
Basic Symmetry454
and Symmetry010

Calendar Arithmetic

 The 52/293 Northward Equinox Leap Cycle

 The 69/389 North Solstice Leap Cycle

 Inter-conversion of dates with other calendars

 How to write computer programs for implementing

the Symmetry454 and Symmetry010 calendars

Home Page on the Web: <http://individual.utoronto.ca/kalendis/>

Created by Dr. Irvin L. Bromberg

University of Toronto, Canada

Version 12.08(328), Aug 24, 2019 (Symmetry454) = Aug 22, 2019 (Symmetry010) = Aug 21, 2019 (Gregorian)

http://individual.utoronto.ca/kalendis/

Symmetry454 and Symmetry010 Calendar Arithmetic Page 2 of 28

Table of Contents

The Symmetry454 and Symmetry010 calendars .. 3

Leap week appended to December, or stand-alone after December ... 3

Warning: “Stick to the Script” ... 3

Verification of calendar arithmetic: the Kalendis freeware computer program ... 4

Understanding Floor  n and Ceiling  n Brackets: ceiling(), floor(), quotient() ... 4

Functions for calculating remainders: modulus() and amod() .. 4

Conversion of Symmetry454 or Symmetry010 dates to or from other calendars ... 5

The Symmetry454 and Symmetry010 calendar epoch: SymEpoch ... 5

Symmetry454 and Symmetry010 calendar years prior to the epoch.. 5

Fixed day numbers, astronomy and modern computer operating systems .. 5

Customizing the fixed day numbering epoch .. 6

The FixedToWeekdayNum() function .. 7

Don’t store dates in any separated format ... 7

Calendar arithmetic ... 7

Overview of Symmetry454 and Symmetry010 calendar arithmetic ... 8

Overview of conversions to / from the Symmetry454 or Symmetry010 calendars .. 8

Symmetrical leap cycles and the Symmetry454 and Symmetry010 leap rule ... 10

Generating a list of Symmetry454 leap years.. 14

Finding the Symmetry454 New Year Day: the SymNewYearDay() function ... 14

Calculating the calendar mean year .. 16

The DaysBeforeMonth() function .. 16

The SymDayOfYear() function .. 17

Converting a Sym454 or Sym010 date to a fixed day number: SymToFixed() ... 18

Finding the year that contains a given fixed day number: FixedToSymYear() ... 18

Converting a fixed day number to a Sym454 or Sym010 date: FixedToSym() ... 20

Determining the weekday for any Symmetry454 or Symmetry010 date .. 22

Determining the date of Easter ... 23

Determining the dates of holidays and special events ... 25

The Symmetry454 / Symmetry010 date status table that is displayed by Kalendis 25

Algorithms to check if an entered Symmetry454 or Symmetry010 date is valid ... 26

Example data for verification of calendar arithmetic functions .. 28

Symmetry454 and Symmetry010 Calendar Arithmetic Page 3 of 28

The Symmetry454 and Symmetry010 calendars

This document primarily discusses the arithmetic of the symmetrical 4+5+4 weeks per quarter structure of the

Symmetry454 calendar, including all arithmetic formulas and functions that are needed for computer

implementation. Some people prefer the nearly equal month lengths of the 30+31+30 days per quarter

Symmetry010 calendar structure, so the arithmetic for that variant is also included.

Unless otherwise specified, the discussion and formulas applies equally to both Symmetry calendar

variants, even though the text will almost always refer only to the Symmetry454 calendar.

Where a topic or formula applies only to the recommended Symmetry454 calendar, it is labeled with

“ 4+5+4 ”, whereas that which applies only to the Symmetry010 calendar variant is labeled with “ 30+31+30 ”.

There are very few places where their arithmetic differs.

Leap week appended to December, or stand-alone after December

The recommended handling for the Symmetry454 leap week is to append it as a 5th week of December, where it

is no more exceptional that the preceding 5-week month of November.

Appending a leap week to the December of the Symmetry010 calendar makes that month 30+7=37 days, which

is quite exceptional when compared to the normal 30 or 31 days per month. Therefore, some people prefer to

see the leap week stand alone at the end of the year, like a 13th “mini-month”, dubbed “Irvember” by Yoel

Berznoger of Thornhill, Canada. Either way, the leap week is always the 53rd ordinal week of the calendar year.

The arithmetic herein shows how to handle the leap week either way. The recommended implementation for

Symmetry454 has the leap week appended to December, whereas the recommended implementation for

Symmetry010 has the leap week standing alone after December (to avoid having 37 days in December).

Warning: “Stick to the Script”

Symmetry454 and Symmetry010 calendar arithmetic is very simple, but there is a tendency for those who are

programming their first implementation of these calendars to immediately cut corners that may suffice for a

limited range of dates, or to skip thorough validation of their implementation.

Please don’t deviate from the arithmetic outlined herein. Please “stick to the script”. Don’t try to invent your

own arithmetic using novel expressions. There is no reason to do so, because this arithmetic is in the public

domain, royalty free. The algorithm steps documented herein were carefully designed for efficiency, simplicity,

and clarity of program code, and were thoroughly validated. Cutting corners will most likely result in harder-

to-read programs that are more difficult to maintain and troubleshoot. In all probability a novel expression

intended to “simplify” the arithmetic documented herein will actually prove to function erroneously under

specific circumstances. It is just not worth wasting the time on the trouble that will make for you.

For most of the arithmetic expressions documented herein, simple examples are provided that you can use to

verify your understanding, but that alone is not enough. For every algorithm that you implement, it is essential

that you thoroughly validate its correct operation as a package. For calendrical calculations, such validations

must check thousands of dates, either sequentially or distributed randomly in time. Every calendar date must

convert to a unique fixed day number (see the heading “Fixed day numbers, astronomy and modern

computer operating systems”, below), and every fixed day number must convert to a unique calendar date,

with zero “holes”, which are unused fixed day numbers, or unused but otherwise valid calendar dates.

To automatically validate your implementation, set up a loop that iteratively converts either a sequentially or

randomly chosen fixed day number to a calendar date and then back to a fixed day number. If the fixed day

number that comes back differs from the original then the implemented algorithm is defective.

Symmetry454 and Symmetry010 Calendar Arithmetic Page 4 of 28

Then set up another loop that iteratively converts either a sequentially or randomly chosen calendar date to a

fixed day number, taking care never to choose an illegal calendar date (month number too high, day number too

high for the selected month, or date in a leap week for a year that has no leap week), and then use your

algorithm to convert the fixed day number back to a calendar date. If the date that comes back differs from the

original then the implemented algorithm is defective.

Verification of calendar arithmetic: the Kalendis freeware computer program

The Kalendis calendar calculator for Windows is freely available from the Symmetry454 web site at

<http://individual.utoronto.ca/kalendis/>. Kalendis can list Symmetry454 or Symmetry010 leap years,

interconverts dates to or from a variety of other calendars, and the user can experiment with built-in options.

For those who choose to implement the arithmetic documented herein, Kalendis is a useful tool for verifying

proper error-free operation.

Understanding Floor  n and Ceiling  n Brackets: ceiling(), floor(), quotient()

This document uses symbolic brackets with “feet” or with “hands”. The brackets with “feet” only on the

bottom are standard mathematical symbols for the floor(n) function, which gives the greatest integer that is less

than or equal to n. In most computer programming languages this is identical to the INT(n) function, but for

negative values of n this is not identical to the FIX(n) or TRUNC(n) functions. If your computer programming

language has an INT(n) function that unfortunately truncates fractions the way that the FIX(n) or TRUNC(n)

functions do then you need to use or implement a proper floor(n) function instead of INT(n).

When the floor brackets surround a fraction, as in



n d , divide the numerator n by the denominator d, discard

the remainder and keep the quotient. Sometimes this is written as quotient(n ÷ d) or quotient(n, d).

Calendrical calculations make frequent use of the floor(n) or quotient(n) functions.

Conversely the brackets with “hands” only on the top are standard mathematical symbols for the ceiling(n)

function, which gives the least integer that is greater than or equal to n.

Note that    nn  and the converse    nn  is also true.

In many computer programming languages, displayed floating point numeric precision has fewer significant

figures than internal precision. For example Microsoft Visual Basic uses up to 14 significant figures for

displaying or printing double precision floating point values but 18 significant figures are carried internally

through the floating point computation hardware. This can cause a number to look like an integer when

displayed, for example 5, but it could really have 4.99999999999999998 as its internal representation, and then

when applying the INT(n) function to it the value returned will be 4 instead of the expected 5. There is a high

risk of such errors if single precision floating point calculations are employed — not recommended!

One way to avoid this problem in Visual Basic is to explicitly convert the number to its string representation,

which will round its value to that which can be externally represented, then convert it back again to a double

precision floating point number, automatically without the extra internal significant figures. After that a value

that looks like an integer will behave like an integer when applying the INT(n) function to it.

Another way to avoid this problem is to carry out all calculations using exact arbitrary precision.

Functions for calculating remainders: modulus() and amod()

Although many computer languages have a built-in x MOD y operator for returning the remainder from dividing

x by y, many, including Microsoft’s Visual Basic, return the wrong results when x is negative, or when either

operand is not an integer. Therefore, I will use instead the following remainder functions (see reference 1):

http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/
http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm

Symmetry454 and Symmetry010 Calendar Arithmetic Page 5 of 28

modulus(x , y) = x – y 








y

x

The modulus function divides x by y and returns the remainder. We don’t call this the remainder() function

because in mathematics it has other applications in modulo arithmetic, where it isn’t merely a remainder from a

division operation. If x is divisible by y without any remainder then the modulus() function returns zero.

