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Abstract. Forest cutlines are narrow, linear features created in geophysical surveys. In many areas of Canada, forest
cutlines are not consistently detected using relatively coarse spatial resolution land-cover maps, such as those produced by
classification of Landsat Thematic Mapper (TM) imagery. However, such features may be important in certain wildlife
management applications, including those which require an assessment of landscape structure, or forest fragmentation, at
various scales. Higher spatial resolution satellite imagery obtained from sensors on platforms such as Satellite Pour
l’Observation de la Terre (SPOT) and the Indian Remote Sensing (IRS) system may be used to map forest cutlines for these
applications. In this study, a TM-based land-cover map of western Alberta is analyzed with forest cutlines mapped from a
TM–IRS fusion image, and the effect of increasing cutline density is quantified on five commonly used landscape metrics
used to characterize landscape structure in grizzly bear habitat assessment. The accuracy of the fusion image interpretation
was determined to be 88%. Simulated landscapes were tested first, and the study area was divided into 104 hexagon-shaped
sample landscapes of about 6 km diameter each. Across these sample landscapes, cutline density and initial landscape
heterogeneity were significant parameters in explaining change in three metrics, namely edge density, mean patch size, and
patch context (expressed as mean nearest-neighbour distance). Patch size variability (expressed as the coefficient of
variation of mean patch size) and patch dispersion (expressed as the coefficient of variation of mean nearest-neighbour
distance) required additional information on cutline positioning. Overall, the density of the introduced cutline network and
the pre-cutline metric value reliably predicted and quantified the response of landscape metrics of interest to grizzly bear
biologists. This study shows the importance of mapping forest cutlines regarding their role in changing landscape structure
quantification and points out the necessity of using additional remotely sensed data when the feature responsible for the
landscape transformation is of too small a size to appear reliably in common TM-based classified imagery.
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Résumé. Les lignes coupées sont des étroites éclaircies linéaires créees par les enquêtes géophysiques. En général au Canada,
les lignes coupées dans les forêts ne sont pas détectées de manière fiable sur les cartes de couverture du sol créees à part des
images à basse résolution spatiale telles Landsat. Pourtant, ces lignes peuvent être importantes pour des fins d’aménagement de
la faune, surtout si les décisions doivent tenir en compte la structure du paysage ou la fragmentation de la forêt, et ce à
plusieurs échelles. Il est possible de cartographier les lignes coupées à ces fins à partir des images à résolutions plus fines,
telles SPOT et IRS. Dans la présente recherche, on analyse une carte de couverture du sol de l’ouest de l’Alberta créée à partir
d’une image Landsat fusionnée avec une image IRS. On quantifie l’effet d’une augmentation de densité des lignes coupées sur
cinq des mesures du paysage (« landscape metrics ») utilisés pour caractériser la structure du paysage pour évaluer l’habitat
des ours grizzli. L’exactitude pour les lignes coupées de l’image fusionnée est de 88 %. Au début, on examine des paysage
simulés, en divisant la région d’étude en 104 paysages-échantillons d’un diamètre de 6 km chaque. Sur ces paysages-
échantillons, la densité des lignes coupées et la hétérogénéité primordiale du paysage se sont révélés comme paramètres
significatifs pour expliquer les changements dans trois des mesures : densité des bords, taille moyenne des îlots et contexte des
îlots (moyenne des distances à l’îlot voisin le plus proche). Expliquer la variabilité des îlots (la coefficient de variation de la
taille moyenne des îlots) et la dispersion des îlots (la coefficient de variation de la distance moyenne à l’îlot voisin le plus
proche) demande plus d’information sur le positionnement des lignes coupées. Globalement, la densité du réseau des lignes
coupées et la valeur avant la coupe du mesure du paysage prévoient fidèlement et quantifient la réponse des mesures du
paysage d’intérêt aux biologistes qui étudient le grizzli. Cette recherche montre l’importance de la capacité de cartographier les
lignes coupées, à cause de leur rôle important dans la quantification des changements de la structure du paysage. Aussi, elle
souligne la nécessité d’ajouter des images supplémentaires lorsque les éléments responsables pour la transformation du
paysage sont trop petits pour paraître fidèlement sur les images Landsat traditionnelles.
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Introduction
Remotely sensed land-cover maps have been used to

quantify landscape structure and forest fragmentation in
support of wildlife management at various scales (Diaz, 1996;
Cushman and Wallin, 2000; McGarigal et al., 2001). Of the
many possible examples, only a few are cited here because of
their relevance to those interested in the role of remote sensing
in species-at-risk habitat analysis.

