
 

1 

 

 1 

 2 

Monitoring Landscape Change in Multi-Use West-central Alberta, Canada using the 3 

Disturbance-Inventory Framework 4 

 5 

Julia Linke and Gregory J. McDermid 6 

 7 

Foothills Facility for Remote Sensing and GIScience, Department of Geography 8 

University of Calgary, 2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada 9 

 10 

Current Address for Corresponding Author 11 

Julia Linke 12 

Landscape Ecology Laboratory, 13 

Department of Ecology & Evolutionary Biology, 14 

University of Toronto 15 

25 Harbord Street,Toronto, ON, M5S 3G5, Canada 16 

Telephone: +1 (416) 946-7886 17 

Fax: +1 (416) 978-3542 18 

E-mail: julia.linke@utoronto.ca 19 

 20 

 21 

 22 

 23 

 24 

 25 

Submitted for publication in  26 

Remote Sensing of Environment 27 

April 30, 2012 28 

(in revised form July 11, 2012) 29 

*Manuscript

mailto:julia.linke@utoronto.ca
Julia
Text Box
This is the Accepted Author Manuscript before actual publication.  For the published version please go to Elsevier http://www.sciencedirect.com/science/article/pii/S0034425712002854 (Remote Sensing of Environment, Volume 125, October 2012, Pages 112-124). 



 

2 

 

Abstract 30 
 31 

Human disturbances are a major driver of biodiversity declines world-wide, and the intensely 32 

used Alberta forest landscape is no exception to this trend.  Monitoring of such large areas is 33 

typically conducted via multi-temporal land-cover maps from remote sensing, but automated and 34 

efficient procedures for reliable, operational applications have yet to be fully developed.  In an 35 

effort to contribute to this need, we developed an innovative approach to landscape monitoring: 36 

the disturbance-inventory framework, which is applied for the first time as described here to 37 

monitor annual changes in an 8800-km
2 

multi-use landscape in west-central Alberta, Canada.  38 

Using this framework, we (1) report on the spatio-temporal distribution of industrial disturbances 39 

such as harvesting cutblocks, oil and gas wells, coal mines, and road/pipelines; and (2) track the 40 

associated annual changes in land-cover composition and configuration between 1998 and 2005.    41 

To enable spatially explicit analyses within the study area, we divided it into 178, 49km
2
-square 42 

landscape cells. The overall area-based annual rate of change of 0.62% for this multi-use may be 43 

considered moderate compared to other regions, where change was mainly shaped by a single 44 

use, i.e., forestry.  However, the spatially explicit nature of our analysis revealed that the eastern 45 

half of the study area is subject to considerably higher rates of change, mainly due to the 46 

concurrent appearance of disturbances from forestry and the oil and gas industry.  The western 47 

half, by contrast, is more restricted by rugged terrain and fewer roads. The average distance to 48 

disturbance features across the entire study area decreased from 1500 m to 1200 m over the 49 

seven years. Total forest area, mean and largest patch size, and mean shape index all decreased 50 

consistently over the same period.  The detected rapid change and associated fragmentation call 51 

for ongoing monitoring of this and other multi-use landscapes, which could be undertaken using 52 

this framework.  53 
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1.  Introduction 54 

Human activities have become the source of much contemporary landscape change, in part by 55 

altering the amount, spatial pattern, and character of global vegetation communities (Houghton 56 

1994, Lambien et al. 2001, Foley et al. 2005). These human-induced modifications have been 57 

identified as a major cause of biodiversity decline and species endangerment (Hansen et al. 2001, 58 

Balmford et al. 2003), stimulating a growing emphasis on monitoring programs designed to 59 

reveal the consequences of anthropogenic development on natural systems.  The public lands that 60 

comprise much of Alberta‟s Rocky Mountain foothills are no exception to this global trend, and 61 

are an example of a fast-changing forested landscape that supports intensive use by a variety of 62 

resource-extraction industries, including forestry, coal mining, and petroleum development 63 

(Schneider et al. 2003, Linke et al. 2005, 2008).  At the same time, this area is host to native 64 

wildlife and iconic species, including the threatened woodland caribou (Rangifer tarandus 65 

caribou) (ASRD/ACA 2010a) and the grizzly bear (Ursus arctos), recently also designated as 66 

threatened in this Canadian province (ASRD/ACA 2010b).  These issues greatly contribute to the 67 

monitoring obligations borne by managers and regulators in this landscape (AGBRP 2008) and 68 

evoke inquiries regarding the distribution, extent and proximity of industry-related disturbances 69 

and their associated changes in landscape structure over time.         70 

Remote sensing has long been considered an essential tool for monitoring landscape 71 

change (Skole et al. 1997, Kerr and Ostrovsky 2003, Turner et al. 2003) but the challenges 72 

associated with moving from change detection to landscape monitoring are complex.  In essence, 73 

landscape monitoring involves the comparison of landscape conditions across two or more dates 74 

in time, and may involve the use of landscape pattern analysis (LPA) (O‟Neill et al. 1988, Li and 75 

Wu 2007) to quantify transitions in structural composition (i.e., area of cover-types; e.g., Fry et 76 
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al. 2011) and/or configuration (i.e., edge density, patch connectivity; e.g., Southworth et al. 77 

2002).  While various remote-sensing techniques exist for detecting and analyzing change 78 

(Coppin et al. 2004, Lu et al. 2004, Blaschke 2005, Desclée et al. 2006), conventional 79 

approaches commonly rely on independently classified land-cover maps (i.e., post-classification 80 

analysis), often with little attention paid to issues of classification accuracy (Hess 1994, Newton 81 

et al. 2008) and the propagation of errors (Singh 1989, Mas 2005).  Spurious changes are 82 

differences between maps that are not caused by real changes on the ground, but rather by 83 

classification errors arising from differences in atmosphere, illumination, vegetation phenology, 84 

soil moisture, satellite-sensor configuration, image-to-ground registration, map-to-map 85 

alignment, and classification performance between two or more dates (Yuan and Elvidge 1998, 86 

Carmel et al. 2001; Mas 2005).  While propagation of classification errors were not viewed as a 87 

serious hindrance to LPA in early work (e.g., Wickham et al. 1997), more recent studies have 88 

demonstrated their large and mainly unpredictable impact on landscape pattern indices (Brown et 89 

al. 2000, Shao et al. 2001, Langford et al. 2006), calling into question the reliability of nearly 90 

every LPA study ever published (Gergel 2006, Langford et al. 2006).   91 

While post-classification change analysis may work well under conditions where changes 92 

are reported in an aggregated, aspatial manner (Vogelman et al. 2001, Ahlqvist 2008), there is a 93 

growing need to identify the pattern, nature, and magnitude of change more explicitly (Xian et 94 

al. 2009), and to incorporate the temporal variability of landscape pattern dynamics into 95 

ecological studies (Cushman and McGarigal 2006).  As such, we require the development of 96 

processing strategies capable of producing consistent, multi-temporal series of land-cover 97 

products, thereby enabling reliable and repeatable landscape monitoring (e.g., Gillanders et al. 98 

2008, Shao and Wu 2008).   99 
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An alternative to post-classification analysis is map updating, wherein an existing map 100 

product (i.e., reference map T0) is updated to a second point in time (Tn) through its 101 

reclassification only within the regions of identified change between the two dates (Change Tn – 102 

T0).  This strategy precludes the occurrence of any spurious change outside the areas being 103 

updated, thereby increasing the thematic and spatial consistency of map products across the 104 

entire monitoring horizon (McDermid et al. 2008, Fry et al. 2011).  Despite these advantages, 105 

map updating is not free of challenges.  For example, slight spatial mismatches between the 106 

boundaries of change regions and existing features in the reference map occur regularly, arising 107 

from the fact that it is practically impossible to delineate dynamic objects in a spatially consistent 108 

manner across two or more time periods (McDermid et al. 2008).  These mismatches introduce 109 

small, spurious artifacts, such as slivers and gaps, in the updated or backdated maps (McDermid 110 

et al. 2008), and are similar to those generated from polygon-overlay operations in Geographic 111 

