# Introducing the Symmetry454 Calendar 

## A simple perpetual solar calendar that is

 symmetrical across and between equal quarters, having $4+5+4$ weeks per quarter, yet conserves the traditional 7-day week.Home Page on the Web:<br>[http://individual.utoronto.ca/kalendis/symmetry.htm](http://individual.utoronto.ca/kalendis/symmetry.htm)

## Created by Dr. Irvin L. Bromberg



University of Toronto, Canada

## Overview of the Symmetry454 Calendar

[http://individual.utoronto.ca/kalendis/symmetry.htm](http://individual.utoronto.ca/kalendis/symmetry.htm)
4:5:4 Weeks per Month

| Days | $\begin{aligned} & 4 \\ & \downarrow \end{aligned}$ | $\begin{aligned} & 5 \\ & \downarrow \end{aligned}$ | $\begin{gathered} 4 \\ \downarrow \end{gathered}$ | Weeks |
| :---: | :---: | :---: | :---: | :---: |
|  | Monday | Monday | Monday |  |
| $91 \rightarrow$ | January | February | March | $\leftarrow 13$ |
|  | Monday | Monday | Monday |  |
| $+91 \rightarrow$ | April | May | June | $\leftarrow+13$ |
|  | Monday | Monday | Monday |  |
| $+91 \rightarrow$ | July | August | September | $\leftarrow+13$ |
|  | Monday | Monday | Monday |  |
| $+91 \rightarrow$ | October | November | December | $\leftarrow+13$ |
| $=364$ | $\leftarrow$ Total in Non-Leap Years $\rightarrow$ |  |  | 52 |
| $+7 \rightarrow$ | In a Leap Year append a Leap Week to December. Leap years occur at symmetrically arranged intervals of 6 or 5 years. |  |  | $\leftarrow+1$ |
| $=371$ | $\leftarrow$ Total in Leap Years $\rightarrow$ |  |  | $=53$ |

## Symmetry 454 Calendar - 3 by 4 design

## January

February

## March

week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 5 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 | 。 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 11 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 15 | 16 | 17 | 18 | 19 | 20 | 21 |  | 15 | 16 | 17 | 18 | 19 | 20 | 21 |  | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| 22 | 23 | 24 | 25 | 26 | 27 | 28 |  | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 13 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
|  |  |  |  |  |  |  |  | 29 | 30 | 31 | 32 | 33 | 34 | 35 |  |  |  |  |  |  |  |  |

## April

May
June
week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun


July

## August

September
week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun

|  |  | 2 | 3 | 4 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8 | 9 | 10 | 11 | 12 | 13 |  |
|  | 15 | 16 | 17 | 18 | 19 | 20 |  |
|  | 22 | 23 | 24 | 25 | 26 | 27 |  |

## October

week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun week Mon Tue Wed Thu Fri Sat Sun

| 44 | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | ${ }_{44}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | 49 | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| ${ }_{41}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | ${ }_{45}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | ${ }_{50}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ |
| ${ }_{42}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ | ${ }_{46}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ | ${ }_{51}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ |
|  | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | ${ }_{47}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ | ${ }_{52}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ | $\mathbf{2 5}$ | $\mathbf{2 6}$ | $\mathbf{2 7}$ | $\mathbf{2 8}$ |


|  | 1 | 2 | 3 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8 | 9 | 10 | 11 | 12 | 13 |  |
|  | 15 | 16 | 17 | 18 | 19 | 20 |  |
|  | 22 | 23 | 24 | 25 | 26 | 27 |  |
|  |  | 30 | 31 |  |  |  |  |

November

|  | 1 | 2 | 3 | 4 | 5 | 6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
|  | 15 | 16 | 17 | 18 | 19 | 20 |  |
|  | 22 | 23 | 24 | 25 | 26 |  |  |

## December

In a Leap Year, append a Leap Week to December, making it a 5-week month.
Leap years occur at symmetrically arranged intervals of 6 or 5 years.

Symmetry454 Calendar
[http://individual.utoronto.ca/kalendis/symmetry.htm](http://individual.utoronto.ca/kalendis/symmetry.htm)