The amod (adjusted modulus) function is the same as the modulus function except that if x is divisible by y

without any remainder then the amod() function returns the divisor y instead of zero.

amod(x , y) = y + modulus(x , – y)

In computer languages that support type declaration of parameters and return values, declare both parameters

and the return value of both modulus() and amod() as double-precision floating point (or better).

Conversion of Symmetry454 or Symmetry010 dates to or from other calendars

In Calendrical Calculations: Ultimate Edition (CCUE), published by Cambridge University Press in late 2018,

authors Edward M. Reingold and Nachum Dershowitz extensively documented computer algorithms for

interconversion of almost every calendar used today or in the past (see references 1 and 2). The text includes

calendar arithmetic functions in mathematical notation and the appendix lists source code in the LISP computer

programming language, which they employ because of its standard arbitrary precision calculation engine. A

CDROM disc including the source code in the Java and Mathematica computer programming languages

accompanied the Second Edition (“Millennium”) of this book. For further information, errata, and access to

their Calendrica Java applet see <http://calendarists.com/>.

In the discussion of Symmetry454 calendar arithmetic below I have tried to follow the style of CCUE. I highly

recommend reading the following CCUE chapters: Introduction, The Gregorian Calendar, The Julian

Calendar, The ISO Calendar, The Ecclesiastical Calendars, Time and Astronomy, and the applicable errata on-

line at their web site. Where a formula could have been written in multiple ways I have tried to select the

method that I considered easiest to understand even if a less obvious formula might require fewer lines or

computes faster.

The Symmetry454 and Symmetry010 calendar epoch: SymEpoch

The Symmetry454 and Symmetry010 calendars share the same epoch as the Gregorian calendar, starting on

Monday, January 1, 1 AD. This is the same epoch as that of the ISO calendar and the Revised Julian calendar.

Symmetry454 and Symmetry010 calendar years prior to the epoch

Like the Gregorian and ISO calendars, and in keeping with astronomical usage, the year before the year 1 (one)

is defined as 0 (zero) and the years prior to that as –1, –2, –3, etc. In computer systems, years before year zero

should be stored and processed as negative year numbers. See CCUE for implementation details, specifically

to ensure that any programmed remainder (mod or modulus) and adjusted remainder (amod) functions

work properly with negative values. The modulus and amod functions as shown above do work properly.

Fixed day numbers, astronomy and modern computer operating systems

The focus of CCUE is on conversion of any date on any calendar to or from a rata die, or fixed day number

(ordinal day#). Gregorian January 1, 1 AD, the first day of the first millennium, is defined as fixed day number

one, a Monday. All other dates are counted by days forward as positive numbers or backward as negative

http://calendarists.com/

Symmetry454 and Symmetry010 Calendar Arithmetic Page 6 of 28

numbers relative to that epoch. The day before the epoch was fixed day number zero. CCUE defines a moment

as a fixed day number that has a fractional part representing the portion of the day elapsed since midnight.

Astronomers also use a fixed day numbering system, most commonly the Julian Day (JD) or the Modified

Julian Day (MJD). The JD epoch was noon on Gregorian Monday, November 24, –4713, which corresponds to

the CCUE moment -1,721,424.5. To convert a JD to a CCUE moment simply add the JD epoch moment. To

convert a CCUE moment to a JD, simply subtract the JD epoch moment. The MJD epoch was 2,400,000.5 days

after the JD epoch, which was midnight on Gregorian Wednesday, November 17, 1858, corresponding to the

CCUE fixed day number 678,576. Some prefer the MJD because it relates directly to civil time and because the

day numbers are smaller for dates near the present, allowing higher resolution of fractional moments within

days. To convert an MJD moment to a CCUE moment, simply add the MJD epoch. To convert a CCUE

moment to an MJD, simply subtract the MJD epoch.

The Windows operating systems use a similar internal day counter to represent dates, termed a date serial

number. Officially, the Windows date serial number 1 was Gregorian January 1, 1900. All versions of

Windows, however, make the mistake of treating the year 1900 as a leap year, so Windows reports date serial

number 60 as the wrong date February 29, 1900 instead of March 1, 1900. Therefore to match Windows date

serial numbers one must consider the Windows date serial number 1 to have been Gregorian December 31,

1899, which was CCUE fixed day number 693,595. Like CCUE, Windows represents a date/time moment as

the Windows day number with a fractional part that is proportional to the time elapsed since midnight. To

convert a CCUE moment to or from a Windows moment, just subtract or add 693,594, respectively. Negative

or zero Windows date serial numbers are illegal, however, so there is no internal representation for dates prior

to the Windows epoch, and because of the Windows leap year 1900 bug it is only possible to convert valid

Gregorian dates to Windows date serial numbers for dates on or after March 1, 1900, which was Windows date

serial number 61 and CCUE fixed day number 693,655.

The RainingData PICK / D3 / Advanced Revelation and derivative operating / database management systems

represent dates as the number of days elapsed since Gregorian December 31, 1967. Thus Gregorian (or

Symmetry454) January 1st, 1968 was PICK day number 1, corresponding to CCUE fixed day number 718,432.

This system represents prior dates by zero or negative numbers.

Other epochs are easy to determine using the freeware Kalendis program. At any time, Kalendis version

9.241(963) or later allows the user to switch “on-the-fly” to employ any of several built-in fixed day

numbering epochs, or the user can choose any arbitrary date as the fixed day numbering epoch.

To convert between the Symmetry454 calendar and internal dates used by any computer operating system such

as discussed above you don’t need any of the functions discussed in CCUE (unless your application needs to

work beyond the Gregorian calendar date range that the operating system supports). The functions presented

herein are sufficient, together with minor inter-epoch conversions, examples of which were given above.

Customizing the fixed day numbering epoch

On many computer systems it is possible to use Symmetry454 calendar arithmetic directly with the existing

internal date format, without converting any dates, by simply setting an appropriate fixed day number for

the calendar epoch, designated SymEpoch.

SymEpoch is always identical to GregorianEpoch, provided that the calendar year always starts on Monday, so

if the fixed day numbering scheme is changed then GregorianEpoch must match, otherwise Gregorian

arithmetic will malfunction. Even though they are identical, the calculations documented herein explicitly use

GregorianEpoch where the context demands it.

A few examples are shown in the following table, where the value that appears in the SymEpoch column is the

CCUE rata die of the epoch date (the WeekdayAdjust column is explained at the end of this section), sorted from

the remote past to near the present era:

http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm

Symmetry454 and Symmetry010 Calendar Arithmetic Page 7 of 28

Fixed day numbering scheme SymEpoch WeekdayAdjust

Julian Day (JD) number 1721426 6

Day number of Hebrew calendar 1373429 0

CCUE rata die 1 0

Day number of Western Bahá'í calendar -673220 4

Modified Julian Day (MJD) number -678575 4

Windows OS date serial numbers -693593 1

Pick OS date -718430 0

Days since start of 3rd millennium -730484 0

Any arbitrary date could be employed as the fixed day numbering epoch, simply by assigning the appropriate

value to SymEpoch. Kalendis can be of assistance in determining the appropriate value to assign, and as of

version 9.241(963) Kalendis allows the user to choose for its fixed day numbering scheme any of the fixed day

numbering epochs tabulated above or any arbitrary date.

The FixedToWeekdayNum() function

The rightmost WeekdayAdjust column in the table in the previous section is a small integer value (0 to 6) that

must be subtracted from any fixed day number before dividing it by 7 in order to correctly calculate the

traditional weekday number (Sunday = 0, Monday=1, … Saturday = 6):

FixedToWeekdayNum(FixedDate) = modulus(floor(FixedDate) – WeekdayAdjust, 7)

Obviously, if the WeekdayAdjust equals zero and the application has no requirement to vary the fixed day

numbering epoch, then it could be omitted from the FixedToWeekdayNum() function. If you prefer to number

weekdays as Sunday=1, Monday=2, … Saturday=7 then simply add +1 to the result before returning it from the

FixedToWeekdayNum() function.

The WeekdayAdjust value only needs to be calculated once, whenever the fixed day numbering epoch is set.

To determine its value, use a reference a date that has a known weekday, conveniently the epoch of the

Symmetry454 or Gregorian calendars, which was a Monday:

WeekdayAdjust = modulus(SymEpoch – 1, 7)

Don’t store dates in any separated format

Storing or manipulating dates in any separated format, either as text or as discrete year, month and day numeric

values, is considered very poor computer programming practice because:

 it limits the way that dates can be entered, displayed and printed

 dates may be ambiguous, for example when the year is stored as only two digits

 fixed day numbers or moments stored in binary format consume the least amount of memory or storage

 calendar arithmetic is cumbersome when using text or separated values (see below)

 storing fixed day numbers enables multiple users on the same system to simultaneously use their choice of

calendar for date input or display, while internally all dates are stored as inter-convertible values.

Calendar arithmetic

Computing a person’s age in days is accomplished by converting the birth date and later date on any calendars

to their respective fixed day numbers, then simply subtracting fixed day number of birth from the fixed day

http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm

Symmetry454 and Symmetry010 Calendar Arithmetic Page 8 of 28

number of the later date. To express the age in years, divide the age in days by the number of days in the

calendar mean year and then either truncate the fraction or round to the precision desired.

To compute when a term investment will mature or a when loan will terminate, convert the start date to its fixed

day number, add the duration of the agreement in days, then convert that result back to a calendar date.

Fixed day numbers are also useful when plotting charts of any measurement vs. date, to ensure that the date axis

is a linear time scale (directly proportional to the number of elapsed days or longer time units).

