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Abstract

Remote sensing plays a key role in landscape monitoring, but
our handling of these data in a multi-temporal time series is
not yet fully developed. Of particular concern is the presence
of spatial and thematic errors in independently created maps
that distort measures of landscape pattern and constrain the
reliability of change analysis. In addition, there is a need to
incorporate continuous attributes of cover gradients for flexible
map representations that support a variety of applications. In
this paper, we present a framework for generating temporally
and categorically dynamic land-cover maps that provide such
a reliable and adaptable foundation. The centerpiece is a
spatio-temporal disturbance-inventory database, created
through semi-automated change detection and conditioned
with boundary-matching procedures, which can be used to
backdate and update both continuous and categorical refer-
ence maps. We demonstrate our approach using multi-annual
Landsat imagery from a forested region in west-central
Alberta, Canada, between the years 1998 and 2005.

Introduction

Over the past three decades, landscape monitoring has
emerged as a major focus for geospatial research, particularly
in forest ecosystems (Coppin and Bauer, 1996; Franklin,
2001; Rogan and Chen, 2004), where human activities are
the source of much contemporary change (Houghton, 1994;
Riitters et al., 2002). In this regard, the multi-temporal
analysis of remote sensing imagery has been used to
assess the impact of landscape change on carbon cycling
(Houghton et al., 2001; Conard et al., 2002; Song et al.,
2007), the conservation of protected areas (Vester et al.

2007; Huang et al., 2007; Forrest et al., 2008), biodiversity
(Hansen et al., 2001; Boentje and Blinnikov, 2007; Sader and
Legaard, 2008), and wildlife habitat (Pearson et al., 1999;
Reyes et al., 2000; Berland et al., 2008). While many
approaches to change detection and analysis exist (Lu et al.,
2004; Radke et al., 2005), post-classification analysis is
the most commonly applied in this context. The strategy
involves the analysis of changes based on a series of two or
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more independently classified maps, where each map
reflects the investigated landscape at a different instance in
time (e.g., Skole and Tucker, 1993; Kozak et al., 2007;
Gamanya et al., 2009).

A serious concern in post-classification analysis is the
presence of spurious change arising from classification
errors and spatial inconsistencies in independently gener-
ated map products (Shao and Wu, 2008; Linke et al., 2009).
These problems have been shown to cause significant errors,
particularly in the quantification of land-cover pattern (e.g.,
Brown et al., 2000; Langford et al., 2006). In response to
these issues, researchers have suggested several remediation
techniques designed to improve the reliability of remote
sensing-based map products for landscape monitoring, such
as (a) guidelines regarding spatial resolution, data process-
ing, accuracy levels, seasonality, and minimum mapping
unit (Shao and Wu, 2008), and (b) Bayesian-based statistical
corrections to post-classification change-area estimates
(Van Oort, 2005). However, while these strategies may serve
to reduce the occurrence of spurious changes due to classifi-
cation differences, they will not eliminate them.

An alternative approach to multi-temporal mapping that
can reduce the issue of spurious change is to avoid the
independent classification of images from different time
periods, and focus instead on updating (projecting forward
in time) and backdating (projecting backward in time) an
existing map product through bi-temporal change detection
(Coppin et al., 2004). A major benefit of this approach is
that by limiting the scope of re-classification to include only
those areas where change has been detected, one can
drastically reduce the introduction of new errors. This is
akin to the visual interpretation approach to updating an
existing land-cover map through manual editing of a vector-
based map. After editing, the updated and original vector
layers can be compared, and the associated changes stored
in a spatio-temporal database. Feranec et al. (2000 and 2007)
used this approach to update and backdate baseline maps,
allowing features to appear, disappear, change thematically,
or increase/decrease in size. However, these manual
approaches are extremely labor-intensive, and the separation
of technical inconsistencies from real change on the ground
is challenging (Jansen et al., 2008; Jansen et al., 2006;
Kéyhko and Skéanes, 2006). It would be highly desirable to
incorporate automated approaches to change detection and
multi-temporal land-cover mapping strategies within the
structured framework of a spatio-temporal database.
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Despite significant methodological advancements in the
automatic detection of change features with remote sensing
(e.g., Desclée et al., 2006; Blaschke, 2005), little emphasis has
been placed on the integration of these features into existing
map products. The operation is problematic, due to potential
variation in spatial resolution, registration errors, illumina-
tion conditions, and object segmentation results between the
two time periods (Yuan and Elvidge, 1998; McDermid et al.,
2008). Issues arise when the boundaries of disturbance
features delineated using change analysis do not precisely
match with shared boundaries in the existing reference map.
Under these conditions, overlay operations applied in the
updating or backdating procedure will generate small artifacts
of spurious change, which can limit the quality of the
finished product, and cause serious problems with subse-
quent interpretation (McDermid et al., 2008; Linke et al.,
2009). These spatial errors are well known in the GIS litera-
ture as slivers, and constitute one of the biggest challenges
associated with spatial overlay operations (e.g., Goodchild,
1978; Chrisman, 1989; Mas, 2005), though they have received
scant attention in the remote sensing community.

Additional concerns surrounding landscape monitoring
revolve around our understanding of how to best represent
land-cover and vegetation in a forested environment. Unfortu-
nately, many remote sensing products can be criticized for
presenting an overly-simplistic depiction of the natural
landscape; a situation based at least in part on historical
limitations of satellite data and the ubiquitous use of classifi-
cation as an information-extraction technique (McDermid
et al., 2005). However, forested ecosystems are comprised of a
complex interplay of continuous gradients of variation (Betts
et al., 2007; McGarigal and Cushman, 2005; Wiens, 1994) and
are not well characterized by a single catch-all map product:
particularly a categorical one produced exclusively by classifi-
cation. Recent discussions on the limitations of classification
in multi-disciplinary work (McDermid et al., 2005) have
pointed out the problems with low-level (nominal or ordinal)
information layers, and the difficulty in adjusting thematic
class boundaries in the finished maps. These practical chal-
lenges can hamper our efforts to understand forest dynamics,
and likely contribute to the criticism of remote sensing that
appears occasionally in the literature (e.g., Plummer, 2000;
Thogmartin et al., 2004; Gottschalk and Huettmann, 2006).
McDermid et al. (2005) argued for the use of multi-layer
information databases over single catch-all map products, and
an increased emphasis on continuous, ratio-level end products
that retain their flexibility. The strategy has been recently
employed in the creation of single-date maps of spatially
continuous representations of percent forest species composi-
tion and crown closure in layers that can be merged with
basic land-cover information in a GIS to produce composite
maps with many possible legends (McDermid, 2005). We
believe that these emerging approaches have an important role
to play in reliable and adaptable landscape monitoring.