Information Systems (GIS) analysis (Goodchild 1978; Chrisman 1989).  Despite their small size, 112 

these slivers and gaps can seriously distort the rate and direction of change trajectories for 113 

landscape pattern indices, thereby compromising their ability to monitor trends over time (Linke 114 

et al. 2009a).   115 

While accurate, precise, and consistent map-updating of land-cover polygons is 116 

undoubtedly best-achieved through human image-interpretation and manual editing (e.g., 117 

Loveland et al. 2002, Sohl et al. 2004, Feranec et al. 2007), this is an exceptionally labor-118 

intensive process, and not feasible for monitoring projects extending over large areas and/or 119 

frequent time intervals.  Automated processing strategies for generating multi-temporal map 120 

series that reduce labor costs while maintaining high standards of accuracy and consistency are 121 
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still highly sought after, and remain “the Holy Grail of change detection” (Loveland et al. 2002 122 

p. 1098).     123 

In an effort to contribute towards this goal, we have developed an innovative approach to 124 

multi-temporal mapping and landscape monitoring: the disturbance-inventory (D-I) framework 125 

(Linke et al. 2009b, Linke and McDermid 2011).  The D-I framework enables the generation of a 126 

spatially consistent time series of land-cover maps in a semi-automated, repeatable manner; 127 

without the need for manual alterations of the boundaries of change regions.  It is designed to 128 

account for land-cover conversions specifically related to disturbance events and uses a 129 

combination of raster- and vector-operations in a GIS environment to: (1) store, classify, and 130 

manipulate dynamic objects (i.e., objects that appear, disappear, and/or change thematically over 131 

the monitoring horizon); and (2) seamlessly integrate these objects into an existing thematic map.  132 

In identifying the need for this research (McDermid et al., 2008), demonstrating the issues to be 133 

overcome (Linke et al. 2009a), and articulating the solution (Linke et al., 2009b; Linke and 134 

McDermid, 2011), we have developed a foundation for spatially consistent monitoring.  Our next 135 

goal is to demonstrate the application of the D-I framework in operational monitoring programs, 136 

and establish the value of our approach to projects that aim to understand the impacts of human-137 

induced disturbance on our natural landscapes. 138 

The objective of this paper is to present and discuss the results of a multi-temporal 139 

monitoring program designed to track changes in the multi-use foothills of west-central Alberta, 140 

Canada.  Specifically, we describe the spatio-temporal distribution of disturbance features 141 

brought about by industrial development, and track the associated annual changes in land-cover 142 

pattern for a large, 8800-km
2 

area between the years 1998 and 2005.  In order to make this paper 143 

self-contained, we first provide a background summary of the conceptual foundations of the D-I 144 
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framework.  Then, we describe the methods used for the change monitoring in this application, 145 

followed by the delivery of the monitoring results.  The paper concludes with a discussion of key 146 

findings and implications for future monitoring studies.   147 

 148 

2.  The D-I Framework for Multi-temporal Land-cover Mapping 149 

2.1 Basic Components, Workflow, and Output Products 150 

In order to generate a spatially consistent time series of land-cover using the D-I framework, two 151 

basic components are needed: (1) a reference map; and (2) a D-I GIS-vector layer (Figure 1).  152 

The reference map consists of a mosaic of non-overlapping map objects, wherein each object is a 153 

contiguous area sharing the same land-cover attribute.  This map represents land-cover 154 

conditions at time T0, and serves as the basis for any projections backward (T-n) (i.e., backdating) 155 

and forward (T+n) (i.e., updating) through time.  The disturbance inventory contains the full 156 

collection of dynamic objects observed over the monitoring horizon, wherein each is stored as a 157 

unique, discrete entity in a geospatial database, and represents an actual ground feature 158 

appearing, disappearing, and/or changing land-cover attribute between any successive time step 159 

(n) of the monitoring horizon (T-n to T+n).  Since the actual change agents captured here are 160 

generally rooted in natural or anthropogenic disturbances, the dynamic objects are 161 

interchangeably referred to as disturbance features.  These objects can be derived from a variety 162 

of bi-temporal change-detection methods, such as, for example, through semi-automated 163 

thresholding and segmentation of difference images (e.g., Franklin et al. 2001), and/or from 164 

digitized GIS layers based on manual photo-interpretation (e.g., Linke et al. 2009b).   165 

In order to serve as the means for updating and backdating the reference map, each 166 

dynamic object is classified with temporally relevant land-cover attributes for each time step 167 
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(LCn) of the monitoring horizon, which could be derived in a variety of manners, including 168 

standard multi-spectral image classification of the respective images.  Using these land-cover 169 

attributes, backdate and update layers are generated by integrating the D-I vector layer into the 170 

original reference map (T0), thereby replacing the spatially coinciding land-cover values for each 171 

respective instance in time (Tn) (Figure 1).  Classifying the dynamic objects with attributes, such 172 

as time of origin (i.e., disturbance year) and disturbance type, guides and constrains the 173 

temporally logical and consistent assignment of the land-cover attributes (LCn) using GIS 174 

decision-rules.  For example, the attribute „disturbance type‟ can imply the spatial overlay order 175 

of dynamic features, since disturbance entities are not always mutually exclusive, and can 176 

overlap one another in space and time (e.g., a wellsite, ID 6, or a road, ID 7, constructed on top 177 

of a forestry cutblock, ID 5 in Figure 1).  Storing the dynamic features in a manner that can be 178 

referenced in a temporally ascending order – i.e., according to their disturbance year and spatial 179 

overlay order – ensures their proper appearance in the backdate/update layers.    The time of 180 

origin is easily acquired from the bi-temporal change-detection results (i.e., the date when the 181 

dynamic feature first appears in the monitoring horizon).  Disturbance type may be derived from 182 

a combination of spectral, spatial, and contextual information using decision-tree classification 183 

approaches (Linke et al. 2009b).       184 

It is important to stress that the resulting temporally dynamic series of land-cover maps is 185 

not generated by modifying the geometry of the dynamic objects in the disturbance inventory, 186 

but rather by changing their land-cover attributes.  This allows a map feature to exhibit a variety 187 

of dynamics over time, as illustrated in Figure 1, including appearance (e.g., new wellsite – 188 

object ID 6 corresponding to feature C – first arises in backdated map T-1), disappearance (e.g., 189 

old cutblock – object ID 1 corresponding to feature B – is removed in updated map T+2), 190 
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persistence (e.g., old cutblock –object IDs 1, 2, and 3 corresponding to feature B – remains 191 

„shrub‟ between T-2 and in T-1), and succession (e.g., new cutblock – object IDs 4 and 5 192 

corresponding to feature A – changes from „barren‟ to „herb‟ stage between backdated map T-1 193 

and reference map T0).  Natural succession and disturbance events can however also affect the 194 

location and shape of a map feature over time, which practically occurs through the gain or loss 195 

of its parts and therefore constitutes additional important dynamics such as feature shrinkage and 196 

expansion.  Since the D-I framework maintains stable geometries for each dynamic feature over 197 

the monitoring horizon, it accomplishes these dynamics by treating each gained or lost part as a 198 

unique dynamic object in the inventory.  A single map feature can therefore be comprised of 199 

several adjacent dynamic objects, each with a different time-of-origin, enabling a feature to 200 

expand (e.g., new cutblock – ID 4 corresponding to feature A at T-2 – expands by T-1 due to a 201 

change in land-cover value of adjacent dynamic object ID 5 from „forest‟ to ‟barren‟) or to shrink 202 

(e.g., old cutblock – object IDs 1, 2, and 3 corresponding to feature B at T-1 – decreases in size by 203 

