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Abstract

A computer program named Bubbles to Momentum (BuM) was written to make accurate momentum mea-

surements on two slides from a previous bubble chamber experiment carried out at the Stanford Linear Ac-

celerator Centre. BuM’s level of accuracy positively validated conservation of energy. A calibration of the slide

projection table found 1mm on the projection table was equal to 1.113±0.0062mm in the bubble chamber. The

use of an energy-distance relation was found helpful in identifying some tracks though it suffered from a low

resolution of accuracy.
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1 Introduction

High energy physics has a long history of progress

since the days of Albert Einstein. In this experiment

two films taken at the Stanford Linear Accelerator

Centre (SLAC), with particle trajectories within 10◦ of

being two dimensional, were analyzed. A set of events

on each film were studied after first coding a com-

puter program for the task to reduce measurement er-

ror. The conservation of momentum was used to ver-

ify the existence of neutral particles, and conservation

of energy, strangeness and charge, with the help of an

energy-distance relation, are used to specify the par-

ticle. An effort is made to reduce uncertainty.

2 Theory

In this theory we use tensor notation, and Einstein

summation notation to express our equations. A rank-

one tensor is given by, v a , a rank-two tensor by, J a b ,

etc. The inner product in four dimensions for a four-

vector, v a = (v t ,v x ,v y ,v z ), is defined in Einstein

summation notation as a contraction of a pair of one

upper and one lower index,

||v ||= v a va

= v 2
t
− (v 2

x
+ v 2

y
+ v 2

z
). (1)

2.1 Conservation of Invariant Mass

In high energy physics we must take into account

the special relativistic effects of Lorenz boosts. Each

particle is given an invariant mass, m , and four-

momentum, p a = (E /c ,p). We will set c = 1 here and

measure all our quantities in appropriate units. Thus

our four momentum is,

p a (E ,p) (2)

and it satisfies the relation,

p a pa = E 2−p2 =m2. (3)

Here energy takes into account the kinetic as well as

rest mass,

E = γmc 2 showing c for clarity, (4)

where,

γ=
1
Ç

1− v2

c 2

, (5)

thus we can see that if we measure energy in MeV we

can measure mass in units of MeV/c 2, and momen-

tum in units of MeV/c . Energy and momentum are

not conserved in arbitrary frames. Moreover, they are

only conserved in the same reference frame. Invariant

mass, equation 3, is invariant in all frames.

2.2 Decays

In decays we will be most concerned with neutral

particles decaying to two charged particles. In this

case measurement of the outgoing momentums of the

charged particles yields the incoming particles’ mo-

mentum. Using conservation of charge there should

be a negative and positive particle in evidence.

Consider a particle with energy, E , in the lab frame

decaying into many, A→C1+ ...+Cn . Initially we have

p a = (E ,p). After the decay in the same lab frame we

have, p a
i
= (Ei ,pi ). We must have conservation of en-

ergy, so using equation 3,

q

m2
a
+p2 =

N
∑

i

q

m2
i +p2

i , (6)

where we must keep the same lab frame for this to

hold. Supposing we knew the masses of particles

C1, ...,CN we could then calculate ma for the incom-

ing neutral particle.

2.3 Scattering

In scattering we consider two particles colliding and

producing extra particles, A+B →C1+...+Cn . We take

B to be a rest in the lab frame, and A to have energy E ,

thus before the collision, p a = (E +mb ,pa ), implies,
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p a pa = 2E mb +m2
b
+m2

a
.

After the collision we have, in the CM frame, p ′a =
(M ≡
∑n

i
mi ,0), which implies by invariance of equa-

tion 3,

E =
M 2−m2

a
−m2

b

2mb

. (7)

We can use equation 7 as a condition for helping

determine the invariant masses of the particles pro-

duced in scattering. Suppose a neutral particle is pro-

duced in a scattering which then decays later into two

particles. We could then use equation 6 to relate the

decay products to the scattering event by substitution

into equation 7.

In our experiment positive pions often hit a proton,

nearly at rest, to produce many pions. Assuming that

only charged pions are produced then there must be

an even number of them. We find that our pion beam

could produce at most 12 pairs of pions using equa-

tion 7.

2.4 Conservation of Strangeness

The timescales of the three interactions are 10−23s for

the strong, 10−16s for the electromagnetic, and 10−13s

for the weak interactions. In general the process will

be governed by the fastest interaction which is kine-

matically allowed.