The recent release of the Landsat archive (Woodcock
et al., 2008) represents a tremendous opportunity to pursue
research programs that monitor the long-term temporal
dynamics of land-cover using this exceptional data set (e.g.,
Homer et al., 2007; Huang et al., 2007; Kuemmerle et al.,
2007). However, in order to undertake such studies effec-
tively, we require better strategies for creating reliable,
spatially consistent time series of map products, that are free
of spurious changes, and ideally, well-suited for supporting
multiple applications. The goal of the research reported
in this paper was to develop a framework for performing
flexible and reliable landscape monitoring with remote
sensing, using a semi-automated backdating and updating
approach designed to generate temporally and categorically
dynamic land-cover maps. In this manuscript, we provide a
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detailed description of the proposed methodological
approach for creating time series of both discrete and
continuous land-cover maps, presented within the context of
the overall conceptual framework. We then demonstrate the
effectiveness of the approach through a practical eight-year
monitoring application over a large, multi-use study area in
west-central Alberta, Canada using Landsat imagery.

Proposed Methodological Approach: Spatially Consistent

Backdating and Updating with a Disturbance Inventory
Under ideal conditions, an existing thematic map product
can be backdated and updated to produce a spatially
consistent time series, representing the basic succession of
ground features over time (Figure 1). The existing map at
time T, constitutes the reference for all dynamic features
that are to appear, disappear, and/or change over the
observed time frame. Two types of dynamic features exist:
(a) those that originate during the overall time interval
monitored (T_, — T,,) (e.g., the small cutblock in the
northern part of Figure 1 that originates between T, and
T.1), and (b) those that pre-date the beginning of the time
series (T=_,), but change thematically over the course of the
monitoring period (e.g., the cutblock in the southeastern part
of Figure 1 that changes from shrub land cover in T_, to
forest in T.,). The remaining features, which do not change
over the observed time frame, constitute static features of
the reference map (e.g., the road section in the eastern part
of Figure 1 that does not change between T_, and T.,).

Backdating of dynamic features can follow one of four
possible scenarios: (a) feature insertion, in which an entity is
inserted into the reference map to reveal a feature that was
present at the backdated stage but has disappeared from the
reference map by blending into its surroundings (e.g., the
cutblock inserted into the south-central portion of Figure 1
with shrub land cover in years T_, and T-,), (b) feature
regression, in which an entity in the reference map changes
thematically to a previous successional stage in the backdated
map (e.g., the central cutblock in Figure 1 that regresses
from a herbaceous land-cover in the reference map to a
barren land-cover in year T_,), (c) feature persistence, in
which an entity in the reference map persists and undergoes
no thematic change in the backdated map (e.g., the south-
eastern cutblock in Figure 1 that persists unchanged from
the reference condition in the years T_, and T-,), or (d)
feature removal, in which an entity from the reference map is
removed in the backdated map to reveal an earlier feature
(e.g., the southern wellsite in Figure 1 with barren land cover
in T, which is removed in T_, to reveal a partially forest and
partially shrub land-cover area). Similarly, updated dynamic
features can follow four possible scenarios: (a) feature
insertion, in which an entity is detected in an updated map
that did not appear in the reference year (e.g., the northern
cutblock in Figure 1 with barren land cover in T,, in an area
that appears forested in Tj), (b) feature succession, in which
an entity existing in, or inserted into the reference map,
changes thematically to a later successional stage (e.g., the
northern cutblock in Figure 1 with barren land cover in T,
and herbaceous land cover in year T.,), (c) feature persist-
ence, in which an entity in the reference map persists and
undergoes no thematic change in the updated map (e.g., the
road and wellsite in Figure 1 with barren land cover in
years T, through T,,), and (d) feature removal, in which an
entity in the reference map blends into its surroundings in the
updated map (e.g., the south-eastern cutblock in Figure 1 with
shrub cover in T, developing to forest in T.,).

Guided by the concepts described above, a methodological
approach for generating spatially consistent backdated and
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Figure 1. An ideal representation of a spatially consistent time series created by backdating and
updating an existing thematic land-cover map, wherein features persist, are removed, or inserted, and
display their thematic attribute according to their successional stage of development.

updated map products can be proposed. Changes in the time
series described can be achieved through the identification of
dynamic features as spatially segregated entities and their
integration into the reference map with temporally relevant
land-cover labels, using an overlay order that corresponds
logically to the sequence of their appearance on the ground.
The best way to implement this strategy is through the
creation of a database that stores spatially referenced dynamic
entities and their corresponding thematic attributes. Using the
previous time series displayed in Figure 1 as an example, we

refer to the dynamic entities as disturbance features, since the
actual agents of change are disturbance based. The database of
disturbance features is referred to as the disturbance inventory
(Figure 2). Backdated map products can be created from
existing reference maps using a disturbance inventory (e.g., the
backdated land-cover map labeled T-, in Figure 2) by overlay-
ing the existing reference map with a backdate layer that is
comprised of the relevant features from the disturbance
inventory assigned with the correct thematic labels. Similarly,
updated map products can be created from an existing

Disturbance Inventory Feature Layer Disturbance Inventory Feature Attributes
D# D Distubance Type | Disturbance Year LCT, LCT, LCT,, LCT,,
4a 1 Cutblock Ten shrub shrub shrub forest
/ 2 Cutblock Ten shrub shrub no data no data
8 3 Cutblock T4 forest barren herb shrub
4a Wellsite T4 forest barren barren barren
4b Wellsite T4 shrub barren barren barren
5 Road T4 forest barren barren barren
6 Wellsite To forest forest barren barren
7 Road To forest forest barren barren
8 Cutblock T no data no data barren herb
Backdate*La yver T, Backdated Landcover Map T_,
—
—

ID8 in LC T_q).

Figure 2. The proposed methodological approach for generating a spatially consistent time series of
thematic land-cover through the use a disturbance inventory. Dynamic features over the time series
period are detected as spatially segregated objects, classified according to the disturbance type and
year of origin (i.e., disturbance year), and assigned land-cover (Lc) attributes for each year of the time
series. Disturbance features are organized into a database, which is subsequently used for creating
backdating and updating layers to be overlaid on the original reference map to create backdated and
updated land cover maps. Please note that features IDs 2 and 8 are examples of feature insertion.