The difference in days and fraction of a day between any two moments is computed by simple subtraction,

although this does not take into account any leap seconds that may have been inserted between those moments.

Although such calculations are tedious by hand, computers execute them within less than a microsecond.

Overview of Symmetry454 and Symmetry010 calendar arithmetic

Symmetry454 and Symmetry010 calendar arithmetic functions boil down to three main calculations:

1. Find where the calendar year starts: the Symmetry454 = Symmetry010 New Year Day.

2. Optionally determine if the year is a Symmetry454 = Symmetry010 leap year (usually not necessary).

3. Compute the parameters that are set by the calendar structure, which are same for all Symmetry454 and

Symmetry010 years: ordinal day number, ordinal week number, quarters, months, weeks, days,

weekdays. Some of these parameters are optional, depending on the application requirements.

Overview of conversions to / from the Symmetry454 or Symmetry010 calendars

To interconvert dates between the Symmetry454 or Symmetry010 calendar and any other calendar one needs

only a few of the functions published in CCUE (or their equivalents) plus a FixedToSym() function and a

SymToFixed() function, both presented below. For example, to convert a Symmetry454 or Symmetry010 date

(SymYear, SymMonth , SymDay) to a Gregorian date, use my SymToFixed() function to convert the

Symmetry454 or Symmetry010 date to the fixed day number, then use the CCUE gregorian-from-fixed()

function to arrive at the Gregorian date (year, month, day). To go in the reverse direction, use the CCUE fixed-

from-gregorian() function to convert the Gregorian date to a fixed day number, and then use my FixedToSym()

function to convert the fixed day number to the corresponding Symmetry454 or Symmetry010 date.

We define SymMonth as a simple positive integer enumeration: January = 1, February = 2, March = 3, April =

4, May = 5, June = 6, July = 7, August = 8, September = 9, October = 10, November = 11, December = 12.

Normally the leap week is appended to December, but it can optionally stand alone after December as a 13th

mini-month, in which can we can define Irvember = 13.

Note that my function naming style is the converse of CCUE. I use the function naming convention ThatToThis

instead of this-from-that, to keep the function name shorter and programmatically more convenient.

To convert a Gregorian date to a fixed date, which can then be converted to a Symmetry454 or Symmetry010

date, it is convenient to calculate how many days have elapsed from the Gregorian epoch to the day before the

Gregorian year started, then add in the ordinal day number within the Gregorian year.

The PriorElapsedDays() function returns the number of calendar days that have elapsed from the Gregorian

epoch until the beginning of the New Year Day of the specified Gregorian year number:

PriorElapsedDays(GregYear) = GregorianEpoch +

priorYear × 365 +



priorYear

4







 – 









100

priorYear
 + 









400

priorYear
 – 1

Symmetry454 and Symmetry010 Calendar Arithmetic Page 9 of 28

where priorYear = GregYear – 1 and GregorianEpoch was defined under the heading “Customizing the
fixed day numbering epoch”, above.

The PriorElapsedDays() function allows 365 days for each prior elapsed year, plus one day for each prior 4-

year sub-cycle to account for leap years, minus one day for each prior centurial year (because most were not

leap years), and finally plus one day for every 400 years (full Gregorian cycle) to account for the prior centurial

years that were leap years. For example:

PriorElapsedDays(2009) = GregorianEpoch + 2008 × 365 +



2008

4







 –



2008

100







 +



2008

400







 – 1

= GregorianEpoch + 732920 +



502  –



20.08  +



5.02  – 1

= GregorianEpoch + 732920 + 502 – 20 + 5 – 1

= GregorianEpoch + 733406

If GregorianEpoch = 1 then the result is 733407, indicating that 733407 days elapsed from the epoch until the

start of Gregorian New Year Day 2009.

One could optionally implement a simple GregorianNewYearDay(GregYear) function that will return the

fixed day number of the New Year Day of the specified Gregorian year, simply by omitting the final “– 1” from

the expression shown above for the PriorElapsedDays() function.

Next compute the ordinal day number within the Gregorian year (see reference 1), and then apply a one- or two-

day deduction if the month is after February:

GregorianOrdinalDay =



367 month  362

12







 day

IF month > 2 THEN

IF isGregorianLeapYear(GregYear) THEN

GregorianOrdinalDay = GregorianOrdinalDay – 1

ELSE

GregorianOrdinalDay = GregorianOrdinalDay – 2

END IF

END IF

For example, the ordinal day number of July 14th in a non-leap Gregorian year is:



367 7 362

12







14 =



2207

12







14 =



183
11

12







14 = 183 + 14 = 197

minus 2 days because the date is after February in a non-leap year = the 195th day of the year.

A simpler, albeit abstruse alternative, which by “pretending” that the Gregorian New Year Day is March 1st

avoids adjusting for the month being after February and also avoids checking if it is a Gregorian leap year, is

openly available on the internet, see the erratum for page 56 of Calendrical Calculations: The Millennium

Edition, showing a simplified alt-fixed-from-gregorian function.

Symmetry454 and Symmetry010 Calendar Arithmetic Page 10 of 28

Symmetrical leap cycles and the Symmetry454 and Symmetry010 leap rule

The single-step Symmetry454 and Symmetry010 calendar leap rule inherently and automatically

distributes leap years at intervals that are symmetrically arranged and as smoothly spread as possible.

Symmetrically arranging the leap years means that the leap status (non-leap or leap) of year n in each leap cycle

is the same as the leap status of the symmetrical year occurring n years prior to the beginning of the next cycle.

This arrangement yields the advantage that mean equinox or solstice timing always falls at the cycle average in

the first year of each cycle (provided that the leap week is appended to the end of the calendar year or is inserted

somewhere after the target equinox or solstice). This feature simplifies astronomical performance evaluations:

to carry out long-term astronomical drift analysis of a symmetrical leap cycle it is only necessary to assess the

first year of each cycle, then smoothly interpolate from cycle-to-cycle.

Spreading the cycle leap years as smoothly as possible minimizes the short-term calendar date equinox or

solstice “jitter” or “wobble” range.

The following very simple isSymLeapYear() function returns TRUE if the specified SymYear is a leap year, or

FALSE if SymYear is a non-leap year:

isSymLeapYear(SymYear) = modulus(L × SymYear + K, C) < L

where C is the number of years per cycle = 293 (a prime number), L is the number of leap years per cycle = 52,

and K = (C-1) / 2 = 146. The K coefficient ensures that leap years are symmetrically arranged, and the modulus

operation ensures that leap years are as smoothly spread as possible.

The quantity modulus(L × SymYear + K, C) is also known as the accumulator.

So we can say that the year is a leap year if its accumulator is less than L.

Leap year intervals are either 6 or 5 years, with 6-year intervals being about twice as frequent.

The accumulator is also useful for predicting whether the interval to the next leap year will be 6 or 5 years.

The following expression yields the number of longer (6-year) inter-leap intervals per cycle:

R = C – L × S

where S is the shorter leap interval length (including one leap year) = 5 years in the case of any leap week

calendar, and R is the number of longer (S + 1 years) inter-leap intervals per cycle. If for a given year its

accumulator is < R then the next leap year will be S + 1 years later, otherwise the next leap year will be S years

later. This is useful for logical efficiency when generating a list of leap years. The number of shorter (S years)

inter-leap intervals per cycle = L – R.

Substituting constants for variables:

isSymLeapYear(SymYear) = modulus(52 × SymYear + 146, 293) < 52

R = 293 – 52 × 5 = 33, so there are 52 – 33 = 19 short inter-leap intervals, 33:19 ≈ 2:1 as expected

For example:

isSymLeapYear(2009) = modulus(52 × 2009 + 146, 293) < 52

isSymLeapYear(2009) = modulus(104614, 293) < 52

Symmetry454 and Symmetry010 Calendar Arithmetic Page 11 of 28

104614 / 293 = 357+13/293 so the accumulator is 13, which is < 52 and the function result is TRUE, so the year

2009 was a leap year in the 52/293 leap cycle. Because 13 is also < 33, the number of long inter-leap intervals

per 293-year cycle, the next leap year was 6 years later = 2015.

For the symmetrical 293-year cycle, leap year intervals match sub-cycle patterns of (5+6+6) = 17 or (5+6) = 11

years, which symmetrically group to 17+11+17 = 45 or 17+17+11+17+17 = 79 years. The overall symmetrical

grouping for this cycle is 45+79+45+79+45 = 293 years. The total number of days per full 293-year cycle is

exactly equal to 294 non-leap years, so the average interval between leap weeks is exactly 294 weeks.

The middle year of each 293-year cycle is a non-leap year because the cycle has an even number of leap years.

The 293-year leap cycle is ideal for approximating the mean northward equinox (March equinox, boreal

vernal equinox, northern hemisphere spring equinox) for the past 5 millennia and the next 4 to 5 millennia,

keeping the average equinox near midnight in Jerusalem at the beginning of the 80th ordinal day of the calendar

year (Symmetry454 March 17th or Symmetry010 March 19th).