The standard model tells us that strangeness, the

number of strange quarks in a system, must be con-

served for strong and electromagnetic interactions. It

need not be conserved in weak interactions but its

value may only change by one unit per interaction.

Total baryon number must always be conserved.

A pion colliding with a proton has a kinematically

allowed strong interaction. It is particle production

via scattering, the same one mentioned in section 2.3.

Initially, there is a 0S (strangeness), hence the pro-

duced particles must have total 0S . Often a kaon

meson, K 0, or lambda baryon, Λ0, will be produced.

The quark content of these are d s̄ , and ud s , with

strangenesses−1S and 1S , respectively. Though other

neutral strange particles are possible only these are

considered in this experiment.

2.5 Radius of Curvature of Trajectories

Within our bubble chamber there is magnetic field

pointing out of the slide. From our standard electro-

magnetism theory we know that a charged particle

will follow a curved trajectory in a magnetic field, the

direction of curve given by the Lorentz force. The pa-

rameters of the SLAC bubble chamber are such that a

charged particle moving in a circular trajectory of ra-

dius R will have a magnitude of momentum given by,

|p|=
R

1890mm
GeV/c, where R is in mm. (8)

The problem on uncertainty thus relies on how ac-

curately one can measure the radius of a track. Us-

ing a straight edge, compass, and geometry one

can construct the exact solution of a circle passing

through any three non-collinear points, say {P,Q ,R }=
{(x1, y1), (x2, y2), (x3, y3)}. The method proceeds as:

draw two lines between the points, say PQ and QR .

Construct the perpendicular bisector of each line with

your compass. Where the perpendicular bisectors in-

tersect is the centre of the circle. Connect your com-

pass to the centre and any of three points and draw

a circle. Mathematically we can do this. We find the

centre, (xc , yc ), and radius, R ,

m1 =
y2− y1

x2− x1

, m2 =
y3− y2

x3− x2

,

xc =
m1m2(y1− y3) +m2(x1+ x2)−m1(x2+ x3)

2(m2−m1)
, (9)

yc =
x1+ x2

2m1

−
xc

m1

+
y1+ y2

2
, (10)

R =
Æ

(y1− yc )2+ (x1− xc )2. (11)

Equations 9–11 are easily calculable by a computer.

2.6 Energy-Distance Relation

Knowing a particle’s momentum does not identify the

type of particle in most cases. Early work done on

charged particle trajectories in bubble chambers [2]
discuss a range-energy relation where the character-

istics of a track can help identify the particle. Figure 1

shows this relation. For fast particles the track will be
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thinner with more distance between bubbles [4]. In-

terpolating momentum on figure 1 can, in some cases,

tell an experimenter which particle the track is. Mea-

surement of the track characteristics methodically is

important in this process. The computer can again

help by making more precise measurements of track

thicknesses.

Slower particles ionize the hydrogen more, thus we

define the incoming pion beam as minimum ionizing

and compare all tracks to it. The way to use figure 1 is

to interpolate our our momentum onto dE

dx
, which are

the dashed lines, then divide this value by the asymp-

totic value of 0.24MeV cm−1 to get the relative ioniza-

tion value. Note that there are four dashed lines; one

for each the muon, pion, kaon, and proton. A high rel-

ative ionization should show a darker, thicker track,

while minimum ionizing will look like one of the in-

coming pion tracks.

d
E

d
x

(M
e
V

c
m
−

1
)

Momentum (MeV c −1)

Figure 1: Energy-distance relation as a function of mo-

mentum. The right hand scale is used for the dashed

lines to calculate the relative ionizations of a track for

the different possibilities of muon, pion, kaon, and

proton. The identification then depends on whether

the track fits the characteristics one of the values.

3 The Experiment

For the experiment a program was written, named

Bubbles to Momentum (BuM), that enabled a user to

look at scanned copies of the film taken a SLAC exper-

iment, shown schematically in figures 2 and 3. It uses

the technique from section 2.5 to measure the radii of

tracks. The program was written in MATLAB c©in or-

der to take advantage of the simple visualization and

interface libraries. The program is able to work with

two tracks at a time and compute from them the total

momentum of a decaying particle, or the momentum

of an invisible particles, using options ’X → 1+ 2’ or

’1→ X +2’, respectively. Pressing ’h’ while the program

window is in focus brings up an information screen on

how to use the program most effectively. The program

also allows measurement on angles between tracks,

width of tracks, and interpolation of momentum of

relative ionicity using data taken from figure 1.