For insertions during backdating, no land-cover-label is assigned after the reference year (n/a for 1D2 in
LC T-o). For insertions during updating, no land-cover label is assigned before the reference year (n/a for
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reference map (e.g., the updated land-cover map at T, in
Figure 2) by overlaying an update layer consisting of all the
relevant features from the disturbance inventory labeled with
their corresponding land-cover attributes.

Before the disturbance-inventory approach to backdating
and updating can be applied effectively, it is crucial to
consider the quality assurance criteria that must be
employed. The quality of map products generated by
updating/backdating strategies is a function of two basic
factors: (a) the accuracy at which change features can be
detected and classified, and (b) the suitability of these
features for integration into the original reference map
(McDermid et al. 2008). Regarding the first factor, if distur-
bance features are not detected and excluded from the
disturbance inventory (i.e., error of omission), or if some
static features are erroneously detected and included in the
disturbance inventory (i.e., error of commission), the final
multi-temporal temporal map sequence will under- or over-
estimate areas of change. Similarly, if disturbance features are
erroneously classified (e.g., a small cutblock confused with a
large wellsite), the multi-temporal map sequence may exhibit
thematic errors. Adherence to efficient change-detection
protocols (e.g., Han et al., 2007), robust algorithms (Sundare-
san et al., 2007; Walter et al., 2004), and the specification of
the minimum size for disturbance features can largely fulfill
the needs surrounding accurate change detection.

The second factor, surrounding the seamless integration of
detected disturbance features into the reference map, consti-
tutes a methodological challenge that has rarely been described
in the remote sensing literature. Unfortunately, it is virtually
impossible to delineate the boundaries of disturbance features
in a manner that coincides precisely with existing entities in
the reference map (McDermid et al., 2008; Linke et al., 2009)
under operational conditions. Two basic forms of spurious
delineation mismatches can occur: (a) an overshoot, wherein
the boundary of the disturbance feature extends slightly past
the boundary of either a coinciding feature (Figure 3 Part A), or
an adjacent feature (Figure 3 Part B) appearing in either the
reference map or the disturbance inventory, and (b) an under-
shoot, wherein the boundary of the disturbance feature falls

slightly short of either a coinciding feature (Figure 3 Part A), or
an adjacent feature (Figure 3 Part B) existing in the reference
map, or disturbance inventory. It is important to note that the
specification of overshoots and undershoots in operational
terms requires the definition of a minimum mapping width:
the maximum allowable deviance below which mismatches
are deemed spurious. Mismatches equal to or larger than the
minimum mapping width are assumed to represent real
changes on the ground.

Of special concern are artifacts in the backdated and
updated maps that arise from boundary undershoots in
disturbance feature. These errors manifest themselves in
form of sliver objects (Figure 3 Part A), or spurious gaps
(Figure 3 Part B) when the disturbance feature is overlaid
onto the reference map. These slivers and gaps impact the
visual appearance of the finished product, and can seriously
distort interpretations about the direction and magnitude of
multi-temporal changes in landscape pattern (Linke et al.,
2008). The spurious overlaps arising from boundary over-
shoots create less-conspicuous artifacts, but still contribute
to inconsistent changes related to the size and shape of
mapped features over the course of the monitoring horizon.
A feature may appear stretched when a reference-map
feature is overlaid with a coinciding disturbance feature
with overshot boundaries (Figure 3 Part A). A feature may
also appear encroached when an adjacent disturbance
feature with overshot boundaries is overlaid (Figure 3 Part B).
In order to suppress any of these spatial errors, disturbance
features processing must adhere the following three bound-
ary-matching principles: (a) the boundaries of the original
reference map features should be treated as correct and must
be adhered to (McDermid et al., 2008), (b) the precedence
among disturbance features must be established so that the
order of overlay operations can be determined, and (c) a
minimum mapping width must be set to delimit spurious
delineation mismatches. If these principles are imple-
mented, then precisely aligned disturbance boundaries
can be generated through processing algorithms that merge
spurious gaps and slivers to the adjacent disturbance feature
(Linke et al., 2009), and trim spurious boundary overshoots.

Reference Map T,

Disturbance Feature(s) Delineation Mismatches

Updated Map T,

+

—_
Boundary Sliver Object

Undershoot

Boundary
Overshoot

A. Boundaries of

Legend
Forest Herb -

[l Baren  shut [

0 60120 240 360 480
™ ™ iotors.
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Figure 3. A demonstration of spurious boundary delineation mismatches and associated artifacts in an
example map update created by the overlay of mismatched disturbance features into the reference map.
The boundaries of disturbance features slightly overshoot and undershoot the boundaries of (Part A)
coinciding features in the reference map, and (Part B) adjacent features in either the reference map

or other disturbance features, leading to the creation of slivers, spurious gaps, spurious feature
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Boundary
QOvershoot

Boundary
Undershoot
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The disturbance-inventory approach we propose relies
therefore on two criteria: (a) disturbance features must be
accurately detected, delineated, and classified into a
disturbance inventory as spatially segregated disturbance
features, and (b) these disturbance features must be inte-
grated seamlessly into the reference map through the use of
boundary-matching conditions and strict spatial-overlay
order. It is important to note that the general application of
this backdating and updating approach is not limited to the
generation of categorical land-cover maps. Continuous
maps of land-cover attributes, such as those representing
forest crown closure (e.g., percent of canopy cover) or tree-
species composition (e.g., percent relative abundance),
can be handled by using the disturbance inventory as a
means of identifying the areas over which the continuous
reference map must be backdated or updated with new
continuous-attribute values, which can be derived from the
temporally relevant imagery. The strategy for accomplish-
ing the backdating of a continuous reference map (e.g.,
the percent crown-closure layer represented in Figure 4)
relies on the selection of all features in the disturbance
inventory that originate prior to the reference year (7-),
over which area a continuous mask can be created and
integrated into the reference map. The resulting backdated
mask erases any disturbance features that were originally
visible in the reference map at year Ty, thereby simulating
the conditions occurring earlier in the time series (T_,).
For each successive year, masked areas are lifted, exposing
the disturbance features in their proper sequence. Updating
a continuous map may be accomplished in the same
manner, by replacing the values of the continuous refer-
ence map according to the timing of any post-reference
year disturbance feature (Figure 4).