Nesting behaviour and population dynamics for several bird
species have been related to forest fragmentation and landscape
structure; for example, Bayne et al. (2005) found a significant
response by boreal forest ovenbirds to forest dissection caused
by geophysical exploration and oil and gas development. In
another study, Zharikov et al. (2006) related habitat selection
and breeding success in a British Columbia population of
marbled murrelet to forest fragmentation caused by forest
harvesting (mapped by Landsat Thematic Mapper (TM)
imagery). These two studies used remote sensing imagery
primarily to update basic land-cover geographic information
system (GIS) maps from which landscape metrics of interest
were derived. Hamer et al. (2006) investigated the decline in
Wyoming grassland bird richness associated with the
transformation of native grassland landscape structure; they
separated the impact of the “area of grassland” (i.e., landscape
composition) from the “arrangement of grassland patches”
(i.e., landscape configuration) as mapped using TM imagery.
Hamer et al. (2006) found that species richness was positively
associated with grassland area and increasing edge between
grassland and nongrassland cover but negatively associated
with decreasing patch context (measured by mean nearest-
neighbour distance between grassland patches). Gorresen and
Willig (2004) investigated eight bat species in tropical forested
and deforested landscapes and found species-specific
variations in abundance with forest patch configuration mapped
using TM imagery. Another significant finding was that
landscape composition (measured as forest area) was a
significant predictor for most bat species examined. In other
work, Knutson et al. (1999) related amphibian abundance and
species richness to wetland fragmentation and landscape
composition in Iowa and Wisconsin; their study used digitized
GIS maps (scale 1 : 24 000) of locations and attributes of
wetlands derived from the US Fish and Wildlife Service to
represent fragmentation and landscape metrics.

Common to such studies is the suggestion that habitat use or
selection by species must be understood first and that one of the
basic steps in developing this understanding is to acquire or
develop (i) a basic land-cover map at the appropriate scale for
the species of interest, and (ii) a way to update the map for
changes associated with management practices that occur on
the landscape and may affect that species. Our own work
(Franklin et al., 2001; McDermid, 2005) maps land cover and
continuous biophysical variables, such as leaf area index, in
Alberta for use in studies designed to provide insights into
grizzly bear behaviour and population dynamics. It supports the
notion that landscape structure and change are important in

habitat and habitat selection (Popplewell et al., 2003; Nielsen et
al., 2004; Linke et al., 2005). Human-caused forest
disturbances of interest in grizzly bear management include
clearcuts, roads, and forest cutlines (McLellan and Shackleton,
1989; Nielsen et al., 2004; Linke et al., 2005). Understanding
how landscape structure changes, with changes associated with
increased human-caused land-cover disturbance, is an
important new element in applications of species-at-risk
assessment and wildlife management (Gergel, 2007). Remotely
sensed imagery of the appropriate spatial resolution is
important in the development and updating of such maps.

Typically, landscape structure is quantified using landscape
metrics derived from the available land-cover map. Patches are
sets of connected pixels having the same land-cover class;
patches combine with the background mosaic in which they are
embedded to create landscape structure. The landscape metrics
characterize landscape structure into two components:
(i) composition (in terms of patch types or land-cover classes in
the map legend), and (ii) configuration (the spatial arrangement
of these patches or land-cover classes) at the scale of the
mapped landscape (McGarigal and Marks, 1995).

One land-cover change that can have a large impact on
landscape structure is the insertion of linear features on that
landscape. The impact of adding road features to an existing
landscape and the effects of road development on landscape
structure have been relatively well described (Hawbaker et al.,
2006). Roads generally constitute a significant change because
they dissect large patches and convert interior habitat patches to
edge habitat (Ripple et al., 1991; Reed et al., 1996; Hawbaker
and Radeloff, 2004). Some other important impacts of roads in
forest areas include reductions in largest patch size and mean
patch size, increases in edge density, and a more regular,
simplified patch shape. Several studies have found that road
density alone is insufficient to quantify road landscape impacts,
which also depend on the spatial distribution of the road
network (Miller et al., 1996; Tinker et al., 1998; Saunders et al.,
2002). For example, a high road density may yield smaller
changes in certain metrics if roads are spatially clumped, as
compared with a lower road density where roads are distributed
more evenly (Reed et al., 1996). In addition, the specific
configuration or heterogeneity of the original landscape results
in different metric responses to road development (Miller et al.,
1996). This effect has been observed mainly through
interaction effects of metric changes within specific cover types
(Saunders et al., 2002; Tinker et al., 1998).

Another linear disturbance feature, namely forest cutlines, is
closely associated with geophysical surveys and oil and gas
exploration. Recent work has suggested there may be a
significant impact by forest cutlines on important wildlife–
habitat relationships (Bayne et al., 2005; Linke et al., 2005).
Insight gained from looking at the impact of roads cannot be
automatically extrapolated to cutlines, as they differ in
important ways. Typically, cutlines are more evenly distributed,
straighter, narrower, and more constant in width than roads.
Forest cutlines may create more edges per unit area than do
roads. However, like roads, forest cutlines fragment the
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landscape by dissecting contiguous patches. In Alberta,
numerous forest cutlines, typically 5–10 m wide, have been
introduced in networks of variable density. Primary oil and gas
exploration areas have a mean cutline density of approximately
15 m/ha (Lee and Boutin, 2006). Forest cutlines are rarely
maintained, but they can persist on the landscape because they
are often used as recreational pathways for off-road vehicles
(Revel et al., 1984). Lee and Boutin (2006) estimated that
complete recovery would take more than 100 years, even in the
absence of any human activity after the geophysical survey.
Because of both persistence and increased geophysical activity,
forest cutline densities are expected to increase significantly in
the future (Schneider et al., 2003). This prospect emphasizes
the need to understand and predict the impacts of forest cutlines
on landscape structure.