T0 since object ID 2 was not existing in the reference map, and further shrunk by T+1 due to the 204 

conversion of „shrub‟ to „forest‟ dynamic object ID 3) over the land-cover map series (Figure 1).   205 

In summary, the D-I framework generates thematically and spatially consistent time 206 

series of land-cover maps by: (1) altering the thematic attributes of the reference map only in 207 

areas of change via spatially stable dynamic objects; and (2) maintaining all other areas of the 208 

map in their original condition (i.e., static objects) over the entire monitoring horizon.  While 209 

this approach does nothing to fix classification errors that may exist in the original reference 210 

map, it limits the introduction of new errors that would then propagate through the rest of the 211 

analysis.  As a result, the map series serves as an appropriate basis for spatially explicit multi-212 

temporal LPA of the evolving patch mosaic.  While used as a basic component for multi-213 
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temporal map generation, the disturbance inventory corresponds to the entire extent of change 214 

observed over the monitoring horizon, and hence constitutes a product in and of itself; enabling 215 

the multi-temporal analysis of all detected disturbances. 216 

* Figure 1 here * 217 

 218 

2.2 Framework Criteria and Conditions for Seamless Integration of Dynamic Objects 219 

The quality of the multi-temporal map series generated by the D-I framework is a function of the 220 

accuracy and consistency of both the reference map and the disturbance inventory.  Since any 221 

spatial or thematic errors in the reference map, outside the regions of change will remain 222 

unaltered throughout the entire time series, they will not affect landscape change analyses 223 

performed on the generated map series (Linke et al. 2009a).  However, they can create 224 

systematic under- or over-estimates of land-cover composition or configuration, and should 225 

therefore be corrected in advance if the reference map is judged to be of sub-standard quality.  Of 226 

greater concern are errors within the disturbance inventory, since these can reduce the reliability 227 

of the final map series for monitoring purposes, causing under- and/or over-estimates of the area 228 

changed.    The selection of minimum mapping units, appropriate for the types of dynamic 229 

objects to be detected from the source imagery, in combination with robust change-detection 230 

methods (Sundaresan et al. 2007, Walter et al. 2004), are general criteria to be followed and are 231 

also important for this framework. 232 

  Rigorous application of robust change-detection algorithms will however not preclude 233 

spatial mismatches between the boundaries of dynamic objects and those of objects existing in 234 

the original reference map, hereby hindering seamless integration of the dynamic objects during 235 

the backdating and updating process, and therefore leading to spurious artifacts in the final maps.  236 
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In cases when the boundary of a dynamic object undershoots that of a spatially coinciding object 237 

(mismatches b, c, and d, Figure 2) or adjacent object (mismatches e, Figure 2) of the reference 238 

map, spurious slivers or gaps can arise in the backdated or updated map products.  In cases of 239 

overshoots of a spatially coinciding object (mismatch a, Figure 2) or an adjacent object 240 

(mismatch f, Figure 2) of the reference map, spurious stretches or encroachments can 241 

respectively manifest themselves in the final map products.  These artifacts are in essence 242 

intersect objects created by the mismatch between vector outlines of the dynamic objects and 243 

those of the objects from the reference map (Figure 2). 244 

In order to suppress such small-but-significant artifacts (McDermid et al. 2008, Linke et 245 

al. 2009a), the boundaries of the dynamic objects need to be conditioned before the actual map 246 

updating or backdating can be performed.  Two assumptions apply for such conditioning:  (1) the 247 

object boundaries of the reference map should be treated as correct, and dynamic-object 248 

boundaries must adhere to them; and (2) all intersect objects narrower than an operator-specified 249 

minimum mapping width (MMW) are assumed to originate from boundary mismatches and are 250 

therefore treated as spurious (Linke and McDermid 2011).    This assumption consequently also 251 

determines the narrowest width for which a dynamic object will be detected.  The MMW can be 252 

determined through a visual inspection of boundary mismatches and the respective image pairs 253 

from which the dynamic objects were derived, thereby balancing the omission of small dynamic 254 

objects (in case of a larger MMW) against the commission of spurious change artifacts (in case 255 

of a smaller MMW).  The value of the MMW is expected to be no greater than that published for 256 

standard photo-interpretation guidelines (Loveland et al. 2002), and generally ranges between 257 

two and four pixels (e.g., Linke et al. 2009).    The actual boundary-conditioning can be 258 

accomplished using automated GIS tools by first creating a new temporary vector database of all 259 
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intersect objects, created by first intersecting the dynamic-objects layer with the vector outlines 260 

of the reference map, and then trimming and expanding the dynamic objects with these intersect 261 

objects, following specific proximity and MMW constraints (e.g., Linke et al. 2009).    Applied 262 

properly, these boundary-conditioning rules enable the seamless integration of dynamic objects 263 

derived from either automated or manual approaches. 264 

    * Figure 2 here * 265 

3. Landscape Monitoring in West-central Alberta, Canada: Materials and Methods 266 

3.1 Study Area 267 

The 8721-km
2
 study area is located in the west-central core of the Alberta foothills of western 268 

Canada (Figure 3), just east of Jasper National Park.  The area is situated south of Hinton and is 269 

occupied primarily by closed-canopied, pure- and mixed-coniferous (Picea glauca, Picea 270 

engelmanii, Pinus contorta, Abies lasiocarpa) and deciduous (Populus spp.) forests (Strong 271 

1992, Beckingham et al. 1996).  The region encompasses an elevation gain from about 1000m on 272 

the east, to about 2400m along its western border.  Six main types of disturbances dominate and 273 

shape the study area.  These are: (1) cutblocks created by forest clear-cutting; (2) surface or 274 

open-pit mines arising from coal extraction; (3) wellsites, which consist typically of a gas well 275 

surrounded by a ~1-ha patch of cleared terrain; (4) pipelines, for transporting oil and gas along 276 

~30m-wide herbaceous corridors; (5) roads, ranging in size from one-lane dirt or gravel roads to 277 

multi-lane highways; and (6) burns from fires. Five-meter-wide seismic lines cut for oil and gas 278 

exploration also form part of this landscape (Linke et al. 2008), but are not monitored in this 279 

study, since they are not discernible from the medium-resolution Landsat imagery used to 280 

construct the time series (described below).   281 

3.2 Data Sets 282 
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Annual land-cover maps were generated using the D-I framework for the years between 1998 283 

and 2005 (Figure 3).  The reference map used for this process consisted of an object-based map 284 

depicting 10 basic land-cover classes (upland trees, wetland trees, upland herb, wetland herb, 285 

shrubs, barren land, water, snow/ice, cloud, shadow) for the summer of 2003 with an overall 286 

accuracy of 91.8% (McDermid 2005).  The D-I vector layer was created using annual Landsat 287 

Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) summer images (path 288 

45/row 23).    This disturbance inventory stored vector entities depicting the unique disturbance 289 

objects that arose or changed between 1998 and 2005, and recorded the year of origin, 290 

disturbance type, and land-cover class for each annual time step as attributes (Figure 3).  Objects 291 

with a year-of-origin of 1998 represented disturbance features that pre-dated the monitoring 292 

horizon, and hence together represented the cumulative collection of existing disturbance objects 293 

up to 1998.  All other objects, with years-of-origin between 1999 and 2005, constituted annual 294 

disturbances that originated in each respective year.  Areal disturbance features (i.e., cutblocks, 295 

mines, and natural fires) were derived through automatic segmentation of manually thresholded, 296 

bi-temporal difference layers using the Enhanced Wetness Difference Index method of change 297 

detection (Franklin et al. 2001).  Manual delineation of the same imagery was used for the linear- 298 

(i.e., roads and pipelines) and point-based (i.e., well sites) disturbance features.  All detected 299 

disturbances represented vegetation-replacing changes, transitioning primarily from forest cover 300 

type to barren or herbaceous types at the time of origin, depending on the type of disturbance.  301 