A Disturbance-Inventory Framework for Generating Temporally

and Categorically Dynamic Land-cover Maps

A diagram explaining the conceptual framework for gener-
ating temporally and categorically dynamic land-cover
maps through the backdating and updating of discrete and

continuous reference maps is shown in Figure 5. The
centerpiece of the framework is the spatio-temporal distur-
bance inventory, which contains the disturbance features
and their associated attributes. In our approach, the
disturbance inventory can be created using either auto-
mated or manual methods of change detection using
remote sensing imagery covering the time interval n. Once
accurately detected and classified, these features must be
conditioned with boundary-matching procedures and
labeled with land-cover attributes appropriate to the
individual application. The disturbance inventory is
employed in the generation of a spatially consistent time
series of map products, derived from reference maps
characterizing conditions at time T,. The results can be
described as temporally dynamic across the time period of
interest (T-, — T.,). The framework handles either high-
level (interval, ratio) or low-level (nominal, ordinal) attrib-
utes in discrete (vector) or continuous (raster) environments,
depending on available data and the needs of the analyst.
In the sample application below, we present a blended
approach which handles map products of both types,
thereby enabling the creation of categorically dynamic
output maps whose number and types of land-cover
categories are flexible, and can be generated easily through
integrative post-processing routines.

Methods

Study Area and Existing Map Layers

The study area for this research was located in the west-
central portion of Alberta, Canada, along the eastern slope
of the Rocky Mountains (Figure 6). The 40,000 km? area
encompasses a diverse forested landscape, and includes
portions of Jasper National Park and adjacent multi-use
public lands. The region is subject to a wide variety of
human and natural disturbance processes, including forestry,
oil and gas development, mining, road construction, forest
fires, and insect defoliation: a fast-changing environment
that challenges our capacity to characterize spatial change.

Backdating

Continuous Ianvd-cuvar mask —p Disturbance features

T., calculated over all features occurring in the following
with disturbance year Tz-n year exposed by removing
and fused to reference map the corresponding mask area

'Ef-czfﬂ

Reference Map

Updating

Disturbance features =P Andsoon....
occurring in following year
are masked with zero value

and fused to reference map

L S
_EE

=
Time

T.,

Figure 4. An example application of the principle of backdating and updating a continuous map of
forest-cover attributes (percent crown closure, in this case) with a disturbance-inventory. Zero values
are in white. Disturbed areas in the reference year (Ty) are identified by the disturbance inventory, and
are replaced with crown closure values derived from imagery at the beginning of the time series (T_,) in
backdated maps. In this case, the disturbed areas originating after the reference year are inserted with
values of zero for crown closure, since this area is no longer considered forested.
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Conceptual Framework for Generating Temporally
and Categorically Dynamic Forest Land Cover Maps

See Figure 7 = T

Disturbance
Classification

RECHIEDY;

LC cc/sc
Backdates & Backdates &
Updates

*
I
AnnIE)
|L51';Jﬂpi =

Figure 5. The proposed conceptual flowchart for gene-
rating temporally and categorically dynamic land-cover
maps with flexible number of forest land-cover cate-

gories. Inputs are a time series of basic land-cover (LC)
maps and a series of continuous forest-cover attributes
(cc: crown closure; sC species composition) created by
backdating and updating existing reference maps (REF)
at time O (Ty) with a remote sensing imagery-based

disturbance inventory.

The study area is part of the Foothills Research Institute
Grizzly Bear Research Program’s (FRIGBRP’s) region of
interest, and the work reported here represents a key
element of the landscape mapping and monitoring activities
taking place within that project. The FRIGBRP is a collabora-
tive, multi-agency initiative whose main goal is the develop-
ment of knowledge and planning tools designed to ensure
the long-term conservation of grizzly bears in Alberta, and
has been conducting work in the area since 1998 (Stenhouse
and Graham, 2007). Part of these activities include the
mapping and monitoring of vegetation and land-cover in
support research on grizzly bear habitat selection, popula-
tion, and health (Nielsen et al., 2002; Nielsen et al., 2004;
Linke et al., 2005). McDermid (2005) described the develop-
ment of a three-part base map designed to provide a categor-
ically dynamic representation of land-cover and forest
structure. Existing map layers in the area include an object-
based land-cover map (ten classes; 91.8 percent accuracy),
and continuous-variable representations of crown closure
(accuracies in the 90 percent range for a two-class configura-
tion; 50 percent for four classes), and tree species composi-
tion (90 percent accuracy in a two-class configuration;

73 percent for four classes) (Figure 6). The layers were
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derived primarily from Landsat imagery, and represent 2003
ground conditions.

Data Sources

The study area is covered by Landsat path/row 44/23 and
45/23, and we acquired annual summer imagery from each
scene from 1998 to 2005 to aid in our characterization
changing forest conditions across this time interval

(Table 1). The images were a blend of Landsat-5 Thematic
Mapper (TM) and Landsat-7 Enhanced Thematic Mapper
Plus (ETM+), and included a single ETM+ SLC-off scene
(gap-filled) from 2004.

In addition to satellite data, we also acquired a variety
of supplementary GIS data sets to aid in image processing
and disturbance classification procedures. The Alberta
government’s 30-meter digital elevation model was used for
orthorectification, and to derive additional slope and aspect
layers used in the categorization of change. We also had
access to the provincial road layer and a forest fire database,
as well as agriculture and settlement masks developed by
Collingwood (2007). The masks were used to exclude
changes occurring within these two land-use zones, which
occur primarily along the study area’s eastern boundary.
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Study Area for Generating Temporally and Categorically Dynamic Land Cover Maps
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Figure 6. Location of the study area for generating temporally and categorically dynamic
forest land-cover maps, where reference maps of discrete thematic land-cover and of
continuous forest-cover attributes (species composition and crown closure) exist.

Pre-existing disturbances (T~_s), for cutblocks were available

from industrial forest landholders as digitized feature
polygons. We also acquired as much orthophotography as

possible, in order to facilitate the independent validation of

change features. However, the availability of spatially
coincident, consecutive, cloud-free orthophotography was
limited to the years 2000 and 2001. Image processing
procedures were performed in PCI Geomatica® 9.1, while

segmentation and object-based classifications were per-
formed using Definiens Professional 5.0. All vector and
raster database management took place in ArcGIS® 9.2.