Two variables, namely cutline density and pre-cutline
landscape heterogeneity, are analyzed in this paper. First, a
simulation of cutline-induced changes to landscape structure is
presented. Second, a sample of real landscapes is described,
taken from a study area previously classified into TM-derived
land-cover classes of interest in grizzly bear habitat assessment.
The forest cutlines are interpreted using Indian Remote Sensing

(IRS) satellite data fused with multispectral TM imagery to
create an update feature to the TM-based land-cover
classification map. A series of tests are interpreted that explain
landscape metric behaviour based on changes in cutline density
and landscape heterogeneity.

Methods

Research design

This study was undertaken as part of the Foothills Model
Forest Grizzly Bear Research Project in west-central Alberta
(Figure 1) (Stenhouse and Graham, 2005). Incorporation of
landscape structure constitutes an improved explanation of
habitat selection. Models that use measures of configuration
have a greater explanatory power in grizzly bear selection than
does information relying on landscape composition alone (e.g.,
amount and type of specific land cover or habitat types)
(Popplewell et al., 2003; Nielsen et al., 2002; Linke et al.,
2005). For example, higher grizzly bear densities and increased
grizzly bear landscape use have been associated with
landscapes with lower edge density, higher mean patch size,
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Figure 1. Foothills Model Forest Grizzly Bear Research Project (FMFGBRP) area showing grizzly bear land-cover
map and forest cutlines in 1999 and the stratification of the Foothills Zone study area into 2300 ha hexagons in the
context of surrounding topographic gradients (blue colour gradient outside FMFGBRP) and major towns (Universal
Transverse Mercator (UTM) zone 11).



greater patch size variability, nearer patch context, and lower
patch dispersion. Appropriate metrics selection can be guided
by parsimonious approaches based on common multivariate
statistics techniques (e.g., Riitters et al., 1995; Linke and
Franklin, 2006; Cushman et al., 2008). The landscape metrics
selected for the current research (see Table 1) were those
suggested as relevant to grizzly bear landscape use and density
classes in the studies cited in this paragraph and were
representative excerpts of three of the six universal and
consistent parsimonious metric groups (Linke and Franklin,
2006; Cushman et al., 2008): (i) edge density (ED); (ii) mean
patch size (Area_MN); (iii) patch size variability, as expressed
by the coefficient of variation of patch size (Area_CV);
(iv) patch context, as expressed by the mean nearest-neighbour
distance (ENN_MN); and (v) patch dispersion, as expressed by
the coefficient of variation of mean nearest-neighbour distance
(ENN_CV).

In this study, for each of the five metrics listed previously, the
percent change is estimated as a function of cutline density and
the pre-cutline value of that metric. Cutline density is
calculated as the total length of cutlines divided by the
landscape area (m/ha). The pre-cutline metric value
corresponds to the landscape configuration prior to the
introduction of cutlines and is used as an indicator of initial
landscape heterogeneity as measured by that metric. Percent
change in a specific metric is the cutline-induced percent
change relative to the pre-cutline value of that metric. First, a
controlled experiment was set up by creating a series of
simulated binary landscapes of differing initial spatial
heterogeneity. Simulated forest cutlines were then imposed on
the binary landscapes in several different densities and patterns.
Regression equations were developed using cutline density and
the pre-cutline metric value for predicting change in each
metric chosen, and the shape of the regression was determined.
The conclusions from the simulated landscapes were then
tested on and the equations applied to real landscape samples.

These landscape samples were selected from a TM-based land-
cover map and a TM–IRS fused image, from which cutlines
were visually digitized. This application yielded estimates and
level of significance of variable coefficients and a measure of
regression equation goodness-of-fit.

Sample landscape description

The response of the five landscape metrics (Table 1) to
increasing forest cutline density was tested in sample
landscapes of different landscape heterogeneity, and hence
differing compositions and configurations. Each sample
landscape is 2300 ha with a minimum mapping unit of 5 m
(resampled from the 30 m spatial resolution of the original TM-
based land-cover map to allow the addition of 5 m resolution
forest cutlines). Hexagonal landscape boundary outlines were
imposed (rather than square boundaries) because their shape,
being closer to that of a circle, reduces corner effects. The
diameter of the hexagons, 5.9 km, was selected to match the
mean clustering distance of grizzly bear occurrence locations.
This was acquired from global positioning system (GPS) data
of seven collared grizzly bears tracked in the region (Linke et
al. 2005).

Two types of landscape samples were analyzed, namely
simulated and real. Seven simple, simulated landscapes of
binary land cover (forest versus nonforest) were created
(Figure 2). The first six simulated landscapes have increasing
levels of initial landscape heterogeneity. The first landscape has
just one contiguous patch; subsequent simulated landscapes
were created by arbitrarily dividing this patch into an
increasing number of patches. Progressing numerically from
landscapes 1 to 6, the mosaics contain more patches, more
edge, and more variation in nearest-neighbour distances.
Landscape heterogeneity as measured by the coefficient of
variation in mean patch size increases in the sequence of
landscapes 1, 2, 5, 3, 6, and 4 (Figure 2; Table 2). Simulated
landscape 7 was created by reclassifying a randomly selected
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Name Full name Description

Edge density (m/ha) Edge density (ED) Amount of edge per unit area as a spatially implicit measure of
landscape configuration; landscapes with higher values may be
considered more fragmented

Mean patch size (ha) Mean patch size (Area_MN) Distribution of patch area summarized by its mean across all patches of
all types; landscapes with lower means may be considered to be more
fragmented

