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A Conceptual Model for Multi-Temporal Landscape
Monitoring in an Object-Based Environment

Julia Linke and Gregory J. McDermid

Abstract—Remote sensing plays a critical role in contemporary
monitoring programs, but our strategies for processing these data
using automated procedures are not always reliable. In partic-
ular, the task of separating real from spurious changes remains
problematic, especially in an object-based environment where
differential errors in classification quality, spatial registration,
scene illumination, resolution, and object delineation have forced
some operators to adopt labor-intensive visual-interpretation
strategies, or employ manual interaction on an object-by-object
basis. In this paper, we present an updated summary of our
new disturbance-inventory approach to land-cover monitoring
that combines object-based classification and change-detection
strategies with boundary-conditioning routines designed to max-
imize the spatial and thematic integrity of the finished products.
With this approach, the final maps are only altered in regions
of confirmed change, and spurious gaps, slivers, stretches, and
encroachments are avoided. The approach constitutes an inno-
vative, efficient, and transparent framework that can handle
all the basic landscape dynamics, including feature appearance,
disappearance, succession, expansion, and shrinkage, without the
need for manual editing.

Index Terms—Geographic information systems, image classifi-
cation, object detection, remote sensing.

I. INTRODUCTION

R EMOTE sensing plays a key role in contemporary mon-
itoring programs designed to track changes in land use

and land cover through time, and in this manner supports a
large number of regional [1]–[3], national [4]–[6], and interna-
tional [7]–[9] efforts aimed at assessing the impacts of human
activities and environmental change. In particular, object-based
strategies for classification [10] and change detection [11]–[13]
comprise a promising set of analytical techniques designed
to generate geographic information system (GIS)-ready in-
formation layers that integrate easily with existing data sets
[14]. However, previous studies have highlighted issues related
to the influence of spatial [15], [16] and thematic [17], [18]
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inconsistencies on multi-temporal change analysis, particularly
when performed in an object-based environment [19], [20]. As
a result, many operational monitoring programs have opted for
more reliable but labor-intensive manual interpretation strate-
gies [21]–[23] which are designed to maximize consistency,
though often at the expense of spatial or temporal coverage.
There is a strong need for the development and articulation of
automated or semi-automated change-detection procedures that
reduce labor costs while maintaining the required spatial and
thematic integrity.

Landscape monitoring entails the analysis of landscape
conditions across two or more time periods in an effort to
reveal changes occurring on the surface of the Earth. These
changes are generally summarized through landscape pattern
analysis (LPA), wherein various metrics are used to calculate
transitions in the structural composition (e.g. area of given
cover types, diversity of cover types) and configuration (e.g.
edge density, interspersion) of land cover through time. The
actual measurements are commonly extracted from classified
land-cover data, derived from remotely sensed images and
stored in a GIS; with—unfortunately—little attention directed
towards the effects of map misclassifications [18], [24]. Clas-
sification errors in such products may stem from various
sources, including radiometric and geometric calibrations, data
handling, and analysis procedures [25]–[27]. However, the
distribution of errors is not random. Many errors are spatially
autocorrelated around the boundaries of map entities, and are
largely attributable to data misregistration and/or mixed pixels
[28]. It is precisely in fragmented landscapes, with many edges
existing between cover classes, where interest in conducting a
LPA is highest, therefore causing pronounced concern about
the associated errors in these studies [29].

Early research on the impact of uncertainty on LPA, per-
formed on single-date classifications with varying simulated
classification errors, demonstrated that landscape metric errors
were no greater than the misclassifications themselves, and
therefore metrics did not appear to amplify the uncertainty
inherent in the underlying base maps [30]. When viewed from
a monitoring perspective, however, more recent investigations
have shown that the comparison of multi-date land cover maps
tends to compound any errors present in the initial classifica-
tions, and can therefore yield large amounts of spurious change
[31] (Fig. 1). For example, Linke et al. [20] documented the
impact of spurious changes in a LPA of a fragmented land-
scape in west-central Alberta, Canada undergoing rapid forest
conversion from industrial development. In that study, spatial
inconsistencies led to serious distortions in the observed trajec-
tory of edge density, mean patch size, number of patches, and
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Fig. 1. A hypothetical example of geometric inconsistencies observed between two independent delineations of the same object at two different times. The object
at time � appears to have increased in edge length and shape complexity in relation to that at time � , raising the question as to whether this change is real or
due to differences in classification, segmentation, or image registration.

mean shape index through time; a result that supported Lang-
ford et al.’s [32] assertion that undocumented map errors could
undermine the findings of nearly every LPA ever published.