The pion beam has an energy of 10.3GeV. The slides

are projected on a table. Using the pion energy and

the information from section 2.5 a calibration was

done on the scaling, and it was found 1 mm on the

table is equivalent to 1.113±0.0062mm in the bubble

chamber.

After using the program to measure the momen-

tums, widths, and possible relative ionizations of

all tracks shown in figures 2 and 3, conservation

of energy, equations 7 and 6, and conservation of

strangeness were used to infer to types of particles for

both the visible and invisible tracks.

4 Results

The momentums of tracks, in figures 2 and 3, are tabu-

lated in table 1, and the possible relative ionizations in

table 2. The uncertainties are discussed in section 5.3

below.
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(1)

(2)

(3)

(Y)

(4)

(5)

(6)

(W)

(4’)

(Z)

(7)

(8)

Figure 2: View 1, film 164, slide 872 from a SLAC ex-

periment. The dashed lines are invisible particles in-

ferred from conservation of momentum in the experi-

ment. The incoming pion enters from the bottom and

is track (1).

5 Discussion

5.1 Slide 872

From table 2 it is possible to identify some tracks’ par-

ticles. Looking at tracks (1) and (9) it is clear that min-

imum ionizing pion tracks have a width near 1.14 ±
0.40mm. Tracks (Y) and (Z) undergo weak decays,

judging by the wide ’V’ angle characteristic of such

decays [4]. The decay distance, τc , of K 0 is 2.68cm

(we mean K 0
S

, since the K 0
L

decay distance is on the

order of 15m), and the Λ0 decay distance is 7.89cm.

This lends evidence toward (Z) and (Y) being K 0 and

Λ0 respectively. Track (2) appears to be a proton if

line thickness correlates at all with relative ionization,

however using energy conservation a better fit would

be track (2) is a π+ and (3) a p . We find in this con-

figuration, E2 + E3 + EY + EZ = 10.836 ± 0.2296GeV,

(9)

(11)

(10)

(S)

(T)

(R) (Q)

(10’)
(12)

(13)

(14)

(14’)

(15)

Figure 3: View 2, film 254, slide 810 taken from a SLAC

experiment. The dashed lines are invisible particles

inferred from conservation of momentum in the ex-

periment. The incoming pion enters from the bottom

and is track (9). Track (Q) encompasses two visible

and invisible tracks.

and given that the incoming pion beam, 10.3GeV,

has some uncertainty, this configuration seems most

plausible. This implies line thickness does not corre-

late well with relative ionization, probably due in part

to the large uncertainty in line thickness.

Table 2 would imply tracks (4) and (5) are either

kaons or protons with the chance that (4) could also be

a pion since uncertainty in line width is large. Looking

at the most frequent modes of decay of the Λ0 shows

a 62% decay ratio for Λ → pπ−, however the proton

could not decay to tracks (6) and (W). By the princi-

ple of detailed balance it is most probable that (4) is

a π+ and (5) is p̄ , which is in reasonable agreement

with table 2. Thus, since track (6) must decay from a

pion, it should be a µ+ and (W) a νµ. Checking en-

ergy conservation, E4+ E5 = 1.341±0.0070GeV which

is in good agreement with EY = 1.326±0.0068GeV, and

E6 + EW = 0.296 ± 0.0369GeV which is also in good

agreement with E4′ = 0.278±0.0081GeV.

Likewise, K 0
S

has a decay ratio of 69% for K 0
S
→
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π+π−. Table 2 places this within the bounds of un-

certainty. Checking energy conservation E7 + E8 =
0.677 ± 0.0105GeV which is in good agreement with

EZ = 0.774±0.0088GeV.

5.2 Slide 810

Track (S) is a neutral particle whose inferred existence

stems from conservation of momentum. It could

be two neutral particles, but operating under the as-

sumption that it is just one particle, its track passes di-

rectly through the opening of a narrow ’V’ in the upper

part of the slide, as shown in figure 3. The narrowness

of this angle implies [4] it may in fact be pair produc-

tion, π0 → e +e −γ. Measurement of the momentums

of the two tracks in the decay of (S) show there is miss-

ing momentum, which would be carried by the pho-

ton, γ. Hence track (S) adds no strangeness or charge

and is possible if kinematically allowed by energy con-

servation.

Since (S) adds no strangeness, and assuming track

(T) carries some strangeness then either (track (10) or

(11) must be a K +with−1S , implying (T) must be have

+1S and hence is a Λ0.

Table 2 implies that track (13) is either a µ− or π−.