Implementation of the Framework

Generating the Disturbance Inventory

In characterizing changes on the landscape, we focused
our efforts on the six types of forest-replacing disturbances

TABLE 1. REMOTE SENSING IMAGERY USED FOR THE DETECTION OF DISTURBANCE FEATURES WITH TIME ASSIGNMENTS IN REFERENCE
TO THE METHODOLOGICAL FRAMEWORK FOR GENERATING THE DISTURBANCE INVENTORY

Time Assignment acc. to
Disturbance Inventory

Landsat Path/Row Image Acquisition Date Sensor Framework
05 September 1998 Landsat-5 TM T 5
08 September 1999 Landsat-5 TM T,
17 August 2000 Landsat-7 ETM+ T 4

45/23 14 September 2001 Landsat-7 ETM+ T,
23 August 2002 Landsat-7 ETM+ T,
03 September 2003 Landsat-5 TM Ty
12 August 2004 Landsat-7 SLC-Off T,y
22 July 2005* Landsat-5 TM T.,
29 August 1998 Landsat-7 ETM+ T 5
24 August 1999* Landsat-7 ETM+ T,
27 September 2000* Landsat-7 ETM+ T 3

44/23 14 September 2001 Landsat-7 ETM+ T,
13 June 2002 Landsat-7 ETM+ T,
10 July 2003* Landsat-5 TM Ty
13 August 2004 Landsat-5 TM T,y
13 September 2005 Landsat-5 TM T,

*indicates >10% Clouds
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that dominate the study area: (a) burns from forest fires,
(b) cutblocks from forest clearcutting, (c) mines from surface
extraction for coal and gravel, (d) wellsites from petroleum
extraction, (e) pipelines from oil and gas transportation, and
(f) roads from mechanized human access (Table 2). Because
of the scale at which mapping activities took place, we
treated burns, cutblocks, and mines as areal features, wellsites
as point features, and roads and pipelines as linear features.
These feature classes will be adhered to throughout this
framework implementation, though applications in other
landscapes (or using other remote sensing data sets) might
assign features differently. In following the nomenclature
introduced in the manuscript previously, we will refer to the
2003 reference year as T,, while 1998 is T_;, and 2005 is T’,.
An overview of the entire methodological flowchart
used to generate the inventory of disturbance features
outlined above is summarized in Figure 7. The procedure
is comprised of 19 steps, organized into three major
components: (Part A) annual disturbance mapping, (Part B)
pre-existing disturbance mapping, and (Part C) disturbance
inventory conditioning. Each part is described briefly
below, with the steps corresponding to those listed in
Figure 7.

Annual Disturbance Mapping (Part A)

All T™™ and ETM+ images were converted to at-satellite
reflectance following the methods of Chander and

Markham (2003) to improve the radiometric consistency
between scenes and sensor types. Each image was then
orthorectified to a root mean square error tolerance of

0.5 pixels, and re-sampled using nearest-neighbor to
30-meter pixels in UTM Zone 11, NAD83, based on the GRS80
ellipsoid. The result of this preprocessing was a spatially
accurate, radiometrically consistent time series of Landsat
images representing T_; to T, ground conditions (Figure 7,
Step 1). We used the enhanced wetness difference index
(EwpI) method of Franklin et al. (2001) to generate difference
layers designed to characterize the changes observed along
each step in the temporal time sequence (Figure 7, Step 2).
EWDI has been shown to be an effective strategy for forest
disturbances, and the technique has been successfully
employed under a variety of conditions in previous studies
(e.g., Franklin et al., 2002; Skakun et al., 2003). The annual
difference layers were segmented in Definiens 5.0, using
parameters of 10 for scale, 0.1 for shape, and 0.7 for
compactness. The resulting vector layers were manually
thresholded using the mean EWDI value into change and no
change objects using visual inspection of the respective image

TABLE 2.

pairs (Figure 7, Step 3). The change objects became the basis
for all subsequent disturbance mapping for areal features.

With a decision tree approach, change objects were
classified into areal disturbance categories (cutblocks,
mines, and burns), using attributes related to the object’s
spectral characteristics, size, shape, and context (Figure 7,
Step 4). In order to minimize errors in the annual distur-
bance mapping, the results of the areal disturbance classifi-
cation were visually inspected and corrected where neces-
sary. Linear and point features, although visually detectable
from the imagery, could not be reliably mapped using
automated detection and classification methods, since the
resolution of the imagery was not sufficient to yield consis-
tent and discrete object delineations for these features. As a
result, change objects related to these feature types were
discarded.

We used manual digitizing to delineate point and linear
disturbance features associated with wellsites, roads, and
pipelines with reference to the available imagery (Figure 7,
Steps 5 and 6). Wellsites were characterized with 3 X 3
pixel squares centered around each new wellsite location,
with the boundaries snapped to the grid of the reference
land-cover map (LC Ty). The centerlines of linear features
were digitized as polylines and converted to polygon
features using a total buffer width of 60 meters (i.e., 2
pixels). Linear features were visually classified into roads
and pipeline on the basis of surface vegetation characteris-
tics. Once again, the resulting features were rasterized and
snapped to the T, reference map in order to create consis-
tent boundary delineations, in preparation for seamless
integration with other disturbance features and map prod-
ucts. Next, all the annual disturbance features (areal, linear,
and point) were merged into an annual disturbance data-
base, including attribute information that specified distur-
bance type and year of origin (Figure 7, Step 7).

Pre-existing Disturbance Mapping (Part B)

In order to incorporate areal disturbance features existing on
the landscape prior to 1998 (T_;) into the disturbance inven-
tory, we selected digitized polygons representing cutblocks,
mines, and burns from ancillary GIS sources on the basis of
attributes. In order to ensure seamless integration of these
entities with the other map products, we used overlay proce-
dures to extract the corresponding polygons of pre-existing
features as depicted in the T, reference map (Figure 7, Step 8).
This spatial overlay operation yielded a multitude of potential
pre-disturbance features, which needed to be attributed
according to land-cover characteristics.