Patch size variability (%) Coefficient of variation of
mean patch size (Area_CV)

Distribution of patch area summarized by its coefficient of variation of
the mean across all patches of all types; greater variation indicates
less uniformity in pattern

Patch context (m) Mean nearest-neighbour
distance (ENN_MN)

Measure of patch context, summarized by the mean of all shortest
straight-line distances between each patch and its nearest neighbour
of the same class; landscapes with higher means may generally
indicate higher isolation and fragmentation of patches

Patch dispersion (%) Coefficient of variation of
mean nearest-neighbour
distance (ENN_CV)

Measure of patch dispersion as summarized by the coefficient of
variation of the mean nearest-neighbour distance; greater variation
generally indicates more irregular and uneven distribution of patches

Table 1. Description (McGarigal et al., 2002) of landscape-level metrics investigated in this study.



real landscape into a binary landscape; it represents the most
heterogeneous landscape among the simulated landscapes and
was included as a control to determine whether the trends in
metric responses of the simple landscapes are consistent with
those of a more realistic landscape (Figure 2; Table 2).

The 104 real landscapes used in this study were obtained by
clipping the TM-based land-cover map produced using
methods described by Franklin et al. (2001) and McDermid
(2005), using as clip the 5.9 km hexagonal grid shown in
Figure 1. All 104 real sample landscapes fell completely

within the area of significant oil and gas exploration and
development (including roads, pipelines, and well sites),
mining, human settlements, and forest harvesting. Forest
cutlines in this area are typically narrower than the 30 m spatial
resolution of TM imagery and so rarely influence the original
land-cover classification. Therefore, this land-cover map is a
surrogate of the pre-cutline configuration. When the interpreted
cutlines are imposed on this map, the metrics are computed to
represent the landscape structure with those changes
incorporated into the final metric values (Figure 3).
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Figure 2. Simulations of seven hypothetical, binary landscapes with increasing initial landscape heterogeneity and
increasing cutline densities.

Simulated binary landscapes with increasing fragmentation from left to right

Landscape metric 1 2 3 4 5 6 7

Edge density (m/ha) 0 2 6 8 12 16 78
Mean patch size (ha) 2230 1150 766 575 460 328 13
Patch size variability (%) 0 0 32 75 18 36 749
Patch context (m) 0 0 2160 857 752 731 67
Patch dispersion (%) 0 0 0 10 21 22 72

Table 2. Initial landscape heterogeneity of simulated binary landscapes as indicated by the pre-cutline
values of five selected landscape-level landscape metrics, namely edge density, mean patch size, patch size
variability, patch context, and patch dispersion.



Image acquisition and forest cutline interpretation

Two satellite sensor data sources were used in this study:
(i) five geometrically and atmospherically corrected IRS
panchromatic images (six-bit data at 5.6 m resolution) acquired
between April and September 1998 as part of the ACCESS
program of Alberta Environment; and (ii) one 30 m resolution,
multispectral Landsat TM scene acquired 29 August 1998. This
TM image was atmospherically and geometrically corrected
using the ATCOR operations in Xpace and the GCPWorks tool
of the remote sensing processing software PCI Works 7.0 (PCI

Geomatics, 2000). The TM image was subsequently resampled
to 5 m for the purpose of merging spectral information to the
high-resolution IRS panchromatic imagery and also was
employed as the main data source for the land-cover
classification (Franklin et al., 2001; McDermid 2005). The IRS
images were mosaicked together to cover the area of the TM
scene.

To assess the effects of forest cutlines on landscape structure,
cutlines were visually interpreted based on a TM–IRS fusion
product (Figure 4) and imposed on all 104 real landscapes.
First, to create the fusion image, the IRS mosaic was
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Figure 3. Selected sample of real landscapes showing (a) pre-cutline and (b) post-cutline
representations of the grizzly bear land-cover map.



coregistered to the TM scene using 52 ground-control points
yielding a root mean square (RMS) error of 0.7 pixels. Three
infrared bands (4, 5, and 7) of the TM image were merged with
the panchromatic IRS intensity image using the intensity–hue–
saturation transformation; the subsequent fused image was
resampled using the nearest-neighbour method. To facilitate
forest cutline visual detection, an edge enhancement filter,
averaging the absolute differences for each pixel surrounding
the centre of the kernel window, was applied to the three fused
bands at three filter sizes (3 × 3, 5 × 5, 11 × 11). Visual
inspection revealed that the 11 × 11 filter size provided the
most effective enhancement of the cutline features. The
centrelines of cutlines were digitized on screen from the
enhanced fused image. The resulting polylines were converted
to polygons using a buffer distance of 5 m, the polygons were
rasterized using a 5 m cell size, and the detected cutlines were
then inserted in the 5 m resampled, TM-based land-cover map.

For the seven simulated landscapes, five cutline networks of
arbitrary pattern and increasing density were manually created
(cutline densities of 3.9, 7.8, 11.7, 15.6, and 31.2 m/ha were
used as shown in Figure 2). These cutline networks were
imposed on the simulated landscapes to enable a model of
structure to be developed for specific metric values pre-cutline
and post-cutline disturbance.