The disturbance inventory was assessed as having overall accuracies of 100% for change 302 

detection, 98% for disturbance-type classification, and 80% for land-cover classification (Linke 303 

et al. 2009b).    A MMW of 60m for adjacent and 120m for coinciding features was applied for 304 

boundary conditioning of the disturbance objects; however, roads, pipelines and wellsites were 305 
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exempt from the MMW constraint, since they were absent from the reference map and originated 306 

from manually verified delineation (Linke et al. 2009b). 307 

     * Figure 3 here * 308 

3.3 Analysis of Disturbance Features and Land-cover Pattern 309 

We calculated annual rates of change across the study area as an indication of overall multi-310 

temporal changes occurring in this selected Foothills landscape.  With the disturbance inventory 311 

representing all vegetation-replacing changes occurring of the study area, annual rates were 312 

calculated from the difference in area (expressed in hectares) occupied by all cumulative 313 

disturbance objects existing between two consecutive years, and then standardized by total extent 314 

of the study area (expressed as km
2
), leading to a summary statistic measured in ha/km

2
/yr.  315 

Given that one km
2
 equals 100 ha, this summary statistic for annual rate of change is equivalent 316 

to the percent area of change per year relative to the total study area.  In order to summarize the 317 

spatial and temporal distribution of changes in disturbance features and in land-cover pattern, the 318 

study area was tesselated into equal-sized, non-overlapping square landscape cells (Figure 3).  319 

Each cell measured 49 km
2 

(i.e., 7 km x 7 km), for a total of 178 landscape units. The cells 320 

coincided with a grid previously established for grizzly bear DNA hair-sampling in the study 321 

area (Boulanger et al. 2005, 2006) in order to enable the inferences of relationships that we will 322 

report in a subsequent study.  The selected cell size achieved a balance between sample size, 323 

spatial detail (smaller extent yields more samples and higher spatial detail) and boundary effects 324 

(larger extent reduces the relative occurrence of artificially truncated landscape patches) (Leitão 325 

et al. 2006).  Mean elevation and terrain ruggedness (the standard deviation of elevation) were 326 

computed from a 30 m digital elevation model (DEM) as supplemental information for each 327 

landscape cell.  The DEM is a commercial model from the Canadian company DMTI Spatial, 328 
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and acquired for this study through an academic agreement with the University of Calgary 329 

library.  The model was created through interpolating the National Topographic Database 330 

1:50,000 digital map contours, contours, spot heights, and water body polygons.  A smoothing 331 

algorithm (Hutchinson, 1989) was used to eliminate „stepping‟ and „pit‟ artifacts commonly 332 

associated with similar medium-quality elevation models.   333 

Disturbances were monitored by quantifying the density and proximity of all 334 

accumulated features between the years 1998 and 2005, based on the D-I vector layer (Table 1).  335 

The collection of disturbance objects existing in a particular year-of-interest was identified by 336 

selecting the year of origin (i.e., disturbance year) and then summarizing them both 337 

cumulatively, to represent total disturbance, as well as annually, to represent new disturbances.  338 

All cumulative estimates were derived by creating spatially explicit temporary maps using 339 

ArcGIS 9.3 (Esri 2008).  These temporary maps were designed to avoid overestimating the total 340 

area of disturbance that could arise from overlapping disturbance features (e.g., a mine that was 341 

established over a previously harvested cutblock area).  342 

    * Table 1 here * 343 

Specifically, total cumulative disturbance density was measured as the proportion of area 344 

occupied by all disturbance types for each landscape cell present by a given year, expressed in 345 

ha/km
2
 (Table 1). In order to demonstrate the disturbance dynamics from year to year, the 346 

density of annual disturbances was calculated by summing all the disturbance objects originating 347 

in each respective year.  Although these indicators were strictly structurally based, and assumed 348 

(conservatively) that the actual area impacted by any given disturbance type was the same across 349 

all disturbance types, they were chosen for their simplicity as a measure of overall disturbance 350 

magnitude. Densities of the specific disturbance types were computed cumulatively for the years 351 
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1998 and 2005, using standard indicators such as the areal proportion of cutblocks and surface 352 

mines (ha/km
2
), density of wellsites (#/km

2
) and linear density of roads and pipelines (km/km

2
).  353 

For additional analytical insight, the size and number of cutblocks were also computed (Table 1).  354 

Natural fires were not reported as part of this list, since there was only one occurrence which 355 

occupied parts (340 ha) of one southern landscape cell in the year 2001.  Disturbance proximity 356 

was represented as the mean nearest-neighbour distance to disturbance features within each 357 

landscape cell, measured both for all cumulative disturbances existing in a given year, and for all 358 

annual new disturbances arising between years (Table 1).  The proximity calculations were 359 

performed through the generation of Euclidian-distance surfaces of 30m grain with Spatial 360 

Analyst within ArcGIS 9.3 (Esri 2008), wherein each grid cell stored the straight-line distance to 361 

the nearest disturbance feature.  In order to quantify the association between relief and human 362 

disturbance, we computed Pearson correlation coefficients (r), measuring the strength of the 363 

linear relationship, between total cumulative disturbance density, elevation and terrain 364 

ruggedness. 365 

For the summary of changes in land-cover pattern, this study focused on tracking four 366 

landscape-pattern metrics for each landscape cell over the seven-year monitoring horizon. As a 367 

simple measure of landscape composition, the area occupied by the dominant land-cover class in 368 

the region was selected and summarized as percent forest area (i.e., upland trees) based on its 369 

areal coverage of the landscape cell.  In order to track changes in landscape structure caused by 370 

disturbance, three independent measures of landscape configuration were selected from six 371 

parsimonious metric groups based on group strength (i.e., explanatory power) (Linke and 372 

Franklin 2006, Cushman et al. 2008), including mean patch size (average size of all patches 373 

within the landscape cell), largest patch index (the percent area occupied by the largest 374 
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contiguous patch within the landscape cell), and mean shape index (average compactness of 375 

patches).  These three metrics quantitatively capture different aspects of the aggregate properties 376 

of the mosaic of land-cover patches when calculated at the landscape level.  The metrics were 377 

calculated using Fragstats 3.3, software build 5 (McGarigal et al. 2002).  For brevity of 378 

presentation, the four metrics were presented in a spatially implicit fashion, tracking their mean 379 

values across the 178 landscape cells over the eight years of the monitoring time frame.  380 

However, for visualization of land-cover pattern change, one landscape cell was selected as an 381 

example for graphical display of its land-cover map, alongside the tracking of its metric values 382 

over time (Figures 3 and 8).  The  mean values for all indicators of disturbance features and land-383 

cover pattern were compared between 1998 and 2005, testing for significant differences using a 384 

significance level (α) of 0.05 in each of those metrics between the two years using one-tailed 385 

Welch‟s t-test, which allowed for unequal variances, using S-Plus statistical software (version 386 

8.0, Insightful Corp. 2007).  387 

 388 

4.  Results  389 

Over the seven-year monitoring horizon, the total area of change detected in the study area was 390 

385 km
2
, (i.e., 4.4 % of the study area), corresponding to a mean annual rate of change of 0.63 391 

ha/km
2
/yr (i.e., 0.63%/yr) (Figure 4).  Annual rates of change remained relatively close to the 392 

mean, with a maximum fluctuation of 22% (i.e., maximum rate of 0.77 ha/km
2
/yr) occurring 393 

between the years 2002 and 2003 (Figure 4).   394 

      * Figure 4 here * 395 

4.1 Temporal and Spatial Distribution of Disturbance Features between 1998 and 2005 396 
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Substantial change in disturbance density occurred over the seven-year time span, with the total 397 

cumulative disturbance density increasing by nearly 70%, from 6.3 to 10.7 ha/km
2
 (Table 2).  398 