Alternatively, a symmetrical smoothly spread 389-year leap cycle (389 is a full reptend prime number) with C =

389, L = 69, and K = 194 is ideal for approximating the mean north solstice (June solstice, boreal summer

solstice, northern hemisphere summer solstice) for the past millennium and the next 10 to 11 millennia,

keeping the average solstice near midnight in Jerusalem at the beginning of the 174th ordinal day of the calendar

year (Symmetry454 June 20th or Symmetry010 June 22nd):

isSymLeapYear(SymYear) = modulus(69 × SymYear + 194, 389) < 69

R = 389 – 69 × 5 = 44, so there are 69 – 44 = 25 short inter-leap intervals, 44:25 ≈ 2:1 as expected

For example:

isSymLeapYear(2009) = modulus(69 × 2009 + 194, 389) < 69

= modulus(138815, 389) < 69

138815 / 389 = 356+331/389 so the accumulator is 331, which is not less than 69 and the function result is

FALSE, meaning that the year 2009 wasn’t a leap year in the 69/389 leap cycle. Nevertheless, the large

accumulator 331 is only 58 away from 389, suggesting that a leap year was next, let’s check that:

isSymLeapYear(2010) = modulus(69 × 2010 + 194, 389) < 69

= modulus(138884, 389) < 69

138884 / 389 = 357+11/389 so the accumulator is 11, which is less than 69 and the function result is TRUE,

meaning that the year 2010 was indeed a leap year in the 69/389 leap cycle. Since 11 is also less than 44, the

number of long inter-leap intervals per 389-year cycle, the next leap year will be 6 years later = 2016.

For the symmetrical 389-year cycle, leap year intervals match sub-cycle patterns of (5+6+6) = 17 or (5+6) = 11

years, which symmetrically group to 17+11+17 = 45 or 17+17+11+17+17 = 79 or to the longer

17+17+11+17+17+17+11+17+17 = 141 years. The overall symmetrical grouping for this cycle is

79+45+141+45+79 = 389 years.

The middle year of each 389-year cycle is a leap year because the cycle has an odd number of leap years.

With any reasonably accurate leap week calendar cycle, 6-year leap intervals occur about twice as frequently as

5-year leap intervals. The reason for this is explained on my “Solar Calendar Leap Rules” web page at

http://individual.utoronto.ca/kalendis/leap/

Symmetry454 and Symmetry010 Calendar Arithmetic Page 12 of 28

<http://individual.utoronto.ca/kalendis/leap/> under the heading “Patterns in the Intervals Between Leap

Years”.

A quick way to evaluate astronomical drift using Kalendis version 9.709(1429) or later is as follows:

1. Select the built-in locale “Jerusalem, Israel”.

2. Set the fixed day numbering epoch to the Gregorian epoch using Options  Fixed Day Numbering… 

Gregorian epoch (rata die).

3. Choose the desired symmetrical leap cycle in the Symmetry calendar window. If you want other than

the 293-year cycle then mark the “Experiment” checkbox to enable choosing alternatives, such as the

389-year cycle.

4. Enter 1 as the Fixed Day Number. This changes the displayed date to Monday, January 1, 1 (AD),

which was the beginning of the first leap cycle at the calendar epoch (assuming “Start On” = Monday).

5. Use the “Next” menu to advance to your choice of northward equinox or north solstice within the year.

Note the Sun Longitude displayed nearby, which should be 0.0° or 90.0°, respectively.

6. Use the “Previous” or “Next” menu to jump to the same point in the first year of the previous or next

leap cycle for the selected symmetrical leap rule.

a. If using the 293-year leap cycle with the Sym454 calendar then the applicable “Previous” and

“Next” menu command will be “52/293 Sym454 Leap Cycle”, but the caption for this command

will change if you select a different leap cycle or calendar, such as Sym010 or an experimental

variant.

b. In the first year of each 52/293 leap cycle, the northward equinox lands on March 16th for

Sym454 or March 18th for Sym010, near the end of the 79th ordinal day number for either

calendar.

c. In the first year of each 69/389 leap cycle the north solstice lands on June 19th for Sym454 or

June 21st for Sym010, near the end of the 173rd ordinal day number for either calendar.

d. The time of the equinox or solstice is shown as Universal Time in the “Univ Time” field. If you

click on this field, Kalendis will copy this time to the clipboard as Universal Time, Standard

Time for the northward equinox or Daylight Saving Time for the north solstice, Local Mean

Time, and Local Apparent Time. Note that the moment for the first year of each leap cycle

should be near midnight Jerusalem Local Mean Time.

e. If the moment is after midnight in Jerusalem it will still be before midnight at the Prime

Meridian, and Kalendis uses Universal Time for its calendar dates. Thus in terms of Jerusalem

Local Mean Time, the northward equinox of the first year of each 293-year leap cycle lands near

the beginning of the 80th ordinal day number (Sym454 March 17th, Sym010 March 19th), and the

north solstice of the first year of each 389-year leap cycle lands near the beginning of the 174th

ordinal day number (Sym454 June 20th, Sym010 June 22nd).

7. Watch the Sun Longitude: for each degree difference from the original value at the epoch the calendar

has drifted about a day.

http://individual.utoronto.ca/kalendis/leap/
http://individual.utoronto.ca/kalendis/leap/index.htm#lyp
http://individual.utoronto.ca/kalendis/leap/index.htm#lyp
http://individual.utoronto.ca/kalendis/kalendis.htm

Symmetry454 and Symmetry010 Calendar Arithmetic Page 13 of 28

8. You can quickly continue jumping backwards or forwards by whole leap cycles simply by pressing

Ctrl-A to activate the Step  Again command. In a matter of a few seconds you can find the first year

of the cycle where the calendar drift deviates excessively.

Using Kalendis as outlined above with the 293-year leap cycle and starting from the northward equinox (0°) in

year 1 AD then jumping forward by 293-year cycles, a deviation of more than a degree from 0° isn’t reached

until the cycle that will begin in 8791 AD, when it will reach 1.1°.

Carrying out the same procedure with the 389-year leap cycle and starting from the north solstice (90°) in year 1

AD then jumping forward by 389-year cycles, a deviation of more than a degree from 90° is never reached

within the allowable year range supported by Kalendis, which stops at 12000 AD, in fact the solar longitude is

still displayed as 90.0° in the year 11671 AD, the last cycle that Kalendis can reach the beginning of.

Some additional definitions and properties of smoothly spread symmetrical leap cycles include:

1) There are an odd number of years per cycle.

2) The middle year of each cycle is a leap year only if there are an odd number of leap years per cycle.

3) NewYearMoment = epoch + 365 × (Y – 1) + F × (Y – 1), where epoch is the start of calendar year 1, Y is

the given year number, and F is the fraction of the calendar mean year that is in excess of 365 days.

Unless the calculation is carried out using exact arbitrary precision, don’t simplify this expression to:

NewYearMoment = epoch + (Y – 1) × (365 + F).

4) It is simpler to use the elapsed year count E = Y – 1, in which case

NewYearMoment = epoch + 365 × E + F × E. As above, unless the calculation is carried out using exact

arbitrary precision, don’t simplify this expression to: NewYearMoment = epoch + E × (365 + F).

5) Although the mean NewYearMoment expression would be the same for a non-symmetrical leap cycle,

only in the case of a symmetrical leap cycle does it exactly equal the start of calendar year 1 and the start

of the first year of every cycle.

6) Any given year Y begins on day epoch + D × (Y – 1) + X × floor([L × (Y – 1) + K] / C), where D = the

number of days in a non-leap year, X = the number of days in a leap unit (=7 for leap week calendars),

and a leap year has D + X days. Starting from the calendar epoch, this expression adds the non-leap

calendar year length for each elapsed year and plus the length of the leap unit for each elapsed leap year.

7) It is simpler to use the elapsed year count E = Y – 1, in which case year Y begins on day

epoch + D × E + X × floor([L × E + K] / C).

8) The maximum within-cycle “wobble” W of the mean equinox or solstice or new year moment is ± X ×

(C – 1) / (2×C) days, where X = the number of days in the calendar leap unit (=7 for leap week

calendars), provided that the leap year intervals are as smoothly spread as possible, so the drift of the

earliest and latest mean equinox or solstice can simply be plotted as ±W days from the drift of the

average, where the average is represented by the first year of each leap cycle, interpolating from cycle-

to-cycle.

For more information about smoothly spread symmetrical leap cycles (having an odd number of years per

cycle), as well as almost symmetrical cycles (having an even number of years per cycle), please see the topic

“Smoothly Spread Symmetrical Leap Cycles” on the web page entitled “Solar Calendar Leap Rules” at

<http://individual.utoronto.ca/kalendis/leap/>.

The symmetrical leap cycle concept, rules, and arithmetic are largely due to K.E.V. (Karl) Palmen, formerly of

the Rutherford Appleton Laboratory in the United Kingdom (retired in 2018), primarily based on

correspondence with the CALNDR LISTSERV during 2007-2008, in threads concerned with what he called

http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/leap/index.htm#slc
http://individual.utoronto.ca/kalendis/leap/
http://individual.utoronto.ca/kalendis/leap/
http://www.hermetic.ch/cal_stud/palmen/index.html
http://personal.ecu.edu/mccartyr/calndr-l.html

Symmetry454 and Symmetry010 Calendar Arithmetic Page 14 of 28

‘Helios’ and ‘quasi-Helios’ cycles. Karl originally suggested the use of symmetrical leap rules for the

Symmetry454 calendar, however, back in 2004, in direct email correspondence with this author.

Generating a list of Symmetry454 leap years

It is a simple matter to iteratively check a range of years and list those for which the isSymLeapYear() function

returns TRUE. There is no need to check each individual year, however, because each time that a leap year is

found the loop can inspect the Accumulator and if it is < R then jump 6 years otherwise jump 5 years directly to

the next leap year. The R threshold need be calculated only once before starting the loop:

R = C – L × S

where S = 5 is the number of years in a short inter-leap interval (including one leap year), R is the number of

longer (S + 1 years) inter-leap intervals per cycle, C is the number of years per cycle, and L is the number of

leap years per cycle.