To summarize, effective landscape monitoring requires the
use of land-cover maps with high standards of thematic and
geometric consistency, so that differences between map dates
accurately reflect real changes occurring on the ground. With
little doubt, this goal is best achieved through the use of manual
procedures performed by skilled photo-interpreters, since the
human eye is well-equipped to detect the relatively rare, lo-
calized, and spectrally ambiguous events that typically charac-
terize change events [21]. For example, the United States Geo-
logical Survey’s Land Cover Trends project used manual inter-
pretation strategies to derive “back and forward classifications”
from an edited version of the 1992 North American Landscape
Characterization for five-year intervals between 1973 and 2000
[22], [33]. However, the labor-intensive nature of such proce-
dures places practical limitations on the scope of the underlying
monitoring effort—the Land Cover Trends project was limited
to 20-by-20 km sample blocks, for instance—and automated
or semi-automated approaches to monitoring that reduce labor
costs while maintaining accuracy and consistency remain “the
Holy Grail of change detection” [22].

While a great deal of progress has been made in object-based
classification and change detection procedures (e.g. [11], [13],
[34]), the task of separating real from spurious changes in
operational monitoring programs using automated strategies
geared towards wall-to-wall mapping remains problematic.
For example, Feranec et al. [23] used computer-aided visual
interpretation of Landsat imagery to delineate change objects
manually across 29 European countries (4.5 million square
kilometers) between 1990 and 2000 as part of the IMAGE and
CORINE Land Cover 2000 project. The methods were deemed
necessary because of the challenges associated with identifying
real changes consistently using automated techniques. Faced
with similar issues, Gamanya et al. [35] relied on manual inter-
action by skilled operators to deal with spatial inconsistencies
in a post-classification analysis of object-based maps used to
document changes in the city of Harare, Zimbabwe between
1989 and 2002.

Our research [19], [20], [36] has focused on the development
of an automated approach to landscape monitoring that involves

creating time series of reliable, spatially consistent land cover
maps using object-based processing strategies. Applied cor-
rectly, our methods permit the application of LPA and change
analysis techniques in a manner that avoids the labor-inten-
sive manual intervention methods documented above. This
approach revolves around the identification, boundary con-
ditioning, and integration of thematically classified change
objects stored in a GIS vector database: a so-called disturbance
inventory [36]. In its basic form, the disturbance-inventory
framework to multi-temporal landscape monitoring consists
of (i) identifying dynamic features that occur over the extent
of the monitoring horizon (i.e. objects that appear, disappear,
and/or change thematically), and (ii) overlaying these features
onto a previously classified reference map in a manner that
represents changes occurring on the ground. The framework
can handle all the basic landscape dynamics as represented
by the vector (object-based) data model, including feature
appearance, feature disappearance, feature shrinkage, feature
expansion, feature persistence, and feature succession. Spatial
consistency across the time series is achieved by maintaining
the constant delineation of static features (i.e. objects that
do not change over the monitoring horizon), and performing
boundary-conditioning routines on dynamic features to ensure
their proper integration into the reference map.

The objective of this short paper is to provide an updated sum-
mary of the disturbance-inventory framework to landscape mon-
itoring, and describe its use of object-based classification and
change-detection techniques for creating a spatially consistent
time series. Our presentation here is largely conceptual; readers
interested in a more technical description of the framework and
its successful sample application to a 40,000 km study area in
west-central Alberta over an eight-year time frame are directed
to Linke et al. [36].