Increases in disturbance density occurred primarily along the central and eastern portions of the 399 

study area, across 79 % of all landscape cells (Figure 5B).  A third of all cells exhibited mean 400 

rates of change above the overall average of 0.63% per year (i.e., 4.4 ha/km
2
 increase between 401 

1998 and 2005, Figure 5B), while over a fifth of all cells displayed mean rates above 1% per year  402 

(i.e., >7 ha/km
2 

increase between 1998 and 2005, Figure 5B).  Most of the disturbances occurred 403 

steadily over the years, with new, annual disturbances generally arising within the same or 404 

nearby landscape cells from year to year, and many exhibiting rapid rates of change: as high as 405 

16 ha/km
2 

(Figure 5C).  The variation in cumulative disturbance density in 2005 was high across 406 

the 178 landscape cells, with about 20% of all cells containing disturbance densities between 20 407 

and 42 ha/km
2
, and leaving only 11% of all landscape cells completely undisturbed along the 408 

western boundary (Figure 5A).   409 

    * Table 2 and Figure 5 here * 410 

The largest contributor to cumulative disturbance density and to the overall annual rate of 411 

change between 1998 and 2005 was of cutblock type.  Their cumulative density alone accounted 412 

for 47% of all disturbances in 1998, and 64% in 2005 (Table 2).  Over the seven years, the 413 

cumulative density of cutblocks more than doubled (~130% increase) across the study area, 414 

exhibiting a significant increase in mean density from 3 to 6.9 ha/km
2
 (Table 2), equating to an 415 

annual rate of change of 0.55 ha/km
2
.  With an average size of 20.9 ha (standard error of 0.43), 416 

the cumulative number of discrete features of this disturbance type increased by the same 417 

proportion as its area-based density estimate (i.e.,130%), growing from a total of 901 cutblocks 418 

in 1998, to 2055 in 2005.  This represented a number-based annual rate of change of about 1.9 419 
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cutblocks/100km
2
.  Cutblocks greatly expanded their occurrence from 58 to 85% of all landscape 420 

cells over that same time frame (Figure 6A).  Across these cells, cumulative cutblock density 421 

varied greatly, ranging up to 42 ha/km
2
 in 2005, with a similarly large range of density increases 422 

observed between the seven years (Figure 6A).  Surface mines occurred in only two localized 423 

regions, and extended in total over less than 7% of all landscape cells (Figure 6B).  Mines 424 

occupied an absolute area of 3621 ha in 1998 and 4790 ha in 2005, an increase of 32%.  Mines 425 

accounted for only a small overall portion of the annual rate of change, with a total increase of 426 

0.13 ha/km
2
 over the entire study area (Table 2) and an average annual rate of change of about 427 

0.02%.  However, individual landscape cells contained substantial cumulative mine densities up 428 

to 18 ha/km
2
 (Figure 6B).     429 

    * Figure 6 here * 430 

 Between 1998 and 2005, the average number of wellsites increased significantly by 7.1 431 

wells per 100 km
2
 from a cumulative density of about 10.7 to 17.8/100km

2
.  This represents a 432 

mean annual rate of change of about 1 site per 100km
2
, and a 67% increase in cumulative density 433 

between 1998 and 2005 (Table 2).   The overall occurrence of wellsites expanded slightly (i.e., 434 

well presence increased from 70 to 76% of all landscape cells, between 1998 and 2005), but most 435 

of the density increases were attributed to additional wells in cells already containing some level 436 

of this disturbance type.  This was particularly true of cells situated along the midline and eastern 437 

boundary of the study area (Figure 6C).  While wellsites reached a cumulative density above 100 438 

wells/100km
2
 in three landscape cells by 2005, the majority of cells containing this disturbance 439 

type remained at densities below 50 wells/100km
2
 (Figure 6C). However, density increases were 440 

above the overall rate of change for over half of all landscape cells containing wells (i.e., 59 of 441 

109 cells with density increases >7/100km
2
 between 1998 and 2005, Figure 6C), and six cells 442 
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exhibited density increases as high as five-times the overall rate of increase (increases 443 

>35/100km
2
 between 1998 and 2005, Figure 6C). Linear-disturbance features, such as roads and 444 

pipelines, already existed throughout the majority of the study area (>87% of all landscape cells) 445 

at the beginning of the monitoring horizon (Figure 6D), but their cumulative overall density 446 

increased by a fourth from an average of 0.56 to 0.70 km/km
2
 by 2005 (Table 2): a mean annual 447 

rate of change of 0.02km/km
2
.  Across individual landscape cells, cumulative densities varied 448 

considerately, ranging up to a maximum density of 2.6 km/km
2
 by the year 2005.  Net density 449 

increases varied considerately less for most landscape cells, with the majority of cells 450 

consistently gaining less than twice the mean annual rate of change (i.e., 0.26 km/km
2
 between 451 

1998 and 2005, Figure 6D).   452 

Accompanying the significant increase in cumulative disturbance magnitude was a 453 

statistically insignificant (p-value 0.15), but nevertheless considerable (i.e.,20%) overall increase 454 

in disturbance proximity of almost 300m (Table 2).  While proximities varied highly across 455 

space and time (Table 2, Figure 7A), the average distance between disturbance features 456 

decreased from about 1500 m in 1998 to 1200m in 2005.  With the exception of a few landscape 457 

cells, every portion of the study area experienced decreases in mean distance to disturbance, 458 

ranging from a few meters to as much as 2000 m (Figure 7A, B).  Furthermore, the number of 459 

landscape cells containing disturbances at an average distance of 200m or less increased 460 

substantially from three to 25 (Figure 7A) between 1998 and 2005.  The proximity to new 461 

annual-disturbance features was much lower, with mean distances of around seven km across the 462 

seven years. Proximity to new annual features was consistently greater than five kilometers in 463 

the southwestern portion of the study area, and was highest along the eastern half of the study 464 
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area, where landscape cells consistently exhibited mean distances of less than five km, but 465 

ranging as low as 410m (Figure 7C).   466 

     * Figure 7 here * 467 

4.2 Multi-temporal Change in Land-cover Pattern between 1998 and 2005 468 

Significant changes were observed for all four selected landscape pattern metrics, when 469 

comparing their mean values across all 178 landscape cells between 1998 and 2005 (Table 2, 470 

Figure 8).  The area occupied by forest (i.e., upland trees) averaged 80% across landscape cells 471 

in 1998, and decreased steadily from year to year to an average of 75.7% in 2005 (Table 2, 472 

Figure 8-3A).  Similarly steady annual decreases were exhibited for the mean values across   473 

measures of patch size, largest patch index, and mean shape index (Table 2, Figure 8-3B,C,D).    474 

Net relative decreases ranged from about 22% for mean patch size, 13% for largest patch size 475 

index, and about 2% for mean shape index (Table 2). 476 

     * Figure 8 here *  477 

Within individual landscape cells, landscape metrics were observed to decrease 478 

substantially more erratically and to a higher overall degree than the averages reported above.  479 

For example, a landscape cell exposed to a large increase in cumulative disturbance density of 480 

20.5 ha/km
2
 between 1998 and 2005 exhibited a steep decrease in forest area from 88 to 67.5% 481 

(Figure 8-1, 2, 3A).  Most of this change occurred between 1999 and 2003, and again between 482 

2004 and 2005 (Figure 8-3A).  The origins of these changes mainly constisted of new cutblocks, 483 

although new road segments were also constructed in 2000, 2002, and 2003, alongside new 484 

wellsites in 2000 and 2005 (Figure 8-1,2).    Accompanying these disturbances, the average size 485 

of all patches existing in the landscape cell decreased by 53%, from 56ha in 1998 to 26ha in 486 

