
for all n ∈ N by (U∗x)(n) = x(n+ 1) and check that this is indeed the adjoint
of U . The adjoint of the right shift U is the left shift U∗.

Since UU∗e0 = U(0) = 0 and U∗Ue0 = U∗e1 = e0, U is not normal.

4 The spectrum of an operator

Here we review general statements about the spectrum of a bounded linear
operator. If H is a Hilbert space and T ∈ B(H), the spectrum σ(T ) of T is the
set of those λ ∈ C such that the map T − λ is not bijective, where by T − λ
we mean T − λidH . We are often interested in decomposing the spectrum into
three disjoint sets. The point spectrum σpoint(T ) is the set of those λ ∈ C such
that T −λ is not injective. The continuous spectrum σcont(T ) is the set of those
λ ∈ C such that T − λ is injective, has dense image, but is not surjective. The
residual spectrum σres(T ) is the set of those λ ∈ C such that T − λ is injective
and does not have dense image.

If T ∈ B(H), it is a fact that σ(T ) is a nonempty compact subset of C;
this is not obvious. The spectral radius of T , denoted r(T ), is defined the be
supλ∈σ(T ) |λ|. If |λ| > ‖T‖ then one can define an inverse for T − λ using the

geometric series, and it follows that λ 6∈ σ(T ). Thus if r(T ) ≤ ‖T‖.4
If X is a subset of C, let X∗ = {z : z ∈ X}. If λ ∈ σ(T ) then it is

straightforward to check, as (T ∗ − λ)∗ = T − λ, that

σ(T ∗) = σ(T )∗.

For any T ∈ B(H), it is a fact that kerT = (imT ∗)⊥. If λ ∈ σpoint(T ), then

ker(T − λ) 6= {0}, so (im (T ∗ − λ))⊥ 6= {0}. Hence im (T ∗ − λ) 6= H, that is,
T ∗ − λ does not have dense image. So either λ ∈ σpoint(T ∗) or λ ∈ σres(T ∗).
Therefore

σpoint(T )∗ ⊆ σpoint(T ∗) ∪ σres(T ∗).

If λ ∈ σres(T ) then im (T − λ) 6= H. ker(T ∗ − λ) = (im (T − λ))⊥; taking
orthogonal complements gives (ker(T ∗ − λ))⊥ = im (T − λ). Thus (ker(T ∗ −
λ))⊥ 6= H. But

H = ker(T ∗ − λ)⊕ (ker(T ∗ − λ))⊥,

4A formula for r(T ) is r(T ) = limn→∞ ‖Tn‖1/n, Problem 74 in Halmos.
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so ker(T ∗ − λ) 6= {0}, showing that λ ∈ σpoint(T ∗). Therefore

σres(T )∗ ⊆ σpoint(T ∗).

5 Spectrum of the unilateral shift and its adjoint

In this section we are going to compute the three parts of the spectrum for
each of U and U∗. Our technique is to show that σ(U), σ(U∗) are subsets of
the closed unit disc; compute σpoint(U) and σpoint(U

∗); use §4 to obtain from
this σres(U) and σres(U

∗); and use the fact that the spectrum is compact. cf.
Problems 58 and 67 of Halmos.

U is an isometry, so ‖U‖ = 1. Hence σ(U) is a subset of the closed unit disc
D, and σ(U∗) = σ(U)∗ ⊆ D∗ = D.

Suppose by contradiction that there is some λ ∈ σpoint(U). Then there is
some nonzero x ∈ `2(N) satisfying (U−λ)x = 0. Let n = min{j ∈ N : x(j) 6= 0}.
If n ≥ 1 then (Ux)(n) = x(n − 1) = 0 because of the minimality of n, and
(Ux)(0) = 0 by definition of U . Thus in any case (Ux)(n) = 0. (Ux)(n) = λx(n)
and x(n) 6= 0, so it follows that λ = 0. Then, x(n) = (Ux)(n+1) = λx(n+1) =
0, contradicting x(n) 6= 0. Therefore

σpoint(U) = ∅.

If λ ∈ σpoint(U
∗), then there is some x 6= 0 with U∗x = λx. For n ∈ N,

(U∗x)(n) = x(n + 1) and (U∗x)(n) = λx(n), so x(n + 1) = λx(n). Thus
x(n) = λnx(0). Then

‖x‖2 =

∞∑
n=0

|x(n)|2 =

∞∑
n=0

|λ|2n|x(0)|2 = |x(0)|2
∞∑
n=0

|λ|2n.

If x(0) = 0 then we’d get x = 0, so x(0) 6= 0. As ‖x‖2 < ∞, it follows that
|λ| < 1. On the other hand, if |λ| < 1, then define x by x(0) = 1 and, for
n ≥ 1, by x(n) = λn. x ∈ `2(N), and (U∗x)(n) = x(n+ 1) = λn+1 = λx(n), so
U∗x = λx. As x 6= 0, this means that λ ∈ σpoint(U∗). Hence

σpoint(U
∗) = {z ∈ C : |z| < 1}.

We have found that σpoint(U) = ∅, and, as σres(U
∗) ⊆ σpoint(U)∗, this

implies that
σres(U

∗) = ∅.
σ(U∗) is a compact set, is contained in the closed unit disc, and contains

σpoint(U
∗) which is equal to the open unit disc. Therefore σ(U∗) is equal to the

closed unit disc. Since σpoint(U
∗) = {z : |z| < 1} and σres(U

∗) = ∅, it follows
that σcont(U

∗) = {z ∈ C : |z| = 1}.
Now, σpoint(U

∗) ⊆ σpoint(U)∗ ∪ σres(U)∗ = σres(U)∗. On the other hand,
σres(U)∗ ⊆ σpoint(U∗). Hence σres(U)∗ = σpoint(U

∗), from which we get

σres(U) = {z ∈ C : |z| < 1}.
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σ(U) is a compact set that is contained in the closed unit disc and contains
the open unit disc, hence σ(U) is equal to the closed unit disc. As σpoint(U) = ∅
and σres(U) = {z ∈ C : |z| < 1}, it follows that σcont(U) = {z ∈ C : |z| = 1}.

We summarize the results of this section in the following.

• The spectrum of the right shift U :

σpoint(U) = ∅, σcont(U) = {z ∈ C : |z| = 1}, σres(U) = {z ∈ C : |z| < 1}.

• The spectrum of the left shift U∗:

σpoint(U
∗) = {z ∈ C : |z| < 1}, σcont(U

∗) = {z ∈ C : |z| = 1}, σres(U
∗) = ∅.

6 Cyclic vectors

v ∈ H is said to be a cyclic vector for T ∈ B(H) if the span of {Tnv : n ≥ 0} is a
dense subspace of H. One proves that for v to be a cyclic vector it is equivalent
that the set {p(T )v : p(x) ∈ C[x]} is dense in H. Certainly U has a cyclic
vector: Une0 = en, which is an orthonormal basis for `2(N). It turns out that
U∗ also has a cyclic vector, but this is not obvious. This is shown in Problem
126 of Halmos.
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