FEATURE TYPE, DISTURBANCE TYPE, SPATIAL OVERLAY ORDER (INCREASING NUMBERING CORRESPONDS TO BoTTOM-UP DIRECTION), AND LAND-COVER

TRANSITION RULES FOR DISTURBANCE FEATURES MAPPED IN THE STUDY AREA (T-p refers to the Points in Time Prior to the Origination of the Disturbance
Feature, T, refers to the Point in Time when the Disturbance Originated, and Tp,, refers to the Point in Time after a Disturbance Feature
Originated as Specified by the Time Interval n, in this Case, Years)

Land-cover (LC) Transition Rules

Pre-disturbance LC
label for backdating

Disturbance Features

Post-disturbance LC label
for backdating and updating

Feature Type Disturbance Type Overlay Order T-p Ty Tpiqy — Tpyy Topis
Area Burn 1 Forest Barren Herb Shrub
Area Cutblock 2 Forest Barren Herb Shrub
Area Mine 3 Forest Barren Barren Barren
Linear Pipeline 4 no data Herb Herb Herb

Linear Road 5 no data Barren Barren Barren
Point Wellsite 6 context determined Barren Barren Barren
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Flowchart for Generating the Disturbance Inventory
EXISTING GIS DATA PART A) Annual Disturbance Mapping with RS Image
Lc map T, | [Pre-existing| [ anciniary Step Procedure T, T T, T. T.
=L | pisturbance] |~ ais il 1. B ——— e
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Figure 7. A flowchart illustrating the steps used to generate the disturbance inventory
at time intervals previous (T_,, T_4) and after (T.4, T.,) the reference year (To).
n 1 +1 +n, 0

The pool of potential pre-disturbance features included
entities which had already transitioned to mature forest at
the beginning of our time series (7-;), and therefore no
longer constituted dynamic features capable of displaying
successional change over the investigated time frame. These
features had to be removed. Since no land-cover or temporal
attribute information existed in the ancillary disturbance
database, we performed a supervised classification using
1998 Landsat imagery to identify pre-existing land-cover
values. Each entity was classified as either barren, herba-
ceous, shrub, or other (unclassified) (Figure 7, Step 9). We
then removed all the unclassified disturbance features from
the disturbance inventory so that the resulting set of pre-
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disturbance features corresponded only to dynamic features
(Figure 7, Step 10). All the point and linear features that
were visually discernable on the multi-spectral imagery

at the beginning of the time series (7-5) were manually
digitized and converted using the same procedures as
described in Steps 5 and 6 (Figure 7, Steps 11 and 12). We
then merged all the pre-existing disturbance features into a
database, including attributes for date, year, and disturbance
type (Figure 7, Step 13).

Disturbance-Inventory Conditioning (Part C)

The databases for annual and pre-existing disturbance
features were merged to create a single disturbance inventory
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database containing all dynamic features on the landscape
over the time frame of this study (T_5 to T.,) (Figure 7,

Step 14). Despite our efforts to limit image registration errors,
the disturbance features exhibited spurious overshoots and
undershoots with the boundaries of coinciding and adjacent
reference features, as well as with other adjacent disturbance
features (this issue was described previously, and illustrated
in Figure 4). We used visual comparison of the relative
positioning of mapped features with the respective Landsat
images to determine the minimum mapping width (MMw)
requirement for real changes manifesting themselves in
updated and backdated maps. The observed maximum
deviation for spurious mismatches was just below 120 m for
coinciding features and 60 m for adjacent features, corre-
sponding to MMW’s of four and two pixels respectively. In
order to eliminate spurious change caused by misregistration,
all areal disturbance that fell below the respective MMW’s
were discarded, hereby treating the features originating
before 2003 (i.e., the disturbance year T-,) as “coinciding
features” and all others as “adjacent features.” Point and
linear features were excluded from this rule, since they were
manually digitized and verified.

The remaining steps in Part C relate to the processing
and management of the final disturbance inventory, in order
to conform to the principles necessary for seamlessly inte-
grating the disturbance features into the reference map. First,
the trimming of spurious overshoots was handled (Figure 7,
Step 15), beginning with adjacent disturbance features. Since
it was feasible for point and linear features in the distur-
bance inventory (e.g., wellsites, roads, and pipelines) to
overlap other disturbance features on the ground over time,
no boundary trimming procedures were applied to these
features. However, in order to account for spurious over-
shoots between adjacent areal features of the same distur-
bance type (cutblocks, mines, and burns could overlap other
features on the ground, but not with features of their own
type), we employed a bottom-up temporal approach to
erase overlaps. Features originating in later years were
trimmed or erased using the boundaries of disturbance
features originating in earlier years. Spurious overshoots with
boundaries of coinciding features in the reference map were
corrected by creating an intersection between all disturbance
features originating before 2003 (i.e., disturbance year T-)
and all reference-map features (LC Map T, in Figure 7), and
erasing the intersect portions that were contained within the
MMW buffer around the boundaries of the selected distur-
bance features. We also applied a boundary-matching
procedure to correct spurious boundary undershoots
(Figure 7, Step 16), by identifying the mismatch areas
between these undershoots, and then merging them with the
nearest disturbance feature. In essence, we expanded the
disturbance features to match the relevant reference bound-
aries (Figure 7, Step 16; see Linke et al., 2009 for details).

Upon completion of the boundary-matching processing,
the trimmed and expanded disturbance features were
assigned land-cover labels for each of the backdated and
updated years (Figure 7, Step 17), using simple decision
rules (Table 2). Cutblocks and burns features were assigned
to the “barren” class for the year in which they originated
(Tp), “herbaceous” in the year following disturbance (Tp.4),
and “shrub” in years two and beyond (T-p.,). We did not
allow disturbance features to progress beyond the shrub
class, since the time frame of the study was considered
shorter than the time horizon necessary for a mature forest
stand to regenerate. Road and mine features were labeled as
“barren” for all years, and pipelines were labeled “herba-
ceous.” The land-cover labels for the years prior to the dis-
turbance (T-p) was assigned as ‘forest” for all areal distur-
bance feature, under the assumption that all such
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disturbances were stand-replacing. The respective label for
roads and pipelines was “no data” (an act that simply
prevented their insertion in previous years), since they were
not mapped in the 2003 reference land-cover map. All
features that originated after the reference year (7T-,) were
assigned “no data” labels for their pre-disturbance years.

The classification of post-disturbance land-cover for
point features (Figure 7, Step 18) followed the same decision
rules as those outlined above, but we used contextual infor-
mation to assign pre-disturbance (T-,) land-cover labels
(Table 2). While point features originating after the reference
year (T-,) were assigned “no data” labels for pre-disturbance
years, many of the point features originating prior to T,
were already mapped in the reference products, and there-
fore required the assignment of proper pre-disturbance land-
cover categories. Unfortunately, we could not simply assume
that all wellsites were cut from forests (like cutblocks), since
they were commonly observed to occur on a variety of land-
cover types. We therefore assigned pre-disturbance land-
cover attributes for these features on the basis of context.
Two separate situations were identified when extracting con-
text for a wellsite: (a) the feature could be fully contained
within a reference or disturbance feature, or (b) the feature
could straddle two or more reference or disturbance features.
In both cases, we used a 60-meter buffer (two Landsat pixel
widths) to establish context. Wellsites occurring in the first
situation were retained as whole entities, and assigned the
land-cover class of the surrounding feature. Wellsites occur-
ring in the second situation were split, with each entity
receiving different land-cover classes (for an example of this,
see ID #4a and ID #4b in Figure 2).