Assuming track (T)is a Λ0, which has a decay fraction

involving the µ of 1.57 · 10−4, it is highly improbable

for (13) to be a muon. Thus, taking (13) to be a π−,

(14) should be a p . Checking energy conservation,

E13 + E14 = 1.365 ± 0.0382GeV which is in very good

agreement with ET = 1.374±0.0346GeV.

Table 2 is not very helpful in determining tracks (10)

and (11), but note that taking (10) as a π+, and (11) as

a K + is plausible in the bounds of uncertainty. Under

this configuration energy conservation is well within

the bounds of uncertainty, E10+E11+ES+ET = 11.238±
0.968GeV while E9 = 10.332±0.1790GeV. Furthermore,

supposing track (10) decays into a µ+ and νµ again

energy conservation is nicely conserved, E12 + ER =
0.296± 0.0310GeV matches nicely with E10′ = 0.300±
0.0252GeV.

Comparing tracks (1), and (9) with (15) in table 2

implies that (15) is likely a π+. The problem comes

from looking at track (Q) that there are two tracks, as

shown in figure 3. The dashed line does not match

with the visible track implying that it may indeed be

two particles. A π− and π0 seem most likely and in-

deed looking at energy conservation, E15 + EQ (π0 +
π−) = 1.211 ± 0.0566GeV matches nicely with E14′ =
1.215±0.0494GeV.

5.3 Error in Computer Calculations

Equations 9–11 rely upon two things. Calibration er-

ror from converting pixels (px) to mm, and how closely

we can choose points in the centre of a line since they

are several px wide.

The conversion of px to mm has the form, L = L ′
smm

sp x
,

where L is the length in the bubble chamber, L ′ is

the length in px on the digitalized film, smm is a cal-

ibration scale in mm, and sp x is the corresponding

calibration in px. These have measurement errors of

∆L ′, ∆smm , and ∆sp x . As a source of calibration the

rakes on the film were used, which are evenly sepa-

rated markings along the length of the bubble cham-

ber. Hence ∆smm , and ∆sp x correspond to how ac-

curately the rakes can be measured on the table and

digitally. Those uncertainties are minimized by using

Vernier callipers and zooming in on pixels. Also we

must take into account the possibility that the racks

may not be uniformly separated and that the film may

have been skewed during the scanning process to dig-

itize it. We account for these last two with a small per-

centage uncertainty of 0.5% since the rakes appear to

be relatively uniformly separated but there is a slight

skew apparent.

∆L ′ is due to the fact that the track is several pixels

wide and it is difficult to correctly select the centre of it

for the circle parameter calculation. At first, centre of

moment calculations were used to locate the centre of

the track. This was implemented, by taking the aver-

age position of pixels weighted by the intensity of the

pixels for a small neighbourhood about the track [3].
It yielded incorrect results since the tracks are formed

of non-uniform bubbles. For our estimate of error it

was found the best we can do is zoom in on a track and

take the median pixel in a track cross-section, thus we

suppose an initial measurement error of 1/e of a pixel.
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The uncertainty still suffers from choice of a selec-

tion of points by a human user. In particular, tracks

that are nearly straight will have a high uncertainty, as

the perpendicular bisectors approach being parallel.

To reduce this an average of multiple circle parame-

ters are taken by selecting many points along a track.

This reduces the uncertainty by a factor of
p

N for N

averages.

We thus use propagation of error on equations 9–

11 and take the average to calculate uncertainty, us-

ing ∆L ′, ∆smm , and ∆sp x as measurement errors. It

has been pointed out [1] that we must falsely assume

a gaussian distribution of radii uncertainty in order to

use propagation of error, however the deviation from

Gaussian should be of order one over the radius and is

inconsequential to our level of accuracy.

6 Conclusion

In conclusion it was shown that using a computer to

increase accuracy in momentum measurement lead

to a positive validation of conservation of energy. Fur-

thermore, the slide projection table was calibrated to

1mm on the projection table is equivalent to 1.113±
0.0062mm in the bubble chamber. Without knowing

the uncertainty in the pion beam energy, an uncer-

tainty in this calibration is hard to define, though up-

wards of 30 trial averages reduces the standard error

by a factor
p

30. It was found that the energy-distance

relation suffers a great degree of uncertainty due to the

accuracy and consistency the tracks widths are mea-

sured to, and also since the slides are not uniformly

exposed, but it does help identify some particles.