Kalendis has a built-in “Report” menu that has a command for exporting a list of Symmetry454 leap years for

the currently selected leap rule. The user can choose to export this list as a web page (.htm), tab-delimited text

(.tab), or comma-separated values (.csv). After exporting, Kalendis opens the list using the user’s default

application for that file type. Typically the .htm file type will open in the user’s default web browser. Most

users will find it convenient to configure Windows to open the .tab or .csv files in a spreadsheet or

statistics application. To change this setting, right-click on the exported file using “My Computer” or

“Windows Explorer” and choose the “Open With…” command, choose the program to use for opening that file

type and mark the “Always use this program to open these files” checkbox, then click the “OK” button.

Finding the Symmetry454 New Year Day: the SymNewYearDay() function

This simple function returns the fixed day number of the New Year Day of any specified Symmetry454 year:

SymNewYearDay(SymYear) = SymEpoch + 364 × E + 7 ×



L  E  K

C








where E = SymYear – 1, C = years per cycle, L = leap years per cycle, K = (C-1)/2 and SymEpoch is the fixed

day number of January 1 of the year 1 AD, as previously explained under the heading “Customizing the
fixed day numbering epoch”.

Thus for the 293-year northward equinox cycle we have:

SymNewYearDay(SymYear) = SymEpoch + 364 × E + 7 ×



52 E 146

293








If SymEpoch was on Monday, then every New Year Day is also on Monday.

If SymEpoch = GregorianEpoch = 1 then the 52/293 cycle starts year 2010 on:

SymNewYearDay(2010) = 1 + 364 × 2009 + 7 ×



522009146

293








 = 731277 + 7 ×



104614

293








 = 731277 + 7 ×



357
13

293








http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm
http://www.sym454.org/kalendis/
http://www.sym454.org/kalendis/

Symmetry454 and Symmetry010 Calendar Arithmetic Page 15 of 28

 = 731277 + 7 × 357

 = fixed day number 733776

and for the 389-year north solstice cycle we have:

SymNewYearDay(SymYear) = SymEpoch + 364 × E + 7 ×



69 E 194

389








So the 69/389 cycle starts year 2010 on:

SymNewYearDay(2010) = 1 + 364 × 2009 + 7 ×



692009194

389








 = 731277 + 7 ×



138815

389








 = 731277 + 7 ×



356
331

389








 = 731277 + 7 × 356

 = fixed day number 733769

The 69/389 New Year Day is 7 days prior to the 52/293 New Year Day in year 2010 because the 69/389 cycle

makes 2009 a non-leap year but the 52/293 cycle appends a leap week to year 2009.

If one prefers to work with smaller fixed day numbers then choose a fixed day numbering epoch near the target

era. For example, I like to use the first day of the 3rd millennium = January 1, 2001 AD as my fixed day

numbering epoch, so that near present era dates will have small fixed day numbers. This date was a Monday, is

the same date on the Gregorian and Symmetry454 of Symmetry010 calendars (using either the 293- or 389-year

cycle), and was the first day of a Gregorian 400-year cycle. If that date is the fixed day numbering epoch then

SymEpoch = -730484 as was shown in the Fixed Day Number Scheme table above, indicating that the

Gregorian and Symmetry epoch was 730484 days prior to January 1, 2001. Using SymEpoch = -730484 the

52/293 New Year Day 2010 becomes:

SymNewYearDay(2010) = –730484 + 364 × 2009 + 7 ×



522009146

293








= 792 + 7 × 357 = 3291

and as above the 69/389 cycle starts the year one week earlier:

SymNewYearDay(2010) = –730484 + 364 × 2009 + 7 ×



692009194

389








= 792 + 7 × 356 = 3284

For more information about symmetrical leap cycles please see the heading “Smoothly Spread Symmetrical

Leap Cycles” on my “Solar Calendar Leap Rules” web page at <http://individual.utoronto.ca/kalendis/leap/>.

That web page also more fully documents the 293- and 389-year leap cycles as well as a collection of other

interesting leap cycles, offers tools for evaluating the astronomical drift of various leap cycles (see the heading

“Dynamic Demonstration of Mean Solar Calendar Drift Rates”) and for finding fixed arithmetic leap cycles that

meet specified criteria (see the heading “Automatic Fixed Leap Cycle Finder” and the heading “Mediant

Fractions, Farey Pairs, and Ford Circles”.

http://individual.utoronto.ca/kalendis/leap/index.htm#slc
http://individual.utoronto.ca/kalendis/leap/index.htm#slc
http://individual.utoronto.ca/kalendis/leap/
http://individual.utoronto.ca/kalendis/leap/
http://individual.utoronto.ca/kalendis/leap/index.htm#demo
http://individual.utoronto.ca/kalendis/leap/index.htm#find
http://individual.utoronto.ca/kalendis/leap/index.htm#ford
http://individual.utoronto.ca/kalendis/leap/index.htm#ford

Symmetry454 and Symmetry010 Calendar Arithmetic Page 16 of 28

Calculating the calendar mean year

A calendar mean year is the full-cycle average length of the calendar year.

The calendar mean year for any fixed arithmetic leap cycle = DaysPerCycle / YearsPerCycle.

For a leap week calendar, DaysPerCycle = (YearsPerCycle × 364) + (LeapWeeksPerCycle × 7).

The mean year of the 293-year northward equinox leap cycle = (293 × 364 + 52 × 7) / 293 ≡ 365+71/293 days ≡

365 days 5 hours 48 minutes 56+152/293 seconds or about 365.242321 days, which is an excellent average match

to the astronomical mean northward equinoctial year for the next 4-5 millennia. The fraction 71/293 indicates that

such a leap week cycle is the mean year equivalent of a leap day cycle having 71 leap years per 293-year cycle.

The mean year of the 389-year north solstice leap cycle = (389 × 364 + 69 × 7) / 389 ≡ 365+94/389 days ≡ 365

days 5 hours 47 minutes 58+58/389 seconds or about 365.241645 days, which is an excellent match to the

astronomical mean north solstitial year now and for the next 10-11 millennia. The fraction 94/389 indicates that

such a leap week cycle is the mean year equivalent of a leap day cycle having 94 leap years per 389-year cycle.

Compare the above with the appreciably longer mean year of the Gregorian calendar ≡ 365+97/400 days ≡ 365

days 5 hours 49 minutes 12 seconds ≡ 365.2425 days.

Alternatively, for a leap day calendar the mean year = 365 + LeapDaysPerCycle / YearsPerCycle

and for a leap week calendar the mean year = 364 + 7 × LeapWeeksPerCycle / YearsPerCycle

When working with floating point decimal numbers, it is more precise to calculate just the fraction of the mean

year that is in excess of 365 days, because in the above expressions 3 significant figures are unavoidably used

for the 365 days to the left of the decimal point:

for a leap day calendar the mean year fraction = LeapDaysPerCycle / YearsPerCycle

and for a leap week calendar the mean year fraction = 7 × LeapWeeksPerCycle / YearsPerCycle – 1

For example, for the 52/293 cycle the expression 7 × LeapWeeksPerCycle / YearsPerCycle yields

1.24232081911263 as a double precision floating point number, which is the mean number of days in excess of

a 364-day common year, and the final subtraction of one day yields the mean fraction of a day in excess of a

365-day year. This value is only approximate, due to the limitations of double precision floating point

calculation, because the exact decimal fraction of 71/293 has 146 repeating digits.

For more information about the lengths of the astronomical seasons and mean equinoctial and solstitial years,

please see my “The Lengths of the Seasons” web page at <http://individual.utoronto.ca/kalendis/seasons.htm>,

which explains why it is presently impossible to use a simple fixed arithmetic leap cycle as an approximation

for the astronomical mean southward equinox (September equinox, boreal autumnal equinox, northern

hemisphere autumn equinox) or the south solstice (December solstice, boreal winter solstice, northern

hemisphere winter solstice).

The DaysBeforeMonth() function

The DaysBeforeMonth() function calculates the number of days elapsed in the same year prior to a specified

month. It returns zero for January. If the leap week stands alone as a 13th “mini-month” after December then it

http://individual.utoronto.ca/kalendis/seasons.htm

Symmetry454 and Symmetry010 Calendar Arithmetic Page 17 of 28

returns 364 for “Irvember”. This function is one of the few that differ for the Symmetry454 vs Symmetry010

calendar arithmetic, as indicated:

 4+5+4 DaysBeforeMonth(SymMonth) = 









3
7)1(28

SymMonth
SymMonth

 4+5+4 (or, slightly simpler …) =



28 SymMonth  7
SymMonth

3







28

The above expression allows 28 days for each prior elapsed month, plus 7 days for each prior elapsed mid-

quarter month. For example, for June (month 6):

 4+5+4 DaysBeforeMonth(6) =



286 7
6

3







28 =



168 7 2 28 = 168 + 14 – 28 = 154 days.

The Symmetry010 expression below differs by allowing 30 days for each prior elapsed month, plus one day for

each prior elapsed mid-quarter month:

 30+31+30 DaysBeforeMonth(SymMonth) =



30 (SymMonth 1)
SymMonth

3








 30+31+30 (or, slightly simpler…) =



30 SymMonth 
SymMonth

3







 30

For example, for June:

 30+31+30 DaysBeforeMonth(6) =



306
6

3







 30 =



180 2  30 = 182 – 30 = 152 days.