In the final step of disturbance inventory conditioning,
the database was sorted according to spatial overlay order and
disturbance year (Figure 7, Step 19; Table 2). Burns were
arranged as the bottom layer (order 1), since cutblocks
(order 2) (if spatially co-existing) could potentially overlap
these features. Mines in our study area normally appeared on
forested land, but nevertheless had the potential of overlap-
ping with a cutblock or burn, and therefore were assigned the
overlay order 3. Pipelines and roads could cross any distur-
bance feature, and were therefore assigned overlay orders 4
and 5, respectively. Wellsites occupied the top order, since
these features were smaller than any other disturbance type
and remained persistent throughout the time period.

Accuracy Assessment of the Disturbance Inventory

The disturbance inventory was tested for thematic accuracy
across three phases of compilation: (a) change detectability,
or the ability of the algorithm to discern change areas from
no change, (b) disturbance type classification, or the ability
to discriminate between cutblocks, wellsites, mines, burns,
roads and pipelines, and (c) land-cover classification, or
the accuracy of land-cover labels assigned to the distur-
bance features. The size of the assessment samples varied,
depending on the accuracy assessment being performed.
The sample size for change detectibility was obtained using
methodology described by Husch et al. (2004), with the
number of samples calculated as a function of the coeffi-
cient of variation in the pixel values and a 10 percent
allowable error. As a result, we distributed 178 random
samples proportionally between the change and no-change
features: 5 and 173 samples, respectively. Since the
classification of disturbance type produced nominal classes
with no measurable variance, we calculated sample size for
the second assessment using the method outlined in
McCoy (2005) to arrive at a number of 256 with an
allowable error of 20 percent. Those samples were ran-
domly distributed proportionally to the area covered by
each disturbance type. The same number of samples (256)
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was randomly distributed for the nominal disturbance
land-cover classification; again with size-proportional
representation. User’s, producer’s, overall accuracies,
and the kappa coefficient (Congalton and Green, 1999)
were calculated for each of the three assessments.

Backdating and Updating of Reference Maps

Using the framework proposed in this paper, the discrete
land-cover map of the study area (LC Map T, in Figure 6)
was backdated and updated through the systematic overlay
of features from the conditioned disturbance inventory
(Figure 2 and Figure 5). The continuous reference maps
(cc and Sc Maps T, in Figure 6) were backdated through the
overlay of crown closure and species composition models
created with spectral variables derived from Landsat images
from the first year of the time series (7-5) using a mask area
delineated by the conditioned disturbance features originat-
ing before T, (Figures 4 and 5). We used regression modeling
to estimate crown closure and species composition from the
reference maps (T;) to spectral and topographic explanatory
variables at T_;. Sample data was collected randomly from
the imagery in forested areas that were never disturbed
throughout the entire time series. The approach is analogous
to the model extension technique described by McDermid
(2005), though the application here is temporal rather than
spatial. In order to account for misregistration errors between
the disturbance features and the continuous reference maps,
the mask was buffered by two pixels. In the updating
direction, areas corresponding to new disturbance features
(Tp=o) were replaced with values of “0” for crown closure,
and were assigned “no data” for species composition, since
these areas were no longer considered forested.

Generating Temporally and Categorically Dynamic
Land-cover Maps

The Grizzly Bear Map-O-Matic (GBMOM) is an ArcObjects
program created in ArcGIS® 9.2, and is designed to generate
a series of multi-temporal land-cover maps for any configu-
ration of land-cover, species composition, and canopy
closure through integrative post-processing. The program
adds an important dynamic element to discrete land-cover
products by allowing for user-specified class breaks, or
categories, within the forest class. For demonstration
purposes, we used the GBMOM to generate a series of
categorically refined sample composite maps across the full
eight-year time series. Upland forested areas were divided
into five discrete land-cover categories: (a) Open Conifer

(species composition: 80 to 100 percent coniferous, crown
closure: 0 to 50 percent), (b) Moderate Conifer (species
composition: 80 to 100 percent coniferous; crown closure:
51 to 70 percent), (c) Closed Conifer (species composition:
80 to 100 percent coniferous; crown closure: 71 to 100
percent), (d) Mixed Forest (species composition: 21 to 80
percent coniferous; crown closure 0 to 100 percent), and
(e) Broadleaf Forest (species composition: 0 to 20 percent
coniferous; crown closure 0 to 100 percent).

Results and Discussion

As previously described, the successful implementation of
the proposed mapping framework depends on (a) the
accurate detection and classification of disturbance features,
and (b) the seamless integration of disturbance features into
the existing reference maps. We have organized this section
around each of these two components, followed by com-
ments and observations related to the categorically refined
nature of the resulting composite time series, and considera-
tions about the general applicability of the framework.

Accurate Detection of Disturbance Features

We assessed the detection and classification of the distur-
bance inventory on the basis of three elements: (a) detection
of change features, (b) classification of disturbance types,
and (c) classification of land-cover. The results of all three
assessments are summarized in Table 3.

The detection of change features produced excellent
results, with an overall accuracy of 100 percent and a
Kappa coefficient of 1.0. The EwDI change-detection
procedure performed very well, and provided an effective
tool for identifying change features in the study area. The
classification of disturbance type had an overall accuracy
of 98 percent and a “very good” Kappa agreement of 0.97.
There was some minor confusion between disturbances
features that appeared similar in the imagery. For example,
some large wellsites and small burns were committed to
the cutblock class. Among the manually digitized features,
classification was perfect (Table 3).