2005 (Figure 8-3B). Patch shapes became more compact on average across the landscape, with a 487 
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reduction in shape index from 2.0 to 1.7 (Figure 8-3D).  While this example cell was already 488 

substantially dissected by disturbances in 1998, new roads and cutblocks further fragmented this 489 

cell, with the largest contiguous patch measuring only 17% in the time period following 2002 490 

(Figure 8-3C). 491 

492 
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5. Discussion and Conclusions  493 

5.1 Disturbances and Change between 1998 and 2005 494 

The D-I framework to landscape monitoring generated a complete collection of spatially and 495 

temporally discrete disturbance features for the foothills study area, which enabled the estimation 496 

of landscape change between 1998 and 2005.  Over this time frame, the region as a whole 497 

experienced a mean annual rate of change of 0.63%, leading to an increase in mean cumulative 498 

area covered by disturbances from 6.3 to 10.7 ha/km
2
.  As a means of comparison, the following 499 

mean annual rates of change were observed across a selection of other large-area monitoring 500 

studies in temperate forest ecosystems of North America:  501 

 0.25 %  between 1973 and 2008 in the Kakwa, an area situated north to the Foothills 502 

study area (White et al. 2011);  503 

 0.49% in interior British Columbia between 1975 and 1992 (Sachs et al. 1998); 504 

 0.53% in the Klamath-Siskiyou ecoregion, Oregon and California between 1972 and 505 

1992 (Staus et al. 2002);  506 

 1.19 % in the Oregon Cascades between 1972 and 1988 (Spies et al. 1994); and  507 

 between 0.5 and 1.2 % in Western Oregon over successive intervals between 1972 and 508 

1995 (Cohen et al. 2002).      509 

The mean annual rate of change detected in the Foothills study area would therefore be 510 

considered moderate by comparison.  Nevertheless, the tessellation of the Foothills area into 178, 511 

7-km square cells enabled the detection of very rapid change throughout considerate portions of 512 

the landscape, especially in the eastern half, where there were 38 cells with an observed annual 513 

change rate of over 1%.  Disturbance density increases did not appear to be limited by the 514 

occurrence of previously existing disturbances.  On the contrary, new disturbances were spatially 515 
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auto-correlated with existing disturbances, leading to high cumulative disturbance densities 516 

between 20 and 46 ha/km
2
 in the central and eastern portions of the study area.  Rugged terrain 517 

and high elevation were inversely correlated with disturbance density (Pearson correlation 518 

coefficient r > 0.7) across the cells, indicating that limited access along the western boundary 519 

constrained new disturbances in 21% of all cells, thereby adding more disturbance pressure on 520 

the more-accessible eastern and central portions of the study area.  521 

The dominant change agent cited in studies outside of Alberta was timber harvesting, 522 

while both the Kakwa and foothills areas located within the province contained substantial 523 

additional disturbance types.  In such multi-use landscapes, despite heavy apparent use, the 524 

overall annual rate of change may appear lower in comparison to other forest regions, for the 525 

sole reason that some disturbance types contribute relatively less area than timber cutblocks.  526 

This is due to both the relatively small size of oil and gas well sites, and the relatively low area- 527 

to-perimeter ratio of roads and pipelines.  While the Kakwa study undertook important long-term 528 

monitoring of the temporary and spatial dynamics of change caused by all disturbance types 529 

combined (White et al. 2011), a disturbance-specific analysis, enabled through the use of a D-I 530 

framework such as the one undertaken in this study, constitutes an essential step forward 531 

providing comprehensive monitoring results in such multi-use landscapes. 532 

Relative to the beginning of the monitoring horizon, cutblocks increased their cumulative 533 

density by 130%.  With an annual rate of change of 0.55%, new cutblocks were the largest 534 

contributor (87%) to the overall annual rate of change of 0.63%, and thereby constituted the 535 

highest-growing disturbance type across the study area.  Cutblocks passed from representing 536 

about half of all the area covered by disturbances at the beginning of the monitoring horizon, to 537 

representing nearly two-thirds by the year 2005.  While surface mines expanded over the seven 538 
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years, the disturbance was localized, and contributed just 3% of the overall annual rate of all 539 

change.  The remaining 10% of the overall annual rate of change (i.e., 0.06%/yr) was accounted 540 

by roads/pipelines and well sites, which also have a very low contribution to area-based metrics.  541 

Notwithstanding, these disturbance types exhibited substantial and significant increases between 542 

1998 and 2005 when their densities are represented by their length (km/km
2
), in the case of 543 

roads/pipelines, and by their number (#/100km
2
), in the case of wellsites.   544 

On a number-of-new-features basis, wellsites constitute the second fastest growing 545 

disturbance type in the Foothills, with an annual growth rate of 1 wellsite/100km
2
: slightly above 546 

half the annual rate exhibited by forestry cutblocks (i.e., 1.9 discrete cutblocks/100km
2
).    The 547 

mean cumulative density of 17.8 wells/100km
2
 in 2005 is well within the reported mean density 548 

for this area, as described by independent data for the entire province of Alberta for the year 549 

2008 (Lee et al. 2009), and which places this study area in the below 1 well/km
2
 category.  550 

Considering, however, that: (1) more than half of the landscape cells containing wellsites 551 

exhibited above-average annual rates, some of which were even above five-fold average rates; 552 

and (2) three landscape cells reached cumulative densities already above 1 well/km
2
 in the year 553 

2005; it can be speculated that the majority of this study area will move into the next provincial 554 

density category (1-2 wells/km
2
) over the coming decade.  Furthermore, the rate of cumulative 555 

wellsite development of 9.6% per year in the study area is higher than the average annual 556 

increase of 7.7% documented across the larger Boreal Plain ecoregion by Lee et al. (2009) 557 

between 1999 and 2008.  Finally, new roads and pipeline sections were added in support of the 558 

two fastest-growing industries – forestry and oil and gas – at an overall annual rate of 559 

0.02km/km
2
, with a fairly uniform overall distribution, to a cumulative density of 25% by 2005.       560 
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In summary, while the overall areal coverage by disturbances is moderate compared to 561 

other cited monitoring studies, the spatially explicit, disturbance-specific analysis demonstrated 562 

that a considerable portion of the study area is undergoing rapid change associated with a 563 

combination of forestry, oil and gas industry, and road/pipeline construction.  As a result, this 564 

area has become increasingly accessible to humans, as measured by disturbance proximity.  With 565 

a 300m decrease in the average distance to any disturbance feature over the seven-year 566 

monitoring horizon, the study area is rapidly becoming exposed to industrial development, 567 

leaving little room for wildlife to roam free and undisturbed.  Moreover, in 25 out of the 178 568 

foothills landscape cells (i.e.,14%), industrial development had reached a level in 2005 where 569 

any point within those cells was less than 200m away from a disturbance feature. 570 

5.2 Land-cover Patterns between 1998 and 2005 571 

The trajectories of the selected metrics of land-cover pattern overall reflected the increasing loss 572 

of mature forest, and the fragmentation of the foothills landscape mosaic due to the growing 573 

levels of cumulative disturbance.  The average percent forest area directly reflected the 4.4% 574 

total change, and decreased from 80% in 1998 to 75.7% by 2005.  At the scale of individual 575 

landscape cells, forest loss was more conspicuous in cells of high change, where, for example, an 576 

overall 20.5% change (i.e., 20.5ha/km
2
 cumulative density increase in disturbances between 577 

1998 and 2005) reduced the percent forest area from 88 to 67.5 over the seven years.      578 

