Introducing the Symmetry010 Calendar

A simple perpetual solar calendar that is

 symmetrical across and between equal quarters, having $30+31+30$ days per quarter, yet conserves the traditional 7-day week.(Formerly known as the "Classic" Symmetry Calendar)

Home Page on the Web:
http://individual.utoronto.ca/kalendis/classic.htm

Created by Dr. Irvin L. Bromberg

University of Toronto, Canada

Overview of the Symmetry010 Calendar

http://individual.utoronto.ca/kalendis/classic.htm
$30+31+30$ Days per Quarter

Days	$\begin{gathered} 30 \\ \downarrow \end{gathered}$	$\begin{aligned} & 31 \\ & \downarrow \end{aligned}$	$\begin{gathered} 30 \\ \downarrow \end{gathered}$	Weeks
	Start on Monday			
$91 \rightarrow$	January	February	March End on Sunday	$\leftarrow 13$
	Start on Monday			
+91 \rightarrow	April	May	June	$\leftarrow+13$
			End on Sunday	
	Start on Monday			
$+91 \rightarrow$	July	August	September	$\leftarrow+13$
			End on Sunday	
	Start on Monday			
$+91 \rightarrow$	October	November	December End on Sunday	$\leftarrow+13$
$=364 \quad \leftarrow$ Total in Non-Leap Years				$=52$
$+7 \rightarrow$	In a Leap Year append a Leap Week to December. Leap years occur a symmetrically arranged intervals of 6 or 5 years.			$\leftarrow+1$
$=371$	\leftarrow Total in Leap Years \rightarrow			$=53$

The Symmetry010 Calendar - 3 by 4 design

January

February

Note: $\mathbf{1 6}$ denotes the Mid-Quarter Day
week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun

April
May
week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun

July

August

September
week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun

${ }^{27}$	1	2	3	4	5	6	7	31			1	2	3	4	5	${ }^{35}$						1	2
${ }^{28}$	8	9	10	11	12	13	14		6	7	8	9	10	11	12		3	4	5	6	7	8	9
29	15	16	17	18	19	20	21	${ }^{33}$	13	14	15	16	17	18	19	${ }^{37}$	10	11	12	13	14	15	16
	22	23	24	25	26	27	28	${ }^{34}$	20	21	22	23	24	25	26	${ }^{38}$	17	18	19	20	21	22	23
	29	30							27	28	29	30	31			${ }_{39}$	24	25	26	27	28	29	30

October

November

December

week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun

In Leap Years, append a Leap Week to December, making it a 37 -day month or append a stand-alone leap week at the end of the year as a 7 -day "mini-month". Leap years occur at symmetrically arranged intervals of 6 or 5 years.

						$\begin{array}{\|l\|} \hline \mathbf{1} \\ \hline \mathbf{8} \\ \hline \end{array}$	保 2
49	3	4	5	6	7		
${ }_{50}$	10	11	12	13	14	15	16
51	17	18	19	20	21	22	23
${ }_{52}$	24	25	26	27	28	29	30

The Symmetry010 Calendar
http://individual.utoronto.ca/kalendis/classic.htm

week	Mon	Tue	Wed	Thu	Fri	S	Sun
	1	2	3	4	5	6	7
	8	9	10	11	${ }^{12} 12$	${ }^{13} 13$	14
	15	16	17	18	19	20	21
	${ }^{22} 22$	23	24	25	26	${ }^{27} 27$	${ }^{28} 28$
	${ }^{29} 29$	${ }^{30} 30$	${ }^{31} 1$	2	3	4	5
	6	7	8	9	10	11	${ }^{42} 12$
	${ }^{43} 13$	14	15	16	17	${ }^{48} 18$	${ }^{49} 19$
	${ }^{50} 20$	21	22	23	24	25	26
	${ }^{57} 27$	28	${ }^{59} 29$	${ }^{60} 30$	31	1	2
	${ }^{64} 3$	${ }^{65} 4$	5	6	${ }^{68} 7$	${ }^{69} 8$	9
	${ }^{71} 10$	${ }^{72} 11$	${ }^{73} 12$	${ }^{74} 13$	14	${ }^{76} 15$	16
	17	18	19	20	21	${ }^{83} 22$	${ }^{84} 23$
	${ }^{85} 24$	${ }^{86} 25$	${ }^{87} 26$	27	28	${ }^{90} 29$	${ }^{91} 30$

quad "puzzle" design, ordinal day numbers Note: 16 denotes the Mid-Quarter Day

In Leap Years, append a Leap Week to December, making it a 37-day month or append a stand-alone leap week at the end of the year as a 7 -day "mini-month". Leap years occur at symmetrically arranged intervals of 6 or 5 years.