Possible improvements to the computer program,

named Bubbles to Momentum (BuM), would be to

work on a better track centroid finder to make mea-

surements swifter, more consistent, and less user de-

pendant.
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Identifier |p| (GeV/c) ∆|p| (GeV/c) px (GeV/c) py (GeV/c) ∆px (GeV/c) ∆py (GeV/c) Particle

View: 1 Film: 164 Slide: 872, Figure 2

(1) 9.704 0.6358 9.703 -0.185 0.636 0.0272 π+

(2) 1.163 0.0104 1.158 0.115 0.0105 0.00312 π+

(3) 7.505 0.2308 7.501 -0.271 0.231 0.0124 p

(4) 0.256 0.0055 0.256 0.002 0.00551 0.0007 π+

(4’) 0.240 0.0093 0.231 0.067 0.0096 0.0041 –

(5) 0.468 0.0112 0.444 0.151 0.0117 0.0058 p̄

(6) 0.115 0.0223 0.108 0.042 0.0233 0.015 µ+

(7) 0.426 0.0107 0.390 -0.173 0.0113 0.0071 π+

(8) 0.180 0.0032 0.180 0.0155 0.0032 0.0005 π−

(Y) 0.716 0.0126 0.700 0.154 0.0129 0.0058 Λ0 (+1S )
(Z) 0.592 0.0114 0.571 -0.158 0.0117 0.0072 K 0 (−1S )
(W) 0.114 0.0340 0.113 0.020 0.0343 0.0222 νµ

View: 2 Film: 254 Slide: 810, Figure 3

(9) 10.330 0.1789 10.330 0.134 0.179 0.0045 π+

(10) 0.265 0.0291 0.231 0.130 0.0305 0.0243 π+

(10’) 0.265 0.0284 0.212 0.159 0.0295 0.0265 –

(11) 3.791 0.6659 3.648 1.033 0.686 0.326 K + (−1S )
(12) 0.208 0.0075 0.152 0.142 0.0075 0.0074 µ+

(13) 0.054 0.0011 0.0166 -0.052 0.0006 0.0012 π−

(14) 0.771 0.0601 0.748 -0.189 0.0617 0.0248 p

(14’) 0.772 0.0776 0.761 -0.132 0.0787 0.0249 –

(15) 0.894 0.0465 0.868 -0.215 0.0477 0.0184 π+

(Q)* 0.134 0.0749 -0.106 0.083 0.0921 0.0309 π−/π0

(R) 0.062 0.0303 0.060 0.016 0.0305 0.0275 νµ
(T) 0.802 0.0593 0.765 -0.241 0.0617 0.0248 Λ0 (+1S )
(S) 5.739 0.7069 5.685 -0.788 0.7123 0.3278 π0

Table 1: Shown are the measurement of momentum of tracks from the two slides analyzed, and the inferred

momentum of invisible particles. * Track (Q) may be mixture of two particles, likely π− and π0.
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Identifier µ (R. ion) π (R. ion) K (R. ion) p (R. ion) Width (mm) (±0.40mm)

View: 1 Film: 164 Slide: 872, Figure 2

(1) * 1.00 * * 1.14

(2) 1.03 1.01 1.02 1.28 2.23

(3) 0.97 1.00 1.03 1.01 1.22

(4) 1.01 1.08 3.19 8.67 1.87

(5) 0.99 0.99 1.59 3.35 2.01

(6) 1.37 1.66 9.95 * 2.21

(7) 0.99 0.99 1.61 3.43 1.65

(8) 1.12 1.28 5.61 16.17 1.75

View: 2 Film: 254 Slide: 810, Figure 3

(9) * 1.00 * * 1.14

(10) 1.01 1.07 3.04 8.17 1.92

(11) 0.97 1.00 1.03 1.01 1.99

(12) 1.05 1.15 4.36 12.31 1.34

(13) 3.28 5.03 * * 1.80

(14) 1.02 1.00 1.14 1.79 1.19

(15) 1.02 1.00 1.11 1.69 1.11

Table 2: Shown are the relative ionizations for the tracks under the assumption of different particle types as

interpolated onto figure 1. A value of 1 is minimum ionizing implying the track line should be very thin, with

large spacing between bubbles. The incoming pions are defined as the reference point for minimum ionizing

tracks. There is an * for values off-the-scale in figure 1, and for known particle types (the incoming pions). The

widths of the tracks are an attempt to correlate relative ionization with track thickness, the uncertainty is an

estimate based on the human eye’s ability to correctly choose the boundary of the track.