The classification of land-cover for the disturbance
features had an overall accuracy of 80 percent and a
“good” Kappa agreement of 0.64. The decision rules used
to assign land-cover labels to disturbance features in this
implementation of the proposed framework was simplistic,
relying only on idealized succession sequences (time from
disturbance) and other basic rules. While the transition

TABLE 3. SUMMARY STATISTICS OF CONFUSION-MATRICES FOR CLASSIFICATION OF (1) CHANGE, AND No CHANGE,
(2) DiSTURBANCE TYPE, AND (3) LAND-COVER

Producer’s User’s Overall
Accuracy Accuracy Accuracy Kappa
Change/No Change
(1) Change Change 100% 100%
Detection No Change 100% 100% 100% 1.0
Disturbance Type
(2) Disturbance Cutblock 100% 98%
Classification Wellsite 92% 100%
Burn 85% 100% 98% 0.969
Mine 100% 100%
Road 100% 100%
Pipeline 100% 100%
Land Cover Label
(3) Land-cover Barren 56% 82%
Classification Herb 74% 50% 80% 0.640
Shrub 93% 89%
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rules succeeded in avoiding temporal inconsistencies, the
actual rates of land-cover transition change varied from
feature to feature, according to other influencing factors
such as solar radiation, moisture, and soil type, which
alter the rate of succession. The process could be refined
through the use of spectral information from the imagery.

Seamless Integration of Disturbance Features

The trimming and expansion of spurious boundary-delineation
mismatches, and the consistent application of spatial overlay
order for features in the disturbance inventory were the
factors most strongly influencing the seamless integration of
disturbance features. Through careful implementation of the
disturbance-inventory framework presented in this paper, we
were successful in our attempts to produce spatially consis-
tent maps of land-cover, crown closure, and species compo-
sition (Plate 1). We observed no spurious changes in the
land-cover maps. For example, within a 5.4 km X 5.4 km
sample area, several disturbances occurred in the form of
new cutblocks (years 2000 to 2003, and 2005), new roads
(years 2000 and 2005), and a wellsite (2000) (Plate 1). For
the disturbance features that originated in 2003 or earlier,
mismatched boundaries between the disturbance features
and other adjacent features would have manifested them-
selves as small sliver objects or spurious gaps, especially
conspicuous in the years before the disturbance appeared,
had they not been suppressed (McDermid et al., 2008).

The absence of these errors emphasizes the importance of
boundary matching, and the success of the methods imple-
mented here. Furthermore, as demonstrated in this sample,
the spatial overlay order ensured that linear features
remained visible when they occurred in conjunction with
an areal feature. When several cutblocks transitioned to

herbaceous and shrub cover types in 2004 and 2005, roads
features traversing these areas remained visible.

In the continuous maps of crown closure and species
composition, the integration of the regression model
(applied to the Landsat T™M imagery at year T_5 (1998)
within the buffered area of the disturbance inventory)
yielded seamless map products without spurious values. In
Plate 1, we can see areas corresponding to cutblocks origi-
nating between 2000 and 2003 that blend seamlessly in the
years prior to their appearance.

Temporally and Categorically Dynamic Map Composite

By successfully creating a spatially consistent time series that
blends categorical characterization of basic land-cover with
continuous-variable representations of crown closure and
species composition, the disturbance-inventory framework
implemented here enables the production of temporally and
categorically dynamic forest land-cover maps (Figure 5). The
composite map generated in this implementation with the
GBMOM exemplifies one of such possible case, and reveals the
value of the proposed approach (Plate 1).

Considerations Regarding the General Applicability of the Framework

For the first time, a framework has been described that
enables the generation of land-cover maps, which are
dynamic in their categorical definition and therefore capable
of adapting to support a variety of applications. Since these
maps are also updated by automated remote-sensing meth-
ods to yield products that are spatially consistent across
time, we consider them an appropriate basis for conducting
efficient and reliable landscape monitoring. The disturbance
inventory is open to features delineated by different process-
ing methods (manual digitizing, automatic segmentation)

1998 1999 2000 2001

Landsat TM Composite

and false-color Landsat TM/ETM+ imagery.

Plate 1. A sample area (5.4 km X 5.4 km) displaying the derived annual backdated and updated maps
of basic land cover (LC), crown closure (cc), and species composition (sc) over the time period 1998
and 2005. Additional rows contain example composite maps with five discrete forest cover categories,

2005

Legends
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from different image sources (Landsat in this case), as long
as the boundary-matching conditions can still be adhered to.
Further, the disturbance inventory is not limited to the
initial time frame investigated, but can easily be appended
when images from additional years become available.

While our experience here demonstrates the effective-
ness of the overall approach, the results are still subject to
errors in the T, reference map. Since the proposed frame-
work does not alter the reference map outside disturbance
features, errors present in the no change areas will persist
throughout the time series. However, these errors remain
consistent, and with the focus on reliable landscape moni-
toring, are much less troubling than the stochastic spatial
errors dealt with in our approach. Linke et al. (2009)
showed that boundary-delineation errors arising from the
mismatched integration of change features had a large
impact on landscape metrics, and led to significant
distortions in landscape pattern analysis. These errors
were successfully suppressed in this work by match-
ing the boundaries of change features, both to each other
and to corresponding objects in the reference maps.

In addition to the internal dynamics of specific distur-
bance features, the size and shape of a ground feature may
also change through time. Within the context of our frame-
work, these modifications constitute discrete disturbance
events which are spatially adjacent to, or contained by,
the ground feature in question. As a result, these occur-
rences are dynamic features themselves. For example, the
increase (e.g., a fire-driven expansion of a barren cutblock
area through the burning of an adjacent forest section) or
decrease (e.g., the advanced forest succession of a fenced
section in a cutblock to reduce deer-browsing) in area of
a ground feature with time can be represented by means
of feature insertions and feature removals, as overlaid in
context to adjacent dynamic features. However, it should be
noted that the MMw requirements for the detection of areal
dynamic features (Step 14, Figure 7) prevents any represen-
tations of feature increases or decreases below these
minimum specifications.

Conclusions

A framework for generating temporally and categorically
dynamic forest land-cover maps has been presented. The
work constitutes an innovative approach designed to enable
the seamless updating and backdating of existing map
products based on a combination of different types of
disturbance features, delineated by manual or automatic
methods, stored in a disturbance-inventory database and
conditioned with boundary-matching procedures and
overlay orders. By implementing the framework over an
eight-year time interval across a large, multi-use study area
in western Alberta, we demonstrated that the resulting
products are reliable, and free of artifacts generated through
the mismatched integration of change features. Furthermore,
by accommodating both categorical and continuous-variable
maps, the approach allows for flexible monitoring at any
categorical scale of interest: an important consideration for
specific wildlife and environmental applications. While our
framework does not eliminate pre-existing errors in the
reference maps, it successfully enables the production of
reliable, spatially consistent representations of landscape
dynamics through time by suppressing the introduction of
New errors.
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