II. THE DISTURBANCE-INVENTORY APPROACH TO BACKDATING

AND UPDATING LAND-COVER MAPS

The disturbance-inventory approach to landscape moni-
toring involves identifying and then modifying an existing
object-based reference map of land cover. By modifying the
reference map in areas of documented change, additional
maps that represent time steps over the specified monitoring
horizon are thereby constructed (Fig. 2). A prerequisite for
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Fig. 2. A flow chart summarizing the conceptual framework for the disturbance-inventory approach to generating spatially consistent maps through the updating
and backdating of a categorical land-cover map (treated as the reference map) at time � over a given monitoring horizon (given here as � to � ).

this approach is that the existing map at the reference year
must foremost meet acceptable spatial and thematic quality
standards.

In order to facilitate change detection, a multi-temporal image
stack covering the desired time span is prepared, and forms the
basis for identifying land cover-conversion disturbances, which
are to appear, disappear, and/or change attributes with respect to
the reference map (Step 1, Fig. 2). Standard bi-temporal change-
detection techniques (e.g. semi-automated image differencing
and thresholding strategies) between consecutive images (e.g.

in Step 2, Fig. 2) are used to create a binary change/no
change layer, which is then segmented to create discrete enti-
ties. These change entities are hereafter referred to as dynamic
objects. Each dynamic object is stored as a unique record in a
spatial database with the following attributes: (i) unique iden-
tifier (ID), (ii) time of origin (i.e. disturbance year), and (iii)
disturbance type (Fig. 2). The time of origin corresponds to

the date of the image where the dynamic object first appears,
and is important for tracking its age and appearance (i.e., land
cover attribute) over time. The disturbance type may be derived
from a combination of spectral, spatial, and contextual informa-
tion using a decision-tree classification approach [36], though
other methods are certainly applicable. This attribute is used to
infer the land-cover class that the particular disturbance type
can assume over time (e.g. a clearcut is initially barren, and
will eventually become forest after a few decades), and may
also imply the spatial overlay order of appearance in areas of
overlap (e.g. a new road built on top of a previously burned area).
After each dynamic object has been classified as a unique en-
tity in this manner, all these vector records are appended to one
all-inclusive vector database which constitutes the multi-tem-
poral disturbance inventory (Step 4, Fig. 2). The objects in the
disturbance inventory are stored in temporally ascending order
(e.g. ), according to their time of origin and spa-
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Fig. 3. Boundary-delineation mismatches between the independently derived dynamic objects and the objects in the reference map �� � can introduce spurious
changes and hence spatial inconsistencies in the final time series. For example, if the dynamic-object boundary falls short (i.e. boundary undershoot) of a coinciding
(such as object 1) or an adjacent (such as object 3) reference object, spurious slivers or gaps will appear. If the dynamic-object boundary extends slightly beyond
an existing object in the reference map (i.e. boundary overshoot), the object will appear stretched in size compared to the reference map (object 2). (Please note
that an overshoot can also create a stretch in the backdate direction if the attribute contrasts with the ones of the adjacent or surrounding objects.).

tial overlay order. This ensures that dynamic objects, overlap-
ping each other in space and time, can behave in a logically
consistent manner. Finally, each dynamic object is assigned a
land-cover class for each time step in the series, consistent with
the cover class used in the reference map. For example, a cut-
block that originated in the reference year and hence also ex-
isted in the reference map , would need to be backdated to
a forest class for the previous year , and could transition
to a herbaceous category in the year following (object 1
in Step 4, Fig. 2). Any disturbance objects that originate after
the reference year require dynamic land-cover labels in the up-
date direction only (object 3 in Step 4, Fig. 2). Ideally, these
labels should be derived through multi-spectral classification of
the images from the respective year, in correspondence with GIS
rules that prevent successionally illogical sequences (e.g. clas-
sification errors that suggest a dynamic object progresses from
barren to forest, then back to herbaceous in three subsequent
years). Using the land-cover attributes in the disturbance inven-
tory as legend categories, a backdated or updated map can easily
be generated by overlaying the relevant dynamic objects on to
the reference map in a GIS (Steps 5 and 6, Fig. 2). Performed
properly, the strategy helps maintain the spatial and thematic
consistency of the new map (relative to the reference map) by
altering only those areas that have undergone change. All other
areas of the map (i.e. static objects) remain unchanged. In ad-
dition, since the dynamic objects are only delineated once, their
spatial positioning is maintained consistently across the mon-
itoring horizon. In this manner, dynamic changes in the final
map series can arise only through the alteration of land-cover
attributes, thereby ensuring spatial consistency throughout.