The SymDayOfYear() function

To calculate the ordinal day number of a given day SymDay within a given month SymMonth, simply add

SymDay to the value returned by the DaysBeforeMonth() function, defined above:

SymDayOfYear(SymMonth, SymDay) = DaysBeforeMonth(SymMonth) + SymDay

There are no special exceptions, because the calendar is perpetual with its leap week at the end of leap years.

For example, for June 17th:

 SymDayOfYear(6, 17) = DaysBeforeMonth(6) + 17

 4+5+4 SymDayOfYear(6, 17) = 154 + 17 = 171 (we calculated the 154 in the previous section)

 30+31+30 SymDayOfYear(6, 17) = 152 + 17 = 169 (we calculated the 152 in the previous section)

The SymDayOfYear() arithmetic is the same for both Symmetry454 and Symmetry010. The 2-day difference

arises within the DaysBeforeMonth() function, as explained in the previous section.

Symmetry454 and Symmetry010 Calendar Arithmetic Page 18 of 28

Converting a Sym454 or Sym010 date to a fixed day number: SymToFixed()

The SymToFixed() function converts any Sym454 or Sym010 calendar date to the corresponding fixed day

number, by adding the ordinal day number within the year to the fixed day number of the New Year Day, less 1:

SymToFixed(SymYear, SymMonth, SymDay) =

SymNewYearDay(SymYear) + SymDayOfYear(SymMonth, SymDay) – 1

For example, for April 5, 2009:

SymToFixed(2009, 4, 5) = SymNewYearDay(2009) + SymDayOfYear(4, 5) – 1

With SymEpoch = 1 the SymNewYearDay(2009) function returns 733405.

SymDayOfYear(4, 5) returns 96, so we have 733405 + 96 – 1 = 733500.

In this example, the same result is obtained using the 52/293 or 69/389 cycle, and either Sym454 or Sym010.

Finding the year that contains a given fixed day number: FixedToSymYear()

The FixedToSymYear() function is the inverse of the SymNewYearDay() function. It returns the SymYear that

contains a given fixed day number and also returns StartOfYear, which is the fixed day number of its New Year

Day, both of which are required early in the FixedToSym() function to be discussed next. The calculation first

estimates the SymYear number, which will always be within ±1 year of the target SymYear, and then checks if it

is correct, incrementing or decrementing it if necessary.

To estimate the required year number, simply calculate the difference between the fixed day number and the

calendar epoch, divide that by the cycle mean year, and then take the ceiling() of that result:

SymYear =



FixedDate  SymEpoch

CycleMeanYear











This expression needs the ceiling() function because the year at the calendar epoch was year 1, not year 0.

The 52/293 northward equinox cycle uses CycleMeanYear ≡ 365+71/293 ≡ 107016/293 ≈ 365.24232082 days.

The 69/389 north solstice cycle uses CycleMeanYear ≡ 365+94/389 ≡ 142079/389 ≈ 365.241645 days.

The estimated year number is generally correct for dates that are not near the beginning or end of the year. We

check the accuracy of the estimated SymYear, incrementing or decrementing it if necessary, by comparing the

fixed day number of its New Year Day with the given FixedDate. We get StartOfYear for the estimated

SymYear using the SymNewYearDay() function:

StartOfYear = SymNewYearDay(SymYear)

If StartOfYear equals the given FixedDate then the given date is the New Year Day of the SymYear and in that

uncommon case no further adjustment is needed. We don’t, however, bother checking for that condition,

because if it is TRUE then processing will simply skip through the following IF statements:

IF StartOfYear < FixedDate THEN

' SymYear starts before FixedDate and is either correct or needs to be incremented

IF FixedDate – StartOfYear >= 364 THEN

StartOfNextYear = SymNewYearDay(SymYear + 1)

Symmetry454 and Symmetry010 Calendar Arithmetic Page 19 of 28

IF FixedDate >= StartOfNextYear THEN

' FixedDate is on or after the start of next year, so next year is the correct year.

' Increment the estimated year number and return its New Year Day

SymYear = SymYear + 1

StartOfYear = StartOfNextYear

END IF ' otherwise FixedDate is in the leap week of SymYear

END IF ' otherwise FixedDate is within SymYear

ELSEIF StartOfYear > FixedDate THEN

' estimated SymYear too far into the future, go back a year and recalculate the New Year Day

SymYear = SymYear – 1

StartOfYear = SymNewYearDay(SymYear)

END IF ' otherwise StartOfYear = FixedDate so there is nothing else to do

The initially estimated SymYear is always within ±1 year of the correct year, so there is no need for logic to

check outside that range.

FixedToSymYear() processing is now complete. SymYear contains the correct year number, and StartOfYear

contains the fixed day number of its New Year Day.

For a given FixedDate of 733649 with SymEpoch = 1 and the 52/293 leap cycle, we estimate the SymYear.

SymYear =



7336491

365 71
293















SymYear =



2008
8842

13377







 = 2009

Although this shows exact fractional arithmetic, decimal fractions work just as well here, and the

CycleMeanYear can be pre-calculated and declared as a double-precision floating-point constant.

StartOfYear = SymNewYearDay(2009) = 733405 as was shown in SymToFixed() above

The given FixedDate is 733649–733405=244 days after the New Year Day of the estimated year, so the 2009

estimate is correct, as it typically is for dates that are not near the beginning or end of the year, and we have the

fixed day number of its New Year Day.

Now let’s try a FixedDate of 733406:

SymYear =



7334061

365 71
293















SymYear =



2007
106553

107016







 = 2008

StartOfYear = SymNewYearDay(2008) = 733041 (364 days earlier than the previous example)

The given FixedDate is 733406–733041=365 days after the New Year Day of the estimated year, so the year

2008 estimate is correct only if 2008 was a leap year (it wasn’t). We get the StartOfNextYear:

StartOfNextYear = SymNewYearDay(2008 + 1) = SymNewYearDay(2009) = 733405 (like previous example)

Symmetry454 and Symmetry010 Calendar Arithmetic Page 20 of 28

The formal logic says that if FixedDate is on or after StartOfNextYear then next year is correct, but that was

obvious anyway because we can immediately see that FixedDate is simply the day after the New Year Day of

year 2009. This is a typical example of a case where FixedDate is near the beginning of a calendar year, so the

initial year estimate lands in the prior year.

Now let’s try a FixedDate of 733774:

SymYear =



733774 1

365 71
293















SymYear =



2009
115

35672







 = 2010

StartOfYear = SymNewYearDay(2010) = 733776

The given FixedDate is 733774 is 2 days earlier, so we need the prior year and its New Year Day. This is a

typical example of a case where FixedDate is near the end of a calendar year, so the initial year estimate lands

in the next year. In this case the given FixedDate was in the leap week of year 2009.

Converting a fixed day number to a Sym454 or Sym010 date: FixedToSym()

The FixedToSym() function converts any fixed day number to the corresponding Symmetry454 calendar date

(year, day of year, week of year, month of year, quarter of year, day of month, weekday).

This function requires some way of returning multiple values, either by changing global variables, returning a

structure, or storing its results as properties in a calendar object.

It first uses the FixedToSymYear() function, described above, to obtain the SymYear and StartOfYear. In the

Kalendis implementation, SymYear is returned as the function result, and StartOfYear is passed as a by

reference parameter to the FixedToSymYear() function, which modifies it directly:

SymYear = FixedToSymYear(FixedDate, StartOfYear)

The Symmetry454 ordinal day number within the year (1 to 364 for non-leap, or to 371 for leap years) is simply

the given FixedDate minus the StartOfYear, plus one day:

DayOfYear = FixedDate – StartOfYear + 1

The following expression computes the Symmetry454 week number (1 to 52 for non-leap, to 53 for leap years):

WeekOfYear =



DayOfYear

7








The following expression computes the Symmetry454 quarter number within the calendar year. The fraction

causes the expression to yield the correct Quarter number for all weeks including the 53rd week at the end of

leap year:

Quarter =



4

53
WeekOfYear








Compute the Symmetry454 day within the Quarter as the ordinal day number minus the total number of days in

prior elapsed quarters, using either of the following expressions. There are 91 days per quarter, except when

http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm

Symmetry454 and Symmetry010 Calendar Arithmetic Page 21 of 28

there is a leap week added to the end of the quarter, but the arithmetic yields the correct DayOfQuarter even

when the given FixedDate is a day within the leap week:

DayOfQuarter = DayOfYear – 91 x (Quarter – 1) = DayOfYear – 91 x Quarter + 91

Compute the Symmetry454 week number within the quarter using the following expression:

WeekOfQuarter =



DayOfQuarter

7








Compute the calendar month number within the quarter as follows:

 4+5+4 MonthOfQuarter =



2

9
WeekOfQuarter








 30+31+30 MonthOfQuarter =



2

61
DayOfQuarter







 =



DayOfQuarter

30.5








The above expressions yield MonthOfQuarter = 4 during the leap week. If using the normally recommended

leap week append-to-December mode then take a maximum of 3 for MonthOfQuarter.

Compute the calendar month using either of the following expressions, which will yield 13 if MonthOfQuarter

was allowed to remain at 4 (as it would if the leap week is stand-alone as a 13th “mini-month”):

 SymMonth = 3 x (Quarter – 1) + MonthOfQuarter

 = 3 x Quarter + MonthOfQuarter – 3

Optionally, if required for the application, compute the number of days or weeks in SymYear as follows, based

on the rule that regular years have 364 days (52 weeks) and leap years have 371 days (53 weeks):

IF isSymLeapYear(SymYear) THEN DaysInYear = 371 ELSE DaysInYear = 364

IF isSymLeapYear(SymYear) THEN WeeksInYear = 53 ELSE WeeksInYear = 52

or, more simply: WeeksInYear =



DaysInYear

7
 (because DaysInYear is always divisible by 7)

Optionally, if required for the application, for example to display the entire calendar month, compute the

number of days in SymMonth as follows:

The expression



SymMonth MOD3

2







 or alternatively



MonthOfQuarter MOD3

2







 evaluates to 0 for a short

month or 1 for a long month. We can safely use any programming language’s MOD operator for that

expression because SymMonth or alternatively MonthOfQuarter is guaranteed to be a small positive integer.