The configuration of the foothills landscape exhibited consistent (i.e., for the average 579 

across the entire study area) and substantial (i.e., for individual landscape cells of high change) 580 

decreases in mean patch size, largest patch index and mean shape index, which have been well-581 

documented as part of the fragmentation syndrome, wherein increasing forest losses are mirrored 582 

by associated changes in these metrics (Tinker et al. 1998; Staus et al. 2002).  At such a 583 
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landscape scale, roads and clearcuts have been associated with landscapes displaying: (1) more 584 

simplified, compact, less convoluted shapes (i.e., lower mean shape index); and (2) dissected 585 

large patches and perforated forest matrix reducing the overall mean size of patches (e.g., Reed 586 

et al. 1996a,b, Tinker et al. 1998, Hawbaker et al. 2006).  When compared to other study regions 587 

exposed to much longer time frames of historic industrial development (e.g., Reed et al. 1996b, 588 

Hawbaker et al. 2006), the landscape heterogeneity and fragmentation of the foothills study area 589 

was relatively low in 1998, given the overall large expanse of forest cover.  However, it is 590 

exactly in such landscapes where fragmentation impacts are relatively high (Linke et al. 2008).  591 

This could be observed in individual high-change landscape cells, where large decreases above 592 

50% for mean patch size and 40% for largest patch index were observed over the fairly short 593 

time frame of seven years.  This alone is a compelling reason to further monitor the Alberta 594 

foothills and similar multi-use forest areas, and to start investigating the possible systemic 595 

fragmentation impacts of the combined disturbances on the ecosystem.  While the results of the 596 

land-cover pattern analysis presented here are sufficiently alarming, any further interpretations 597 

need to account for the fact that the area covered by disturbances in this study was computed 598 

conservatively, by only including the actual area covered as indicated by the satellite images.  599 

Frequently, buffers in the range up to 500m or more are added to estimate the effective 600 

disturbance area based on assumptions or wildlife probability distribution models (e.g., Leu et al. 601 

2008, Lee et al.  2009), and would certainly have resulted in even higher disturbance and 602 

fragmentation rates.  603 

604 
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5.3 Framework Contribution and Future Research  605 

The D-I framework enabled the analysis of change by specific disturbance types, as well as the 606 

consistent representation of land-cover pattern over a multi-temporal time span.  The boundary-607 

conditioning rules of the framework are not only essential to the suppression of error propagation 608 

(Linke et al. 2009), they also enabled the accommodation of different data types and of manual 609 

vs. automated origin, as was the case in this study.  The framework also forms an adaptable basis 610 

that is suitable for monitoring of different applications across landscapes, and can incorporate 611 

input from remote sensing data, and/or additional GIS data sources. Furthermore, with all 612 

disturbance objects represented as discrete entities over space and time, the D-I database 613 

provides a flexible and straightforward approach to landscape monitoring.  Spatially explicit 614 

layers for each disturbance type and time step can be independently generated or transparently 615 

combined, depending on the application.  Such layers could then be used as inputs for spatially 616 

explicit wildlife distribution models, or simply serve as a more detailed analysis of the structural 617 

characteristics of the human footprint (e.g., cutblock size, shape, frequency distribution etc).   618 

The disturbance-specific analysis in this paper clearly documented the rapidly changing 619 

landscape in the study area, caused mainly by forestry and oil and gas exploitation, and the 620 

road/pipeline developments that accompany these industries.  The rates of change and the 621 

associated landscape fragmentation call for ongoing monitoring of this and other similar multi-622 

use landscapes.  In future studies, we believe that important insight will be gained by studying 623 

the independent and cumulative effects of the specific disturbance types on landscape pattern 624 

change.  The D-I database contains all the information necessary for spatially explicit modelling 625 

exercises designed to reveal the effects of different combinations of disturbance types.  Last but 626 

not least, investigations into the systemic impacts of the combined disturbances on wildlife 627 
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populations, based on outputs such as those presented in this paper, seem crucial for effective 628 

environmental management and conservation.  629 

630 
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List of Figures 
 

Figure 1. The disturbance-inventory framework updates and backdates an object-based land-

cover map at time T0, which constitutes the reference for the monitoring horizon (T-n to T+n).  

Changes are depicted with the use of dynamic objects (DO), that are detected as discrete entities 

of change, stored in a GIS-vector layer (i.e., disturbance inventory), and classified with their 

disturbance type, time of origin (i.e., disturbance year), and temporally relevant land-cover 

values for each time step (LCn).  These land-cover values are used to generate backdate and 

update layers for each time step, and then used to replace the spatially coinciding entities in new 

versions of the reference map representing spatially consistent depictions of landcover through 

time.  The framework handles all the basic landscape dynamics, including feature appearance 

(e.g., feature C at T-1), disappearance (e.g., feature B at T+2), persistence (e.g., feature A between 

T0 and T+1), succession (e.g., feature A from T-1 to T0), expansion (e.g., feature D at T+2),  and 

shrinkage (e.g., feature B between T-1, T0 and T+1) over time.  Please note two exceptions: (1) 

while generally all DOs are unique, discrete entities, an object may be split if it straddles other 

objects in either the disturbance inventory or reference map, such as the case for feature C, and 

(2) a DO with time of origin after T0, requires no value for LC-n. 

 

Figure 2.  Spurious change artifacts in the backdated and updated maps can arise from 

unconditioned backdated and update layers, and are caused by mismatches between the 

boundaries of dynamic objects and those of the objects in the original reference map (i.e., 

intersect objects).  Boundary undershoots can result in the introduction of slivers when 

mismatches occur between spatially coinciding features (b and c in backdated map T-1, and d in 

updated map T+1), and spurious gaps (e), when mismatches occur between adjacent features.  

However, if the land-cover attributes of the intersect objects and the coinciding reference map 

are the same, the artifacts will not appear (i.e., d in backdated map T-1 and b and c in updated 

map T+1).  Present, but less apparent are boundary overshoots that result in objects spuriously 

appearing to be stretched in size (a) or to encroach an adjacent feature (f) when compared to the 

reference map.   

 

Figure 3.  Extent, context, and stratification of the 8721-km
2 

Foothills study area into 49 km
2
 

landscape cells located in western-central Alberta, Canada in respect with Landsat Thematic 

Mapper imagery (path 45/row23) displayed in false-colour composite) .  The insets depict an 

example landscape cell (outlined in red) showing the cumulative disturbance-inventory vector 

database (top; absent are two types: mine and fire) for the monitoring horizon (1998 to 2005), 

and the updated land-cover map (bottom; absent are four classes: water, snow/ice, shadow and 

cloud) at year 2005. 

 

Figure 4.    Year-to-year and mean annual rate of overall vegetation-replacing land-cover change 

observed in the 8721-km2 Foothills landscape over the monitoring time frame. 

 

Figure 5.  Distribution of (A) the disturbance density of all features accumulated by the years 

1998 and 2005 (with inserts illustrating the disturbance density of the central landscape cell in 

addition to the graphical depiction of the actual cumulative disturbances present in each year), 

(B) the increase in disturbance density between 1998 and 2005, and (C) the disturbance density 

of any new features occurring in a specific year between 1998 and 2005. 
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Figure 6. Distribution of cumulative densities across landscape cells for the specific disturbance 

types, such as A) cutblocks, B) surface mine, C) wellsites, and D) roads and pipelines in the 

years 1998 and 2005, and their net density changes over these 7 years.   

 

Figure 7. Proximity to (A) any nearest cumulative disturbance feature in 1998 and 2005 (with 

inserts illustrating mean proximity in the central landscape cell in addition to the graphical 

depiction of the actual distance surface of the given year), (B) associated decrease in nearest 

neighbour distance between 1998 and 2005, and (C) proximity to any nearest new feature arisen 

each year between 1998 and 2005. 

 

Figure 8.  Spatially consistent land-cover map series in correspondence with Landsat Thematic 

Mapper imagery (displayed in false colour composite with bands 4, 3, 2 in channels red, green, 

blue) in a 7×7 km example landscape cell exposed to a high level of disturbance (same example 

cell, outlined in red colour, as displayed in Figure 1; cumulative disturbance density increased 

from 7 to 27.5ha/km2) between 1998 and 2005 and select indicators of landscape pattern, such as 

A) percent forest area, B) landscape-level mean patch size, C) largest patch index and D) mean 

shape index, calculated for the example cell shown and for the mean across all 178 cells. 
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List of Tables 
 

Table 1.  Metrics used to monitor disturbance features and land-cover pattern across the sampled 

landscape cells of the study area over time (land-cover pattern metrics are computed according to 

McGarigal et al. 2002). 