A. Boundary Conditioning to Ensure the Seamless Integration
of Dynamic Objects

While the basic framework outlined above ensures the spatial
consistency of all static and dynamic entities over the course
of the monitoring horizon, the final time series is not inher-
ently free of spurious changes. The quality of the final map
series depends naturally on the accuracy of the detected dy-
namic features, since both errors of omission and commission
will affect the representation of change within the time series.
In addition, spatial consistency requires that the boundary de-
lineation of the dynamic features respects those of objects al-
ready existing in the reference map [19], [20], [36]. This is
a key point that largely determines the spatial integrity of the
overall map series. It is practically impossible to delineate ob-
jects consistently in images from two or more time periods,
even if the corresponding feature has remained perfectly stable
on the ground. Subtle differences in illumination conditions,
sensor geometry, registration, and segmentation routines con-
spire to frustrate any attempt to overlay image objects delineated
from one scene (e.g. the dynamic objects from one of the binary
change/no change layers) onto objects in an existing layer (e.g.
the reference map) without creating spatial inconsistencies. The
issue arises when the boundaries of dynamic objects undershoot
or overshoot those of objects in the reference map—hereafter
referred to as a reference object (Fig. 3). During the integration
of the dynamic objects into the reference map, these boundary
mismatches create intersect objects that manifest themselves as
slivers, spurious gaps, stretches, or encroachments [36]. These
map-overlay byproducts are known to cause serious problems
in spatial datasets and ought to be suppressed [37].
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In order to ensure the seamless integration of dynamic object
features, our approach employs the following boundary-condi-
tioning rules:

1) Object boundaries in the reference map are assumed to be
correct and must be adhered to [18], and

2) All intersect objects that are narrower than the minimum
mapping width (MMW) will be assumed to originate from
boundary mismatches and deemed as spurious.

The MMW refers to the minimum width that dynamic objects
must achieve in order to be included in the disturbance inven-
tory. The size of the MMW can be determined through visual
inspection of a randomly stratified sample of dynamic objects
in relation to spatially coincident reference objects and the un-
derlying imagery. Specifically, the analyst overlays the outline
of a randomly sampled collection of dynamic objects onto their
spatially coincident reference objects (e.g. objects 1 and 2 in
Fig. 3). The potential boundary mismatches can be visually eval-
uated with respect to the two relevant remote-sensing images:
one from the time of origin of the dynamic object, and the other
from the reference year. If, in the judgment of the analyst, the
feature of interest remained unaltered between the two image
dates—i.e., no change occurred—then the boundary mismatch
in question would constitute spurious change in the final time
series. However, if the feature in question has in fact expanded
or shrunk between the two time steps, then this boundary mis-
match would be indicative of real changes on the ground. By
inspecting a number of dynamic objects sampled throughout
the monitoring horizon, it is anticipated that the analyst will ar-
rive at a MMW threshold that balances the omission of small
disturbance features (larger MMW) against the commission of
spurious change slivers (smaller MMW), based on the specific
conditions encountered. Once the MMW is set, the spurious
boundary mismatches can be corrected in an automated manner
by intersecting the dynamic objects with the reference objects
in a GIS, and subsequently trimming or expanding the dynamic
objects by the spurious intersect objects using proximity and re-
spective width constraints [20], [36].

While these boundary-conditioning rules ensure the produc-
tion of a spatially and temporally consistent time series of land
cover maps, they—by definition—also preclude the inclusion
of dynamic objects narrower than the MMW. However, if regis-
tration errors are kept to a minimum, the MMW should remain
within an acceptable range. In an operational application using
30 m-resolution Landsat Thematic Mapper imagery, the MMW
is anticipated to not exceed two to four pixels [36], which is
comparable to other published photo-interpretation guidelines
[22].