If the leap week mode has Irvember as a stand-alone 13th “mini-month” (an experimental option in Kalendis)

and if SymMonth = Irvember (numerically 13) then set DaysInMonth = 7, otherwise we allow 28 days for all

months, but add 7 to total 35 days for long months:

 4+5+4 DaysInMonth = 28 + 7 x



SymMonth MOD3

2








http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm

Symmetry454 and Symmetry010 Calendar Arithmetic Page 22 of 28

For Symmetry010 we instead allow 30 days for all months, but adds one day for a mid-quarter month:

 30+31+30 DaysInMonth = 30 +



SymMonth MOD3

2








If the leap week mode has the leap week appended to December, as recommended, then add 7 days to the length

of the month if it is a December in a leap year (where December = 12):

IF SymMonth = December THEN IF isSymLeapYear(SymYear) THEN DaysInMonth = DaysInMonth + 7

Also optionally, one may use DaysInMonth to compute the number of weeks in the month as follows, but this is

only valid for the Symmetry454 calendar, which always has a whole number of weeks in every month:

 4+5+4 WeeksInMonth = 4 +



SymMonth MOD3

2







 =



DaysInMonth

7

The Symmetry454 day number in the month is simply the ordinal day number of the Symmetry454 year minus

the number of days elapsed before that month, using the DaysBeforeMonth() function that was defined above:

SymDay = DayOfYear – DaysBeforeMonth(SymMonth)

Optionally, if required for the application, compute the week number in SymMonth that contains SymDay. This

value is valid for the Symmetry454 calendar, which has months comprised only of whole weeks, but it is invalid

for the Symmetry010 calendar because within quarters it breaks weeks between months:

 4+5+4 WeekOfMonth =



SymDay

7








Processing of the FixedToSym() function is now complete, with the main results being SymYear, SymMonth,

and SymDay, but also an assortment of other parameters are available if required for the application (those that

are shown in boldface are valid for Symmetry454 but not Symmetry010): Weekday, StartOfYear,

WeeksInYear, WeekOfYear, DaysInYear, DayOfYear, Quarter, MonthOfQuarter, WeekOfQuarter,

DayOfQuarter, WeekOfMonth, WeeksInMonth, DaysInMonth. As a demonstration, Kalendis displays many

of these parameters in the Symmetry454 Date Status Table, discussed later.

Determining the weekday for any Symmetry454 or Symmetry010 date

The universal way to determine the weekday for any date on any calendar that conserves the 7-day week is to

use the FixedToWeekdayNum() function to compute the weekday (Sunday=0 through Saturday=6) as follows:

 weekday = FixedToWeekdayNum(FixedDate)

If more convenient, one may substitute the DayOfYear, taking into account the calendar year starting weekday:

weekday = (DayOfYear + StartWeekday – 1) MOD 7

For the recommended case of the calendar year starting on Monday, the line above simplifies to:

weekday = (DayOfYear + Monday – 1) MOD 7 = DayOfYear MOD 7

http://individual.utoronto.ca/kalendis/kalendis.htm

Symmetry454 and Symmetry010 Calendar Arithmetic Page 23 of 28

The Symmetry 454 calendar (but not the Symmetry010 calendar) starts every month on the same weekday, so

the weekday is always the same for every date of every month. Therefore one can simply use the MOD

operator to compute the weekday from the day number within the month as follows:

 4+5+4 weekday = (SymDay + StartWeekday – 1) MOD 7

For the recommended case of every month starting on Monday, the line above simplifies to:

 4+5+4 weekday = (SymDay + Monday – 1) MOD 7 = SymDay MOD 7

Determining the date of Easter

Because of its longer calendar mean year, the established Gregorian Easter computus is not suitable for long-

term use with the shorter mean year of the Symmetry454 calendar.

The World Council of Churches (WCC) recommends a common Easter date for all churches:

 Easter should fall on the Sunday following the first vernal full moon

 calculate the moments of the vernal equinox and full moon using the most accurate scientific methods

 reference the astronomical moments to the meridian of Jerusalem = Jerusalem local apparent time.

For implementation details, see Nachum Dershowitz and Edward M. Reingold: Calendrical Calculations, 3rd

edition, chapter 20 Astronomical Lunisolar Calendars, page 325, section 20.1 Astronomical Easter. Use their

astronomical-easter() function to return the fixed day number for the astronomical Easter, then use the

FixedToSym() function described earlier to obtain the corresponding Symmetry454 date.

Such a lunisolar Easter is a moveable date, and causes all Christian ecclesiastical special days counted prior to

Easter (such as Ash Wednesday, Passion Sunday, Palm Sunday, Holy Thursday, Good Friday, Holy Saturday)

and events counted after Easter (such as Easter Monday, Rogation Sunday, Ascension Day) to also shift within

the calendar year, in series with the shifting date of Easter. Such shifts would undermine the intended perpetual

design of the Symmetry454 calendar.

In the Symmetry454 calendar with 52/293 leap rule the astronomical Easter can only land on a few possible

Sunday dates: March 21st, March 28th, April 7th, April 14th, April 21st, or rarely on April 28th, of which Sunday

April 7th is the most frequent. (The Symmetry010 calendar has the same astronomical Easter distribution except

that it has March 23rd and March 30th as the last two Sundays in March.)

Therefore, Sunday April 7th is proposed as a perpetually fixed Easter date, which if adopted would also

perpetually fix all Christian ecclesiastical special days counted before or after Easter. The fixed day number for

this perpetually fixed Easter date in any desired year can be obtained very simply:

FixedEaster(SymYear) = SymToFixed(SymYear, April, 7)

If the symmetry calendar year always starts on Monday then April 7th is guaranteed to always be Sunday, and is

the 98th ordinal day number in every year.

For a papal statement regarding the use of a fixed date for Easter on perpetual calendars see: "Appendix: A

Declaration of the Second Ecumenical Council of the Vatican on Revision of the Calendar" at the end of the

archived document "Constitution on the sacred liturgy Sacrosanctum Concilium solemnly promulgated by His

Holiness Pope Paul VI on December 4, 1963":

http://www.oikoumene.org/
https://www.oikoumene.org/en/resources/documents/commissions/faith-and-order/i-unity-the-church-and-its-mission/towards-a-common-date-for-easter/index
http://www.vatican.va/archive/hist_councils/ii_vatican_council/documents/vat-ii_const_19631204_sacrosanctum-concilium_en.html
http://www.vatican.va/archive/hist_councils/ii_vatican_council/documents/vat-ii_const_19631204_sacrosanctum-concilium_en.html
http://www.vatican.va/archive/hist_councils/ii_vatican_council/documents/vat-ii_const_19631204_sacrosanctum-concilium_en.html
http://www.vatican.va/archive/hist_councils/ii_vatican_council/documents/vat-ii_const_19631204_sacrosanctum-concilium_en.html

Symmetry454 and Symmetry010 Calendar Arithmetic Page 24 of 28

“The Second Ecumenical Sacred Council of the Vatican, recognizing the importance of the wishes expressed by many

concerning the assignment of the feast of Easter to a fixed Sunday and concerning an unchanging calendar, having carefully

considered the effects which could result from the introduction of a new calendar, declares as follows:

1. The Sacred Council would not object if the feast of Easter were assigned to a particular Sunday of the Gregorian

Calendar, provided that those whom it may concern, especially the brethren who are not in communion with the Apostolic

See, give their assent.

2. The sacred Council likewise declares that it does not oppose efforts designed to introduce a perpetual calendar into civil

society.

But among the various systems which are being suggested to stabilize a perpetual calendar and to introduce it into civil life,

the Church has no objection only in the case of those systems which retain and safeguard a seven-day week with Sunday,

without the introduction of any days outside the week, so that the succession of weeks may be left intact, unless there is

question of the most serious reasons. Concerning these the Apostolic See shall judge.”

As a demonstration, for the Symmetry454 and Symmetry010 calendars Kalendis reports astronomical Easter

dates as “Uniform Easter” and reports the related ecclesiastical special days with the prefix “Uniform”, for

example “Uniform Good Friday”. Kalendis also reports symmetry Sunday April 7th as “Fixed Easter” and

reports the related ecclesiastical special days with the prefix “Fixed”, for example “Fixed Easter Monday”.

Kalendis allows the user to experimentally start the calendar year on a weekday other than Monday, which affects the fixed date for

Easter because it must fall on a Sunday:

FixedEaster(SymYear) = SymToFixed(SymYear, April, 10 – (2 + StartingWeekday) MOD 7)

where StartingWeekday is set to one of: Sunday = 0, Monday = 1, … Saturday = 6.

The following table shows the possible values for the day-within-April expression:

Year Starts On Weekday# Fixed Easter Day in April Ordinal Day in Year

Sunday 0 8th 99

Monday 1 7th 98

Tuesday 2 6th 97

Wednesday 3 5th 96

Thursday 4 4th 95

Friday 5 10th 101

Saturday 6 9th 100

The selected day in April in each case is based on the median Easter date from the distribution of astronomical Easter dates with that

weekday starting the calendar year.