Cutline accuracy assessment

To collect data on the accuracy of these two maps, a field
sampling program was carried out in June and July 2001 in two
test sampling areas selected because of known geophysical
activity in the recent past. (Note that more detailed assessment
of cutline accuracy was presented by Linke (2003); for
example, Linke conducted an assessment of cutline detection
accuracy in areas of higher or lower quality imagery because
some of the IRS imagery exhibited significant atmospheric

haze.) Several cutline sections clearly visible in the IRS
mosaic, each approximately 5 km long, were randomly selected
while stratifying by the two dominant seismic cutline
directions, northeast and southeast, and by image tile. The
presence and absence of intersecting seismic cutlines were
recorded in the field. The intersection point was recorded with a
hand-held Garmin GPS. The total of 70 km of sampling lines
constituted on average about 4% of IRS mapped seismic lines
per image tile. Errors of omission and commission and overall
accuracy for the update layers and spatial extents were
computed based on the number of cutlines found in the field
compared with the number of cutlines mapped from the TM–
IRS fusion imagery. The overall accuracy of the cutline
interpretation, compared with the field-based identification of
cutline presence, was determined to be 88%. Forest cutline
density across the 104 real landscapes ranged from 0.25 to
37.58 m/ha, with a mean density of 11.45 and a standard
deviation of 7.00 (Figure 1).

Landscape structure assessment

The five metrics, namely edge density, mean patch size,
patch size variability, patch context, and patch dispersion,
together quantitatively capture aspects of the aggregate
properties of the entire landscape mosaic when calculated at the
landscape level. Each metric was computed at the landscape
level twice on each sample landscape using Fragstats 3.1
software build 3 (McGarigal et al., 2002). The first computation
was performed on the landscapes without forest cutlines
yielding metric values for the pre-cutline landscape condition
(Figure 3a); the second computation was performed on the
landscapes with forest cutlines superimposed (using the five
arbitrary networks of cutlines for simulated landscapes and the
IRS-digitized forest cutline layer for the real landscapes),
yielding metric values for post-cutline landscape condition.
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Figure 4. Sample comparison between (a) the original 30 m resolution Landsat TM 1998
image and (b) the fused TM image with 5.6 m resolution panchromatic IRS 1998 image.



The eight-neighbourhood option was selected for all metric
computations, meaning that patches are formed from pixels
connected on the diagonal and from those with full connection
on the pixel sides. The hexagonal frame bounding each
landscape was excluded from edge calculations, since it
represents an artificial boundary rather than a patch edge.
Lastly, the cutline-induced change in each metric was
expressed as a percent of its pre-cutline value.

Visual and statistical analysis

For each metric, a graph was created to show the percent
change in each simulated landscape plotted against cutline
density. There are seven curves per graph, one for each
simulated landscape. Visual assessment was used to determine
whether the relationship was linear or nonlinear and how the
slope of the curve varied with initial landscape heterogeneity.
This guided the choice of the type of regression equation
required to predict cutline-induced change in the real
landscapes.

Using the cutline-induced metric change values obtained
from the 104 real landscapes, we derived for each selected
metric one regression equation predicting the percent change as
a function of both cutline density and the pre-cutline value of
the metric, the latter of which is assumed to indicate the initial
landscape heterogeneity. All the equations were forced through
the origin, since no cutline-induced change could occur in the
complete absence of cutlines. The regression coefficients were
estimated via the ordinary least squares method. The goodness-
of-fit was indicated by the standard r2 for linear regressions and
by pseudo-r2 (Anselin, 1993) for nonlinear regressions.
Pseudo-r2 is computed as the squared correlation between the
fitted and observed values. For nonlinear regressions, 95%
confidence intervals were computed to indicate whether the
parameter estimates for the two independent variables, namely
the pre-cutline metric value and cutline density, were stable and
not overlapping zero values. All models were also applied to
obtain graph points over sequential interval data within the
range of sampled data to provide a visual representation of the
regression equations. Regression residuals were computed as
the difference between predicted and observed values of the
percent change in metric based on the 104 real landscapes.
These residuals were then plotted as spline surfaces using linear

extrapolation within the range of sampled data to demonstrate
under what landscape and cutline conditions the models
overpredict and underpredict. All computations were
performed using S-Plus 2000 (MathSoft, Inc., 1999) loading
the MASS library (Venables and Ripley, 2002).

Results and analysis
Two independent variables (cutline density and the pre-

cutline metric value) could explain the percent metric change in
four of the metrics (edge density, mean patch size, patch
context, and patch dispersion) with varying degrees of
goodness-of-fit (Table 4). Change in the remaining metric
(patch size variability) could not be explained by these two
variables alone, and visual examination of the graphs suggested
that this explanation may require spatial pattern information
(e.g., cutline positioning) (Figure 5).

Evaluation of metric responses on simulated landscapes

The introduction of networks of forest cutlines of increasing
density in the seven simulated landscapes illustrated the general
direction and type of change that can be expected in the five
investigated landscape-level metrics (Figure 5). Observations
included the following:

(1) Clear relationships between increasing cutline densities
and percent changes were apparent in four of the
investigated metrics, namely edge density, mean patch
size, patch context, and dispersion. The second variable,
pre-cutline metric value, appeared to be inversely related
to rates of change (Figures 5a, 5b, 5d, 5e).