It should be emphasized that the time series of maps gener-
ated by the disturbance-inventory approach to landscape moni-
toring is still subject to any spatial or thematic errors that were
present in the initial reference map. As a result, it is important to
apply this framework to suitable (i.e. accurate) reference maps.
If the reference map is of sub-standard quality, it may be nec-
essary to manually correct the thematic and spatial attributes of
those reference objects underlying the regions of change, as out-
lined by the disturbance inventory, before any boundary-con-
ditioning rules are applied. Any errors in the reference map
that exist outside the regions of change will not seriously af-

fect the change analysis performed on the generated time series,
since they will remain unaltered throughout the framework ap-
plication. These static errors may lead to a systematic under-
or over-estimation of certain land-cover classes or patterns, but
should not become compounded across the monitoring horizon.
Linke et al. [20] explored the propagation of map errors on
multi-temporal LPA; interested readers are referred to that work
for more information on this important topic.

Since our approach to landscape monitoring assumes that the
original base map is correct, any retroactive improvements to
that map—the acquisition of new high-spatial-resolution im-
agery designed to improve the original boundary delineations,
for example—would require the creation of a new base map
and the subsequent re-construction of the entire time series. In
all cases, we encourage the use and reporting of standard accu-
racy-assessment strategies and statistics [38].

B. Landscape Dynamics in the Backdated and Updated Map
Series

A full range of landscape dynamics can be represented using
the disturbance-inventory approach outlined above, including
(i) feature appearance (object 3 at , Fig. 2), (ii) feature dis-
appearance (objects 1 and 2 at , Fig. 2), (iii) feature persis-
tence (an object which does not change thematically over a time
step), and (iv) feature succession (objects 1 and 2 at , Fig. 2).
In each of these cases, the same dynamic objects (boundary-con-
ditioned) have been used throughout the time series; only the
object’s land-cover attribute has been allowed to change. How-
ever, there are disturbances or succession events that can affect
the location and shape of a feature. For example, the boundary
of a clearcut-harvested area can be expanded if an adjacent strip
of trees falls down during a windstorm. Alternatively, the very
same area could shrink in size if the area was partially planted
with trees. Human activities related to crop production, urban
development, and forest harvesting have been documented to
simplify the shape of land cover patches, by smoothing and flat-
tening their boundaries [39], and to fragment the forest land-
scape, causing increases in edge density and decreases in patch
size and shape complexity [40]. It could be mistakenly assumed
that the boundary-conditioning rules used by the disturbance-in-
ventory approach could preclude the detection of such subtle
landscape changes. However, these two additional categories of
landscape dynamics—(v) feature shrinkage and (vi) feature ex-
pansion—are accommodated indirectly through the overlay of
new dynamic features on top of or adjacent to existing ones
(Fig. 4). As a result, any landscape dynamic involving the the-
matic transition from one land cover class to another can be
represented in the final map series, so long as they exceed the
MMW.

III. CONCLUSION

A spatially consistent, temporally dynamic time series of
land-cover maps can be created by adopting an object-based
disturbance-inventory approach to backdating and updating
an existing reference map. Spatial consistency is achieved by
maintaining stable geometry and positioning of all dynamic
objects, and by respecting the reference map boundaries out-
side the identified areas of change. Temporal dynamics can be
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Fig. 4. Subtle landscape dynamics such as feature expansions and shrinkages over the monitoring time horizon are achieved by overlaying thematically classified
dynamic objects either on top of or adjacent to objects delineated in the reference map.

captured efficiently across the entire monitoring horizon by
storing disturbance features and their respective multi-temporal
attributes in a GIS database. All major landscape dynamics,
including feature appearance, disappearance, persistence, suc-
cession, shrinkage, and expansion can be handled with this
approach. The quality of the final multi-temporal product is a
function of (i) the accuracy of the reference map; (ii) the effi-
ciency with which dynamic objects are detected, delineated, and
classified; and (iii) the degree to which boundary-conditioning
rules are adhered to, including the selection of an appropriate
MMW. Since these rules are based on standard GIS procedures,
no manual manipulations are required. This framework can be
implemented in an efficient and semi-automated manner, and
therefore constitutes an innovation to landscape monitoring and
multi-temporal map generation.
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