Computer programs that are intended to recognize or find astronomical Easter-related days on the Symmetry454

calendar can approach it two ways:

1) To find the date within the calendar year, determine the fixed day number for the astronomical Easter using

the CCUE astronomical-easter() function, then add or subtract the offset in days to the desired Easter-related

day, and finally use the FixedToSym() function to convert that back to the Symmetry454 date. For example, for

Good Friday subtract 2 days from the Easter date, for Easter Monday add 1 day to the Easter date.

2) Starting with a Symmetry454 date, convert it to a fixed day number using the SymToFixed() function, then

subtract the astronomical-easter() fixed day number. This yields a negative difference in days for all Easter-

related days prior to Easter, zero if the date is Easter, or a positive difference in days for all Easter-related days

after Easter. To recognize an Easter-related day just compare this difference to an appropriate list, which varies

between Catholics, Orthodox, Protestants, etc..

Computer programs that are intended to recognize or find perpetually fixed Easter-related days on the

Symmetry454 calendar can use the same approach, except for substituting the FixedEaster() function for the

astronomical-easter() function, or they can directly work with the perpetually fixed dates of the Easter-related

http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm

Symmetry454 and Symmetry010 Calendar Arithmetic Page 25 of 28

days. For example, if Easter is always April 7th then Good Friday is always April 5th and Easter Monday is

always April 8th.

Determining the dates of holidays and special events

The dates of non-Easter-related holidays and special events are perpetually fixed on the Symmetry454 calendar.

Computer programs that are intended to recognize or find holidays or special on the Symmetry454 calendar can

work with the perpetually fixed dates of those events, so there is no need for rules specifying the nth k-day in the

month, where n is the week number in the month and k is the weekday, nor is there a need for calendrical

calculations to support such rules. For example, USA Columbus Day / Canada Thanksgiving Day on the 2nd

Monday in October is always the 8th of October:

ColumbusDay(SymYear) = SymToFixed(SymYear, October, 8)

A program that starts with a fixed day number can use the FixedToSym() function and then simply check the

results for the desired holidays and special events. For example if SymMonth = 10 and SymDay = 8 then that

day is USA Columbus Day / Canada Thanksgiving Day.

Dates that are traditionally on a specific day of the month are perpetually on the same weekday, for example

Boxing Day on the 26th of December is always a Friday:

BoxingDay(SymYear) = SymToFixed(SymYear, December, 26)

A program that starts with a fixed day number can use the FixedToSym() function and then if SymMonth = 12

and SymDay = 26 then that day is Boxing Day.

The Symmetry454 / Symmetry010 date status table that is displayed by Kalendis

The freeware Windows program, Kalendis, a calendar calculator / converter, displays the details of the Sym454

or Sym010 date status as a table, for example, showing the leap week 2 days before the end of year 2009:

This table of information is useful for a variety of business statistics and calendar calculations. The internal

coherency of the Symmetry454 and Symmetry010 calendars makes it easy to calculate all of the date status

values, using very simple arithmetic expressions. Although most of the arithmetic has already been discussed

above, here it is arranged as a table of formulae for direct comparison with the above screen shot:

http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm

Symmetry454 and Symmetry010 Calendar Arithmetic Page 26 of 28

Quarter Month Week # Day



4

53
WeekOfYear








3 x Quarter +

MonthOfQuarter – 3



DayOfYear

7







 FixedDate – StartOfYear + 1 of Year

See above for

Sym454 or Sym010

MonthOfQuarter

expression.



DayOfQuarter

7








DayOfYear + 91

– 91 x Quarter
of Quarter

Week of Month only

shown for Sym454 



DayOfMonth

7








DayOfYear –

DaysBeforeMonth
of Month

The column heading “Week 1” in the screen shot indicates that the displayed week is the first

week of a repeated 4-week cycle. This is useful as a guide for regular payments that are every

2nd week or every 4th week, and so on. It is shown as “Week #” in the table above, and can be 1,

2, 3, or 4. The expression for the week # in the 4-week cycle is:

w = floor 1
7

)28mod)(








  SymEpochFixedDate

For the nth year of the mth cycle:

n = amod(SymYear, YearsPerCycle) and m = ceiling 








cleYearsPerCy

SymYear

LeapYear = isSymLeapYear(SymYear) …depending on which leap rule is selected

Weeks… Days…

IF LeapYear THEN 53 ELSE 52 IF LeapYear THEN 371 ELSE 364 per Year

IF Quarter = 4 AND LeapYear

THEN 14 ELSE 13
IF Quarter = 4 AND LeapYear THEN 98 ELSE 91 per Quarter

Sym454 only:



DaysInMonth

7

See the DaysInMonth() formula above,

which differs for Symmetry454 vs Symmetry010

 per Month

Algorithms to check if an entered Symmetry454 or Symmetry010 date is valid

The algorithms of CCUE and the Symmetry454 and Symmetry010 functions presented herein don’t “crash” if

given invalid dates, such as specifying week = 53 when it isn’t a leap year, or a month date of 29 to 35 (or

more) when the month has only 28 days. Typically the fixed day number that would be calculated in such cases

is logically correct if that date existed. Thus specifying the 29th of January as a Symmetry454 date will generate

the fixed day number corresponding to the next day, February 1st, instead of triggering a run-time exception.

Likewise specifying December 33rd for a non-leap year will generate the fixed day number for January 5th of the

next year.

Nevertheless, programmers ought to prevent invalid date entries from being accepted or unintentionally

converted to valid dates.

Symmetry454 and Symmetry010 Calendar Arithmetic Page 27 of 28

It is simplest to use the method suggested in CCUE: convert the calendar date to a fixed day number and then

convert it back to a calendar date. If the returned date is unchanged (same as the original date) then the entered

calendar date is valid. However if what comes back is a different date then either give the user an “invalid date”

error message or do a detailed check as follows:

In the recommended leap week append-to-December mode, the Symmetry454 month number can range from 1

to 12. If the leap week is stand-alone after December, then the month number will be 13 during Irvember.

If a month short form is used then see the heading “Which date short forms are preferred for the Symmetry454

calendar?” in the document entitled Frequently Asked Questions (FAQs) about the Symmetry454 and

Symmetry010 Calendars.

The entered day of the month can be validated against the calculated length allowed for that month, see the

DaysInMonth formula, above.

There is no need for manual entry of the weekday for Symmetry454 or Symmetry010 dates, as it is always

simple to directly derive it from the day of the month (Sym454 only), ordinal day number of the quarter or year,

or the fixed day number (see the definition of the FixedToWeekdayNum() function and the heading

“Determining the Weekday for any Given Symmetry454 or Symmetry010”, above).

Symmetry454 and Symmetry010 Calendar Arithmetic Page 28 of 28

Example data for verification of calendar arithmetic functions

The following are examples of converted dates that programmers can use to verify calendar arithmetic:

Gregorian
Date

CCUE
rata
die

Fixed Day
1 = Jan 1,
2001 AD

Julian
Day

(add 0.5)

Week
Day

52/293
Symmetry454

Date

52/293
Symmetry010

Date

69/389
Symmetry454

Date

69/389
Symmetry010

Date

Apr 26, –121 –44,444 -774,929 1,676,980 Sat Apr 27, –121 Apr 27, –121 Apr 27, –121 Apr 27, –121

Sep 27, –91 –33,333 -763,818 1,688,091 Mon Sep 22, –91 Sep 24, –91 Sep 22, –91 Sep 24, –91

Sep 7, 122 44,444 -686,041 1,765,868 Mon Sep 8, 122 Sep 10, 122 Sep 8, 122 Sep 10, 122

Jul 4, 1776 648,491 -81,994 2,369,915 Thu Jul 4, 1776 Jul 4, 1776 Jul 4, 1776 Jul 4, 1776

Jul 1, 1867 681,724 -48,761 2,403,148 Mon Jul 1, 1867 Jul 1, 1867 Jul 1, 1867 Jul 1, 1867

Oct 24, 1947 711,058 -19,427 2,432,482 Fri Oct 26, 1947 Oct 26, 1947 Oct 26, 1947 Oct 26, 1947

Aug 10, 1995 728,515 -1,970 2,449,939 Thu Aug 11, 1995 Aug 9, 1995 Aug 11, 1995 Aug 9, 1995

Feb 29, 2000 730,179 -306 2,451,603 Tue Feb 30, 2000 Feb 28, 2000 Feb 30, 2000 Feb 28, 2000

May 2, 2004 731,703 1,218 2,453,127 Sun May 7, 2004 May 5, 2004 May 7, 2004 May 5, 2004

Dec 31, 2004 731,946 1,461 2,453,370 Fri
Dec 33, 2004

or Irv 5, 2004

Dec 35, 2004

or Irv 5, 2004
Jan 5, 2005 Jan 5, 2005

Feb 20, 2020 737,475 6,990 2,458,899 Thu Feb 25, 2020 Feb 23, 2020 Feb 25, 2020 Feb 23, 2020

Feb 2, 2222 811,236 80,751 2,532,660 Sat Feb 6, 2222 Feb 4, 2222 Feb 6, 2222 Feb 4, 2222

Mar 1, 3333 1,217,048 486,563 2,938,472 Sun Feb 35, 3333 Mar 2, 3333 Feb 35, 3333 Mar 2, 3333

Additional verification data for any date and any Symmetry454 leap rule can be generated using the Kalendis

freeware program that is downloadable from the Symmetry454 web site at

<http://individual.utoronto.ca/kalendis/kalendis.htm>.

http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm
http://individual.utoronto.ca/kalendis/kalendis.htm