(2) Percent change in edge density was positively and
linearly related to cutline densities across all simulated
landscapes, with the slope of this relation consistently
decreasing from landscape 1 to landscape 7 (Figure 5a).
This landscape sequence is in order of increasing initial
mosaic heterogeneity as quantified by the pre-cutline
edge density values (Table 2).

(3) Percent change in mean patch size and patch context had
a negative exponential relation with increasing cutline
densities. The curves asymptotically approach the
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Pre-cutline metric values (units as given
with each metric)

Cutline-induced changes in metric values
(% change relative to pre-cutline values)

Landscape metric Mean, X SD, σ Min. Max. Mean, X SD, σ Min. Max.

Edge density (m/ha) 107.59 35.38 35.93 186.38 27.62 18.11 0.91 112.61
Mean patch size (ha) 4.01 1.84 1.61 10.36 –24.99 11.01 –51.20 –0.28
Patch size variability (%) 1010.65 371.23 389.85 1815.25 –13.97 20.01 –65.17 24.60
Patch context (m) 107.30 23.71 74.95 174.70 –20.78 11.72 –48.11 –0.28
Patch dispersion (%) 165.05 30.27 98.29 264.39 20.58 10.80 0.17 51.75

Table 3. Mean, standard deviation, minimum, and maximum values of pre-cutline landscape metrics and cutline-
induced percent changes in metrics across 104 real landscape samples, measured by edge density, mean patch size,
patch size variability, patch context, and patch dispersion.



theoretical and practical lower limit of these metrics, i.e.,
–100% percent change (Figures 5b, 5d). The rate at
which the asymptote was approached decreased with an
increase in initial heterogeneity (Table 2).

(4) The response of percent change in patch dispersion to
increasing cutline density was observed using three of the
simulated landscapes (4, 6, and 7; Figure 5e). Landscapes
1, 2, and 3 contained no initial variation of this metric
(Table 2). For landscape 5, the first cutline density
simulation dissected all unique patches with the constant
cutline width, therefore separating all new nearest-
neighbouring patches by that distance (landscape 5;
Figure 2). The effect was to create a zero coefficient of
variation in mean nearest-neighbour distances (Figure 5e).
The remaining useful landscapes 4, 6, and 7 demonstrated
a steep initial increase in percent change in patch
dispersion at the first introduction of cutlines; increasing
cutline density induced a lesser rate of change. The slopes
of these relationships appeared to be an inverse function of
initial level of patch dispersion.

(5) Responses of percent change in patch size variability to
cutline density varied across the different cutline densities
and among landscapes. Across landscapes 1–6, patch size
variability responded positively to increasing cutline

densities; the rate of change decreased across the gradient
provided by increasing pre-cutline values of uniformity
(Figure 5c; Table 2). The shape of the response curves was
not quantifiable based on cutline density and appeared by
visual inspection to be mainly driven by the positioning of
the cutlines. Increases coincide with less evenly positioned
cutlines (3.9, 7.8, and 31.2 m/ha cutline simulations), and
decreases coincide with more evenly positioned cutlines
(11.7 and 15.6 m/ha cutline simulations) (Figure 2). The
seventh and more realistically configured landscape
displayed a considerably larger pre-cutline variation in
patch size (Table 2; Figure 2) and showed a negative
exponential relation of percent change in patch size
variability with increasing cutline density The curve slowly
approaches the lower theoretical limit of –100%
(Figure 5c). Cutlines split the largest patches into smaller
units, decreasing the strong variability in patch sizes. This
reiterates the importance of cutline positioning, here in
relation to the underlying mosaic structure rather than in
relation to other cutlines. If cutlines run through larger
initial patches, the patch size variability decreases more
than if the cutlines run through smaller initial patches.

Three model types were used to quantify percent change in
metric value as a function of cutline density: (i) positive linear
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Change in edge
density

Change in mean
patch size

Change in patch
context

Change in patch
dispersion

Model type Positive linear Negative exponential Negative exponential Positive exponential
Equation (1) y = αx1 + βx1x2 (2) y*(– 100) = 1 –

exp(–αx1 – βx1x2)
(3) y*(– 100) = 1 –

exp(–αx1 – βx1x2)
(4) y = αx1x2 + βx1

γ

α coefficient 4.837 0.014 0.002 –0.005
SE 0.091 0.001 0.002 0.002
LCL na 0.0110 –0.0030 –0.0090
UCL na 0.0170 0.0080 –0.0015
t 53.082 na na na
Pr(>�t�) <0.000 na na na
β coefficient –0.021 0.003 0.0002 5.817
SE 0.00100 0.00100 0.00002 0.76700
LCL na 0.0020 0.0001 4.4250
UCL na 0.0040 0.0002 7.8080
t –28.530 na na na
Pr(>�t�) <0.000 na na na
γ coefficient na na na 0.706
SE na na na 0.072
LCL na na na 0.514
UCL na na na 0.839
t na na na 9.70
DF 102 102 102 101
Goodness-of-fit:

(adjusted pseudo-r2)
0.98 0.83 0.88 0.41

Note: x1 refers to the cutline density (m/ha), and x2 refers to the pre-cutline metric value.