| week | Mon | Tue | Wed | Thu | Fri | Sat | Sun |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{92} \quad 1$ | ${ }^{93} 2$ | 3 | 4 | 5 | 6 | 7 |
| 15 | ${ }^{99} 8$ | ${ }^{100} 9$ | ${ }^{101} 10$ | ${ }^{102} 11$ | ${ }^{103} 12$ | 13 | 14 |
|  | ${ }^{106} 15$ | ${ }^{107} 16$ | ${ }^{108} 17$ | ${ }^{109} 18$ | ${ }^{110} 19$ | ${ }^{111} 20$ | ${ }^{112} 21$ |
| 17 | $22$ | $23$ | ${ }^{115} 24$ | ${ }^{116} 25$ | ${ }^{117} 26$ | ${ }^{118} 27$ | ${ }^{119} 28$ |
|  | 1 | ${ }^{121} 2$ | ${ }^{122} 3$ | ${ }^{123} 4$ | 5 | 6 | 7 |
|  | ${ }^{127} 8$ | ${ }^{128} 9$ | ${ }^{129} 10$ | ${ }^{130} 11$ | ${ }^{131} 12$ | ${ }^{132} 13$ | ${ }^{133} 14$ |
| $\lambda^{\lambda}{ }_{20}$ | $15$ | $16$ | ${ }^{136} 17$ | ${ }^{137} 18$ | 19 | ${ }^{139} 20$ | 21 |
| ${ }_{21}$ | $22$ | ${ }^{142} 23$ | ${ }^{143} 24$ | ${ }^{144} 25$ | ${ }^{145} 26$ | ${ }^{146} 27$ | ${ }^{147} 28$ |
| 22 | $29$ | $30$ | ${ }^{150} 31$ | ${ }^{151} 32$ | ${ }^{152} 33$ | ${ }^{153} 34$ | ${ }^{154} 35$ |
| 23 | 1 | ${ }^{156} 2$ | ${ }^{157} 3$ | ${ }^{158} 4$ | 5 | 6 | 7 |
| (1) ${ }^{24}$ | ${ }^{162} 8$ | ${ }^{163} 9$ | ${ }^{164} 10$ | ${ }^{165} 11$ | ${ }^{166} 12$ | ${ }^{167} 13$ | ${ }^{168} 14$ |
| $\stackrel{\overline{5}}{25}$ | $15$ | $16$ | $17$ | $18$ | ${ }^{173} 19$ | ${ }^{174} 20$ | ${ }^{175} 21$ |
| 26 | $22$ | ${ }^{177} 23$ | ${ }^{178} 24$ | ${ }^{179} 25$ | ${ }^{180} 26$ | 27 | 28 |

quad "stack" design, ordinal day numbers

Note: 18 denotes the Mid-Quarter Day

| week | Mon | Tue | Wed | Thu | Fri | S | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | $2$ | ${ }^{185} 3$ | ${ }^{186} 4$ | ${ }^{187} 5$ | 6 | ${ }^{189} 7$ |
| > ${ }^{28}$ | ${ }^{190} 8$ | ${ }^{191} 9$ | ${ }^{192} 10$ | ${ }^{193} 11$ | ${ }^{194} 12$ | ${ }^{195} 13$ | ${ }^{196} 14$ |
| つ 29 | $15$ | ${ }^{198} 16$ | ${ }^{199} 17$ | ${ }^{200} 18$ | ${ }^{201} 19$ | ${ }^{202} 20$ | 21 |
| 30 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
|  | 1 | 2 | 3 | ${ }^{214} 4$ | 5 | 6 | 7 |
| - ${ }^{32}$ | ${ }^{218} 8$ | ${ }^{219} 9$ | ${ }^{220} 10$ | 11 | 12 | 13 | 14 |
| $\text { 옥 }{ }^{33}$ | 15 | 16 | ${ }^{227} 17$ | 18 | 19 | 20 | 21 |
| $\stackrel{\rightharpoonup}{4}_{34}$ | $22$ | ${ }^{233} 23$ | ${ }^{234} 24$ | 25 | ${ }^{236} 26$ | ${ }^{237} 27$ | 28 |
| 35 | $29$ | ${ }^{240} 30$ | 31 | ${ }^{242} 32$ | 33 | 34 | 35 |
|  | 1 | 2 | 3 | ${ }^{249} 4$ | 5 | 6 | 7 |
| $\stackrel{\text { ® }}{E}^{37}$ | ${ }^{253} 8$ | ${ }^{254} 9$ | ${ }^{255} 10$ | ${ }^{256} 11$ | ${ }^{257} 12$ | ${ }^{258} 13$ | ${ }^{259} 14$ |
| $\overbrace{0}^{08}$ | ${ }^{260} 15$ | ${ }^{261} 16$ | 17 | 18 | 19 | 20 | 21 |
| $\boldsymbol{\omega}^{39}$ | 22 | 23 | ${ }^{269} 24$ | ${ }^{270} 25$ | 26 | ${ }^{272} 27$ | ${ }^{273} 28$ |

week Mon Tue Wed Thu Fri Sat Sun


## Symmetry454 Calendar Benefits

- The Symmetry454 calendar is perpetual - a permanent copy can be reused every year.
- It conserves the 7-day week (no intercalated or "null" or leap days outside of the traditional 7-day weekly cycle).
- Its symmetrical structure paves the way to simpler, aesthetically pleasing calendar designs.
- Its superior symmetrical leap rule ensures excellent long-term astronomical accuracy:
- The simple fixed arithmetic $\mathbf{5 2 / 2 9 3}$ leap rule has 52 leap years that are automatically and inherently symmetrically spread as smoothly as possible within each repeating cycle of 293 years:

- With this simple single-step leap rule, leap year intervals occur in groups of either $6+6+5=17$ years or $6+5=11$ years, which symmetrically group into sub-cycles of $17+\mathbf{1 1}+17=45$ years or sub-cycles of $17+17+\mathbf{1 1}+17+17=\mathbf{7 9}$ years. In each full calendar cycle these sub-cycles inherently occur symmetrically in the sequence $45+79+45+79+45=293$ years.
- With 52 leap weeks in the cycle, and 52 weeks in a regular year, the fixed cycle length equals exactly 294 regular years, and the average interval between leap weeks is exactly 294 weeks.
- The calendar mean year $\equiv 365+{ }^{71} / 293$ days $\equiv 365 \mathrm{~d} 5 \mathrm{~h} 48 \mathrm{~m} 56+{ }^{152} / 293 \mathrm{~S}$, which is intentionally slightly shorter than the present era northward equinoctial mean year of 365 d 5 h 49 m 0 s , ensuring essentially drift-free performance for more than 4 future millennia.
- Due to the symmetrical arrangement of leap years, the timing of the mean northward equinox moment always falls at the cycle average in the first year of every 293-year cycle. This feature simplifies astronomical performance evaluations.
- Every Symmetry454 year, quarter, month and week starts on Monday and ends on Sunday.
- Every day number within each Symmetry454 month is always on the same weekday in every month.
- Weekday = DayInMonth MOD 7, where Sunday=0, Monday=1, Tuesday=2, etc.
- Monthly meetings on a fixed weekday are always on the same day number in every month, simplifying scheduling, for example the $3^{\text {rd }}$ Thursday is always the $18^{\text {th }}$ day of every month.
- Its symmetrical 13-week quarters are identical. Every quarter has the same count of weekdays and weekend days.
- Every date has permanently fixed week-in-year and day-in-year ordinal numbers, facilitating administrative, academic, commercial and industrial applications, and simplifying calendrical arithmetic.
- There is always a whole number of weeks in every year (common year $=52$ weeks, leap year $=53$ weeks), in every quarter ( 13 weeks, leap year last quarter $=14$ weeks), and in every month (short $=4$, long $=5$ weeks).
- Every secular holiday, event, anniversary, birthday, and memorial day has a permanently fixed weekday and date, because the calendar is perpetual.
- Holiday and/or special day overlaps are less likely to occur and are easy to predict and avoid.
- Sunday, April $7^{\text {th }}$ is proposed as a permanently fixed Symmetry 454 date for Easter, based on the median date of the Sunday after the day of the astronomical lunar opposition that is on or after the day of the astronomical northward equinox, calculated for the meridian of Jerusalem.
- Fixing Easter also fixes all Easter-related ecclesiastical calendar dates (counted before or after Easter).
- See "Appendix: A Declaration of the Second Ecumenical Council of the Vatican on Revision of the Calendar" at the end of the archive "Constitution on the sacred liturgy Sacrosanctum Concilium solemnly promulgated by His Holiness Pope Paul VI on December 4, 1963" at [http://www.vatican.va/archive/hist_councils/ii_vatican_council/documents/vat-ii_const_19631204_sacrosanctum-concilium_en.html](http://www.vatican.va/archive/hist_councils/ii_vatican_council/documents/vat-ii_const_19631204_sacrosanctum-concilium_en.html).
- The first 4 weeks of every Symmetry454 month are identical.

Note: It is likely that some regular monthly payments will become two-tiered, with $25 \%$ more payable for long months. For monthly comparisons increase short month statistics by $25 \%$ to match long months, or reduce the long month statistics by $20 \%$.

- The coherent structure of the calendar enables simple arithmetic expressions in calculating the following for statistical or business purposes: weekday; day number of year, quarter or month; week number of year, quarter or month; month number of year or quarter.
- Symmetry 454 calendar arithmetic is in the public domain, allowing royalty-free computer implementation.
- The freeware Kalendis computer program demonstrates the calendar and inter-converts dates, and is freely available at [http://individual.utoronto.ca/kalendis/kalendis.htm](http://individual.utoronto.ca/kalendis/kalendis.htm).
- "Friday the $13^{\text {th } " ~ n e v e r ~ h a p p e n s . ~}$

