Spinning Top Mechanics

Joshua G. Albert

(C)March 24, 2013

Contents

1 Introduction

1 Introduction

Observe figure 1. $x_{1} y_{1} z_{1}$ are the coordinates of space in which the top lives. xyz are the coordinates attached to the top's principle axes. Define the line of nodes, ON, as the intersection of the $x y$ plane and $x_{1} y_{1}$ planes. Thus ON must be perpendicularto z and z_{1} always. Since z_{1} is fixed, a change in ϕ corresponds to a rotation of z about z_{1}, and $O N$ rotates z_{1}, henceit measures the precession of the top about z. ON will remain fixed for a change in θ, hence we say θ measures the lean of the top withr espect to z_{1}. Finally, ON will remain fixed for a change in ψ and it corresponds to a rotation of the top about z, hence we call it the spin angle. These are summarized,

$$
\begin{align*}
\phi & \text { precession, } \tag{1}\\
\theta \rightarrow & \text { lean, } \tag{2}\\
\psi \rightarrow & \text { spin. } \tag{3}
\end{align*}
$$

Note that N is defined to point in the direction such that $\left(z_{1}, z, N\right)$ is right handed, or that $z_{1} \times z$ points in the direction of N . We can then write the angular velocities of these angles as,

$$
\begin{align*}
\omega_{\phi} & =\dot{\phi} \hat{z}_{1}, \tag{4}\\
\omega_{\theta} & =\dot{\theta} \hat{n}, \tag{5}\\
\omega_{\psi} & =\dot{\theta} \hat{z} . \tag{6}
\end{align*}
$$

We wish to write these in the $x y z$ system by pro-

Figure 1: Shown is the schematics of a top. ON is called the line of nodes where $O x y$ and $O x_{1} y_{1}$ intersect.
jecting the above equations 4-6 onto the $x y z$ basis. Looking at figure 2, we have that,

$$
\begin{align*}
\hat{z}_{1} & =\cos \left(\frac{\pi}{2}-\psi\right) \sin (\theta) \hat{x}+\sin \left(\frac{\pi}{2}-\psi\right) \sin (\theta) \hat{y}+\cos (\theta) \hat{z} \\
& =\sin (\psi) \sin (\theta) \hat{x}+\cos (\psi) \sin (\theta) \hat{y}+\cos (\theta) \hat{z} \tag{7}\\
\hat{n} & =\cos (-\psi) \hat{x}+\sin (-\psi) \hat{y} \\
& =\cos (\psi) \hat{x}-\sin (\psi) \hat{y} . \tag{8}
\end{align*}
$$

Using equations 7 and 8 in equations 4-6 we get that,

$$
\begin{align*}
& \omega_{\phi} \cdot \hat{x}=\dot{\phi} \sin (\psi) \sin (\theta) \tag{9}\\
& \omega_{\phi} \cdot \hat{y}=\dot{\phi} \cos (\psi) \sin (\theta) \tag{10}\\
& \omega_{\phi} \cdot \hat{z}=\dot{\phi} \cos (\theta) \tag{11}
\end{align*}
$$

$$
\begin{align*}
& \omega_{\theta} \cdot \hat{x}=\dot{\theta} \cos (\psi) \tag{12}\\
& \omega_{\theta} \cdot \hat{y}=-\dot{\theta} \sin (\psi) \tag{13}\\
& \omega_{\theta} \cdot \hat{z}=0 \tag{14}
\end{align*}
$$

$$
\begin{align*}
& \omega_{\psi} \cdot \hat{x}=\omega_{\psi} \cdot \hat{y}=0 \tag{15}\\
& \omega_{\psi} \cdot \hat{z}=\dot{\psi} \tag{16}
\end{align*}
$$

Hence in the $x y z$ basis, which is fixed to the rotating top, we have the angular velocities to be,

$$
\begin{align*}
& \omega_{x}=\dot{\phi} \sin (\psi) \sin (\theta)+\dot{\theta} \cos (\psi) \tag{17}\\
& \omega_{y}=\dot{\phi} \cos (\psi) \sin (\theta)-\dot{\theta} \sin (\psi) \tag{18}\\
& \omega_{z}=\dot{\phi} \cos (\theta)+\dot{\psi} \tag{19}
\end{align*}
$$

Figure 2: Shown is a different perspective of figure 1. \hat{n} is the unit direction of ON.