Table 4. Explanatory model parameters, showing regression equations, degrees of freedom (DF), significance (Pr),
coefficients, standard error (SE), 95% upper (UCL) and lower (LCL) confidence limits, and pseudo-r2 of cutline-
induced percent changes in landscape metrics such as edge density, mean patch size, patch context, and patch
dispersion over 104 real sample landscapes.



model for edge density, (ii) negative exponential model for
mean patch size and patch context, and (iii) positive
exponential model for patch dispersion (Table 4).

Note that there is an additional interaction term to account
for the pre-cutline heterogeneity, as measured by the initial
value of the given metric. For patch size variability, no
acceptable model could be formulated using cutline density and
pre-cutline heterogeneity alone.

Cutline density impacts on real landscape samples

To corroborate and parameterize the regression equations
corresponding to the four metrics that showed a clear response

in the simulated landscape responses, we applied the equations
to the 104 real landscape samples (Table 4; model type and
model parameters). These landscape samples exhibited a wide
range of pre-cutline mosaic configurations and cutline-induced
percent changes in the investigated metrics (Table 3;
Figure 1). Cutline density and pre-cutline metric values were
strong explanatory variables and had narrow 95% confidence
intervals for percent changes in the metrics, with high
goodness-of-fit pseudo-r2 measures between 0.83 and 0.98
(Equations (1)–(3) in Table 4) and low residuals over the
sampled data range (Figures 6a–6c; Table 3) for three of the
four metrics: edge density, mean patch size, and patch context.
Prominent overpredictions occurred near the lower and upper
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Figure 5. Effects of simulated cutline densities on selected landscape metrics across seven
simulated binary landscapes of increasing initial landscape heterogeneity (see Table 2):
(a) edge density (ED), (b) mean patch size (Area_MN), (c) patch size variability (Area_CV),
(d) patch context (ENN_MN), and (e) patch dispersion (ENN_CV).



extremes of observed initial metric values for edge density
where fewer samples were available to fit the linear model
(Figure 6a). The two other nonlinear metric models
demonstrated less prominent prediction errors near the
intercept but more near the upper extremes of cutline density
and initial metric value, where overpredictions occurred for
mean patch size and underpredictions occurred for patch
context (Figures 6b, 6c).

The remaining metric, namely patch dispersion, exhibited a
lower fit to the regression model, with a pseudo-r2 of 0.41
(Equation (4) in Table 4) and higher residuals over the sampled
data range (Figure 6d), although the coefficient estimates for
cutline density and pre-cutline metric value were significant.
Visual inspection of the prediction surfaces generated by the
regression equations (Figure 7) showed that all four models
were consistent with the metric behaviour in the simulated
landscapes. The 104 real landscapes were comparable to the
simulated landscapes in that percent changes in patch size
variability varied inconsistently in relation to cutline density

and pre-cutline values of patch size variability, thus preventing
model formulation using these variables alone (Figure 7;
Table 4).

Cutline density, cutline positioning, and differing initial
landscape heterogeneity

The response of edge density to the introduction of forest
cutlines was consistent with the general behaviour observed in
relation to road development. Any new landscape feature
introduces new edges regardless of its position in the landscape
(McGarigal et al., 2002), but the actual percent change in edge
density also depends on the shape of the introduced feature.
Less change is introduced by more compact features, and more
change is introduced by features of more irregular shape.
Because forest cutlines have a consistent shape, increasing
cutlines by any amount yields predictable edge density changes
and hence generates very strong models. In the case of mean
patch size, any new cutline dissects at least one patch into at
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Figure 6. Residual surfaces (interpolated from 104 observations) of predicted percent changes in (a) edge density
(ED), (b) mean patch size (Area_MN), (c) patch context (ENN_MN), and (d) patch dispersion (ENN_CV) in
response to forest cutline densities and initial, pre-cutline metric values.



least two new patches, naturally leading to a decreasing trend in
mean patch size. The more patches the landscape already
contains, the more patches the cutline is likely to dissect, as
demonstrated by the strong negative exponential model for
change in this metric (Figure 7).

The regression for percent change in patch context also
displayed a strong correlation. Greater patch context values, in
other words higher patch isolation, might be expected to occur
as the level of fragmentation in a landscape increases (Table 1)
(McGarigal et al., 2002). In the particular context of forest
cutlines, however, the land transformation process at hand is
dissection. In this case, patch context values actually decrease,
indicating a reduction in overall patch isolation, since each
newly created neighbouring patch is separated from its
neighbour of the same class only by the width of the cutline.
Therefore, counter to intuition, a quantitative reduction in patch
context values, and hence a reduction in overall patch isolation,
cannot be equated to a landscape with lower fragmentation and
fewer isolated patches. Instead, change in patch context needs
to be interpreted in the context of the land transformation at
hand. A landscape experiencing changes of similar intensity,
but of a different shape or distribution of the imposed change
polygons, could cause the inverse trend in patch context. For

example, higher values of patch context might occur, in other
words patches becoming more isolated in areas experiencing
clearcutting, compared with an area with lower values of patch
context responding to the introduction of a network of cutlines.