Selected Metrics for Monitoring Analysis 

 

Definition  Units 

Disturbance Features   

Total cumulative disturbance density  Total area covered by all disturbances that 

accumulated by a given year (i.e.,1998 or 2005)  

(ha/km
2
) 

Annual disturbance density Total area covered by of all new disturbances arisen in 

any single year between 1998 and 2005 

(ha/km
2
) 

Density of all cumulative cutblocks  Total area covered by all cutblocks that accumulated 

by a given year (i.e., 1998 or 2005)   

(ha/km
2
) 

Density of  all cumulative surface mines  Total area covered by all surface mines that 

accumulated by a given year (i.e., 1998 or 2005)   

(ha/km
2
) 

Density of all cumulative wellsites  Total number of all wellsites that accumulated by a 

given year (i.e., 1998 or 2005)   

(#/100km
2
) 

Density of cumulative linear features  Total length of roads and pipelines that accumulated 

by a given year (i.e., 1998 or 2005) 

(km/km
2
) 

Mean proximity to nearest disturbance 

feature  

Mean distance to any nearest disturbance feature 

accumulated by a given year (i.e., 1998 or 2005) 

(m) 

Mean proximity to nearest new, annual 

disturbance feature 

Mean distance to any nearest new disturbance feature 

arisen in any year between 1998 and 2005  

(m) 

Land-cover Pattern    

Percent forest area Total area occupied by forest expressed as a 

proportion of the area of the landscape cell  

(%) 

Mean patch size Mean size of all discrete land-cover patches within a 

landscape cell 

(ha) 

Largest patch index Largest contiguous land-cover patch within a 

landscape cell expressed as a proportion of area of the 

landscape cell  

(%) 

Mean shape index Measures the average shape complexity of all land-

cover patches based on perimeter-area relationships 

compared to a standard compact shape; the index is 

minimum at most compact average shape and 

increases as patches become more complexly shaped.   

unitless 
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Table 2.  Comparison of the means for selected indicators for disturbance features and land-

cover pattern between 1998 and 2005 across the study area (n=178 landscape cells; please note 

that probabilities are computed for one-tailed comparisons of the means using Welch‟s t-test and 

significant differences are indicated with * for α = 0.05) 

Indicators  1998 2005 Probability 

Mean SE  Mean SE P(µ1998-µ2005 > or < 0) 

Disturbance Features      

Total cumulative disturbance density 

(ha/km
2
) 

6.30* 0.45 10.7* 0.73 <0.000 

Density of all cumulative cutblocks 

(ha/km
2
) 

2.99* 0.33 6.85* 0.59 <0.000 

Density of  all cumulative surface 

mines (ha/km
2
) 

0.42 0.16 0.55 0.19 0.320 

Density of all cumulative wellsites 

(#/100km
2
) 

10.66* 1.47 17.79* 1.94 0.004 

Density of cumulative linear features 

(km/km
2
) 

0.56* 0.03 0.70* 0.04 0.004 

Mean proximity to nearest disturbance 

feature (m) 

1474 139.9 1200 127.1 0.150 

Land-cover Pattern      

Percent area occupied by forest (%) 80.02* 1.15 75.67* 1.19 0.004 

Mean patch size (ha) 65.81* 4.01 51.50* 2.77 0.002 

Largest patch index 53.65* 1.77 46. 65* 1.80 0.003 

Mean shape index 1.80* 0.01 1.76* 0.01 0.004 

 



Figure 1
Click here to download high resolution image

http://ees.elsevier.com/rse/download.aspx?id=320093&guid=b3a887a3-1f5e-4ad6-964f-f72b63a6a5b8&scheme=1


Figure 2
Click here to download high resolution image

http://ees.elsevier.com/rse/download.aspx?id=320094&guid=a2f1c362-ec17-4923-9606-0147e761c56d&scheme=1


Figure 3
Click here to download high resolution image

http://ees.elsevier.com/rse/download.aspx?id=320095&guid=8fc876db-f98e-40ed-8269-c077bd815324&scheme=1


Figure 4
Click here to download high resolution image

http://ees.elsevier.com/rse/download.aspx?id=320100&guid=358cf6e2-13f8-49e5-8ac6-59bc20691834&scheme=1


Figure 5
Click here to download high resolution image

http://ees.elsevier.com/rse/download.aspx?id=320096&guid=10490866-1b22-4fab-b962-b76abcd5a27c&scheme=1


Figure 6
Click here to download high resolution image

http://ees.elsevier.com/rse/download.aspx?id=320097&guid=3f29b7d9-82a5-4a2a-b97e-9c34b9d51409&scheme=1


Figure 7
Click here to download high resolution image

http://ees.elsevier.com/rse/download.aspx?id=320098&guid=2de744b9-3cdf-45ab-a1f7-6da0c0efae56&scheme=1


Figure 8
Click here to download high resolution image

http://ees.elsevier.com/rse/download.aspx?id=320099&guid=61ed7288-234f-4a66-8656-6305a3c772bc&scheme=1

	Linkeand McDermid_RSErevision1 16.pdf
	Linkeand McDermid_RSErevision1 17
	Linkeand McDermid_RSErevision1 18
	Linkeand McDermid_RSErevision1 19
	Linkeand McDermid_RSErevision1 20
	Linkeand McDermid_RSErevision1 21
	Linkeand McDermid_RSErevision1 22
	Linkeand McDermid_RSErevision1 23
	Linkeand McDermid_RSErevision1 24
	Linkeand McDermid_RSErevision1 25
	Linkeand McDermid_RSErevision1 26
	Linkeand McDermid_RSErevision1 27
	Linkeand McDermid_RSErevision1 28
	Linkeand McDermid_RSErevision1 29
	Linkeand McDermid_RSErevision1 30
	Linkeand McDermid_RSErevision1 31
	Linkeand McDermid_RSErevision1 32
	Linkeand McDermid_RSErevision1 33
	Linkeand McDermid_RSErevision1 34
	Linkeand McDermid_RSErevision1 35
	Linkeand McDermid_RSErevision1 36
	Linkeand McDermid_RSErevision1 37
	Linkeand McDermid_RSErevision1 38
	Linkeand McDermid_RSErevision1 39
	Linkeand McDermid_RSErevision1 40
	Linkeand McDermid_RSErevision1 41
	Linkeand McDermid_RSErevision1 42
	Linkeand McDermid_RSErevision1 43
	Linkeand McDermid_RSErevision1 44
	Linkeand McDermid_RSErevision1 45
	Linkeand McDermid_RSErevision1 46
	Linkeand McDermid_RSErevision1 47
	Linkeand McDermid_RSErevision1 48
	Linkeand McDermid_RSErevision1 49
	Linkeand McDermid_RSErevision1 50
	Linkeand McDermid_RSErevision1 51
	Linkeand McDermid_RSErevision1 52
	Linkeand McDermid_RSErevision1 53
	Linkeand McDermid_RSErevision1 54
	Linkeand McDermid_RSErevision1 55
	Linkeand McDermid_RSErevision1 56
	Linkeand McDermid_RSErevision1 57
	Linkeand McDermid_RSErevision1 58
	Linkeand McDermid_RSErevision1 59
	Linkeand McDermid_RSErevision1 60
	Linkeand McDermid_RSErevision1 61
	Linkeand McDermid_RSErevision1 62
	Linkeand McDermid_RSErevision1 63
	Linkeand McDermid_RSErevision1 64