Symmetry010 Calendar Benefits

- The Symmetry010 Calendar is perpetual - a permanent copy can be reused every year.
- It conserves the 7-day week (no intercalated or "null" or leap days outside of the traditional 7-day weekly cycle).
- Its symmetrical structure paves the way to simpler, aesthetically pleasing calendar designs.
- Its superior symmetrical leap rule ensures excellent long-term astronomical accuracy:
- The simple fixed arithmetic $\mathbf{5 2 / 2 9 3}$ leap rule has 52 leap years that are automatically and inherently symmetrically spread as smoothly as possible within each repeating cycle of 293 years:

- With this simple single-step leap rule, leap year intervals occur in groups of either $6+6+5=17$ years or $6+5=11$ years, which symmetrically group into sub-cycles of $17+\mathbf{1 1}+17=45$ years or sub-cycles of $17+17+\mathbf{1 1}+17+17=\mathbf{7 9}$ years. In each full calendar cycle these sub-cycles inherently occur symmetrically in the sequence $45+\mathbf{7 9}+45+\mathbf{7 9}+45=293$ years.
- With 52 leap weeks in the cycle, and 52 weeks in a regular year, the fixed cycle length equals exactly 294 regular years, and the average interval between leap weeks is exactly 294 weeks.
- The calendar mean year $\equiv 365+{ }^{71} / 293$ days $\equiv 365 \mathrm{~d} 5 \mathrm{~h} 48 \mathrm{~m} 56+{ }^{152} / 293 \mathrm{~S}$, which is intentionally slightly shorter than the present era northward equinoctial mean year of 365 d 5 h 49 m 0 s , ensuring essentially drift-free performance for more than 4 future millennia.
- Due to the symmetrical arrangement of leap years, the timing of the mean northward equinox moment always falls at the cycle average in the first year of every 293 -year cycle. This feature simplifies astronomical performance evaluations.

- Every Symmetry010 year and quarter starts on Monday and ends on Sunday.

- Its symmetrical 13-week quarters are identical. Every quarter has the same count of weekdays and weekend days.
- Every date has permanently fixed week-in-year and day-in-year ordinal numbers, facilitating administrative, academic, commercial and industrial applications, and simplifying calendar arithmetic.
- There is always a whole number of weeks in every year (common year $=52$ weeks, leap year $=53$ weeks) and in every quarter (13 weeks, last quarter of leap year $=14$ weeks).

- Every secular holiday, event, anniversary, birthday, and memorial day has a permanently fixed weekday

 and date, because the calendar is perpetual.- Holiday and/or special day overlaps are less likely to occur and are easy to predict and avoid.
- Sunday, April $7^{\text {th }}$ is proposed as a permanently fixed Symmetry010 date for Easter, based on the median date of the Sunday after the day of the astronomical lunar opposition that is on or after the day of the astronomical northward equinox, calculated for the meridian of Jerusalem.
- Fixing Easter also fixes all Easter-related ecclesiastical calendar dates (counted before or after Easter).
- See "Appendix: A Declaration of the Second Ecumenical Council of the Vatican on Revision of the Calendar" at the end of the archive "Constitution on the sacred liturgy Sacrosanctum Concilium solemnly promulgated by His Holiness Pope Paul VI on December 4, 1963 " at http://www.vatican.va/archive/hist_councils/ii_vatican_council/documents/vat-ii_const_19631204_sacrosanctum-concilium_en.html.
- The coherent structure of the calendar enables simple arithmetic expressions in calculating the following for statistical or business purposes: weekday; day number of year, quarter or month; week number of year or quarter; month number of year or quarter.
- Symmetry010 calendar arithmetic is in the public domain, allowing royalty-free computer implementation.
- The freeware Kalendis computer program demonstrates the calendar and inter-converts dates, and is freely available at http://individual.utoronto.ca/kalendis/kalendis.htm.
- "Friday the $13^{\text {th" }}$ never happens.