Theoretically, while patch context decreases, patch
dispersion increases in response to increasing cutline density.
This is because new patches are created separated by only the
cutline. The proportional change is lower in landscapes where
the pre-cutline value of dispersion is larger. However, the
correlation obtained in the percent change of dispersion was
low in the real landscape samples. Two landscapes with similar
pre-cutline landscape mosaics and similar cutline density may
yield very different changes in patch dispersion, such as 16%
and 45%. In the first landscape, the cutlines are positioned to
dissect fewer contiguous patches, creating a 30% increase in
the number of patches; in the second landscape, however, the
same cutline density dissects more patches, increasing their
number by 95%, hence creating more new nearest neighbours
and a relatively greater change in patch dispersion.
Quantification of percent change in patch dispersion might then
be improved with a third independent variable accounting for
the number of new patches created due to cutline positioning.

© 2008 CASI 401

Canadian Journal of Remote Sensing / Journal canadien de télédétection

Figure 7. Prediction surfaces of percent changes in (a) edge density (ED), (b) mean patch size (Area_MN), (c) patch
context (ENN_MN), and (d) patch dispersion (ENN_CV) in response to forest cutline densities and initial, pre-cutline
metric values (for model details, see Table 3).



Cutline positioning was even more important for change in
patch size variability than for change in patch dispersion. As
observed in the simulation graphics, a general positive change
in patch size variability was caused by the cutline-induced
creation of new patches, smaller than those initially present.
Cutline proximity and clumping influenced the magnitude of
this increase independently of cutline density (Figures 2, 3). In
contrast, in the landscape where cutlines were positioned to
dissect mainly the largest patches, the initially existing smallest
patches remained unaffected and the largest patches were
reduced in size, lowering the patch size variability as reflected
by the negative change (landscape 7; Figures 2, 3). This
conclusion was similar to that observed in the real landscapes.

Linking simulated and real landscapes to understand
landscape metric behaviour

The direct linking between simulated and real landscapes, as
applied in the quantification of metric responses to cutline
density and initial heterogeneity, constitutes an important
conceptual extension of existing work on the understanding of
metric behaviour. Similar metric values with differing
landscape structures have been observed in several simulated
and real studies (e.g., Hargis et al., 1998; Trani and Giles, 1999;
Tischendorf, 2001), rendering landscape change interpretation
ambiguous. Neel et al. (2004) addressed this difficulty using
replications of simulated binary landscapes across a wide range
of gradients of landscape structure. They modeled 50 metrics as
bivariate responses to composition (modeled by landscape
proportion P) and configuration (modeled by landscape
aggregation H) to assess how each metric quantifies differences
in landscape structure. Their general trends of metric behaviour
were consistent with the responses of the four metrics
quantified in this study. For example, edge density and mean
patch size, respectively, exhibited increases and decreases in
response to increasing fragmentation (lower aggregation levels)
for a given landscape composition (Neel et al., 2004).

The aggregation parameter H used by Neel et al. (2004)
cannot be quantified in real landscapes, however, and therefore
interpretations can only indirectly be linked with real
landscapes. By coupling a controlled landscape experiment,
quantified through real-world variables (such as cutline density
and pre-cutline metric value), with an empirical analysis of real
landscapes, this paper expanded the approach of Neel et al. The
strategy advocated in this paper is to select metric response
models based on simulated landscapes and then apply these to
real landscapes to evaluate if the “theoretical patterns”
observed in the simulations match the empirical patterns of real
landscapes. This approach may also allow establishing
relationships with real-world ecological systems and wildlife
conservation issues. For example, in the context of Alberta’s
forest landscape, Linke et al. (2005) reported that grizzly bear
landscape use declined with increasing patch dispersion
(ENN_CV) and with decreasing mean patch size (Area_MN).
Knowing how human activities, such as the development of
forest cutlines in this case, change the value of those metrics

may then provide a management tool for predicting impacts in
wildlife habitat selection.

Conclusion
Recent work has shown that models predicting species

richness, abundance, or habitat selection by some species,
including bats, birds, and bears, can be improved when spatial
landscape structure information is included as a predictor.
However, this type of landscape structure work is relatively new
in species-at-risk assessment and general wildlife management.
In this study, the impact of forest cutlines associated with oil and
gas development was quantified using five metrics of interest in
grizzly bear management in Alberta. Cutline density and
landscape heterogeneity were significant variables associated
with high goodness-of-fit regression values for explaining
cutline-induced change in three metrics, namely edge density,
mean patch size, and patch context (expressed as the mean
nearest-neighbour distance). Patch size variability (expressed as
the coefficient of variation of mean patch size) and patch
dispersion (expressed as the coefficient of variation of mean
nearest-neighbour distance) required additional information on
cutline positioning. Overall, however, the density of the
introduced cutline network and the pre-cutline metric value
sufficed to reliably quantify the response of landscape metrics of
interest to grizzly bear biologists.

The approach presented in this study constitutes a step
forward from contemporary landscape structure descriptions by
allowing a direct connection between simulated and real
landscapes through regression modeling. The approach also
facilitates the understanding of the nature and causes of
changes in landscape structure as a function of cutline density.
Importantly, this provides a strong means to evaluate the
expected effects of proposed human development without the
need for undertaking time-consuming spatial simulations.
Moreover, this study suggests the importance of mapping forest
cutlines regarding their role in changing landscape structure
quantification and points out the necessity of using additional
remotely sensed data when the feature responsible for the
landscape dissection is too small to appear reliably in common
TM-based classified imagery. In conclusion, land-cover maps
based on TM imagery updated with IRS imagery or similar
higher spatial resolution imagery can be used to determine the
effects of forest cutline disturbance on landscape structure.
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