
Perfect Window Memoization: A Theoretical Model of an
Optimization Technique for Image Processing Algorithms

Farzad Khalvati1 and Hamid R. Tizhoosh2

1,2Department of Systems Design Engineering, University of Waterloo
Waterloo, Ontario, Canada

Email: 1 farzad.khalvati@uwaterloo.ca, 2 tizhoosh@uwaterloo.ca

Abstract— This work presents Perfect Window Memoiza-
tion; a high-level processing model that gives an estimation
(upper-bound) of performance gain for an image processed
in software or hardware, obtained by eliminating the compu-
tational redundancy of the image. We show mathematically,
supported by experimental data, that the computational
redundancy of an image is, in fact, inherited from two
basic data redundancies of the image; coding and interpixel
redundancy. This is a simple, yet a revealing concept to use
in practice by which images can be categorized based on
their potential performance gain in software and hardware
by only their fundamental redundancies, with no need to im-
plement a mechanism to actually exploit the computational
redundancy in software or hardware. The proposed model
can be used as a useful tool in analyzing images from the
performance perspective in the early stages of designing an
optimization technique.

Keywords: Coding redundancy, interpixel redundancy, window
memoization, Performance optimization, Markov Model

1. Introduction
High-performance implementations of image processing

algorithms are an important issue in real-time applications.
The high volume of image data combined with the require-
ments of real-time systems makes it both challenging and
crucial to optimize the image processing algorithms. As the
image resolution and the complexity of algorithms increase,
the conventional approaches of software implementations
of image processing algorithms are not able to handle
these challenges. One clear example is medical imaging
where high performance image processing is a necessary
requirement to maintain high patient throughput and thus,
high quality care. The urgent need for optimizing the medical
imaging algorithms have been frequently reported from both
industry and academia. As an example, the processing times
of 1 minute [1], 7 minutes [2], and even 60 minutes [3] are
quite common for processing volume data in medical imag-
ing. Considering the high volume of data to be processed,
these reported long processing times introduce significant
patient throughput bottlenecks that have a direct negative
impact on access to timely quality medical care. Therefore,
accelerating medical imaging algorithms will certainly have

a significant impact on the quality of medical care by
shortening the patients’ access time. Other examples include
security, navigation, multimedia, industrial inspection, and
astrophysics where high-performance image processing is
crucial to meet performance requirements.

Generally, there are two fundamental methods for algo-
rithm optimization: algorithmic optimization and parallel
processing. Algorithmic optimization which is a fundamental
technique aims at reducing the number of operations used
in an algorithm by decreasing the number of steps that the
algorithm requires to take. Parallel processing breaks down
an algorithm into processes that can be run in parallel while
preserving the data dependencies among the operations.
In both schemes, the building blocks of the optimization
methods are the operations where the former reduces the
number of operations and the latter runs them in parallel.
In both cases, the input data is somewhat ignored. In
other words, the algorithmic optimization will be done in
the same way regardless of the input data type. Similarly,
running the operations in parallel is independent of the input
data. Window Memoization, introduced in [4], is a new
optimization technique which can be used in conjunction
with either of these two optimization methods. This new
technique considers the characteristics of the input data,
image data, to reduce the number of operations.

Window memoization is based on reuse or memoiza-
tion concept. Memoization is an optimization method for
computer programs which avoids repeating the function
calls for previously seen input data. Window memoization
applies the general concept of memoization to image pro-
cessing algorithms by exploiting the image data redundancy
and increases the performance of image processing signifi-
cantly [4]. The main initiative behind window memoization
is to reduce the amount of computations that an image
processing algorithm must perform. The underlying basis
of reduction is to remove the redundant computations; the
computations that are not necessary to perform in order to
complete an image processing task. Analogous to image
compression algorithms that exploit data redundancy to
reduce the size of images, computational redundancy can
be used to reduce the amount of computations and hence, to
improve the performance of image processing algorithms.

In this work, we investigate the underlying roots of



computational redundancy of image data. In doing so, first
we introduce a theoretical model for window memoization,
Perfect Window Memoization, which predicts the upper-
bound for the potential performance gain achieved by win-
dow memoization in software and hardware. We define
computational redundancy as a characteristic of an image
which is exploited by perfect window memoization to im-
prove performance. Image data has two principal types of
redundancy: coding redundancy and interpixel redundancy.
Coding redundancy is due to the fact that images are usually
represented using more bits per pixel than is actually needed.
Interpixel redundancy is a result of the correlation among
neighboring pixels. Our studies show that the coding and
interpixel redundancy of an image has a mathematical rela-
tionship with the computational redundancy of the image.
In other words, we show that the coding and interpixel
redundancy of an image are the root causes of having similar
windows across the image which is exploited by the window
memoization technique to improve the performance of image
processing in both software and hardware. This is a simple,
yet revealing concept to use in practice. Images can be
categorized based on their potential performance gain in
software and hardware by only their coding and interpixel
redundancy, with no need to actually implement the window
memoization technique. Coding and interpixel redundancy
are fundamental characteristics of images and hence, they
are independent of any implementation artifact. Therefore,
the relationship between the coding/interpixel redundancy
and the performance improvement obtained by window
memoization can be used as a useful tool in analyzing
images from the performance perspective in the early stages
of designing an optimization technique.

The organization of the remaining of this paper is as
follows. Section 2 provides a brief background review on
local image processing algorithms, image data redundancy,
and the window memoization technique. Section 3 presents
Perfect Window Memoization. Sections 4 discusses the
relationship between the computational redundancy of an
image versus the data redundancy of the image. Sections
5 and 6 present the results and conclusion of the paper,
respectively.

2. Background and Related Work
In this section, a brief background review on the following

subjects are presented: local image processing algorithms,
image data redundancy, and window memoization technique.

2.1 Local Image Processing Algorithms
Although window memoization can be applied to any

image processing algorithm, local algorithms, in particu-
lar, are the first to adopt the technique. Local processing
algorithms that mainly deal with extracting local features
in image (e.g. edges, corners, blobs) are increasingly used
in many image processing applications such as medical

imaging, texture recognition, scene classification, and robot
navigation. The reason for popularity of these algorithms is
that using local features of an image overcomes the need for
high-level algorithms where a semantic-level understanding
of the image is required [5]. The main drawback for local
algorithms is that they are usually computationally expen-
sive; a set of calculations must be repeated numerous times.
The local algorithms use a small neighborhood of a pixel in
an image to process and produce a new gray level for the
image in the location of the pixel. The size of local windows
can vary based on the algorithm but for most algorithms the
local windows contain 9 pixels (3 × 3 pixels) or 25 pixels
(5× 5 pixels). A local processing algorithm applies a set of
operations, which is called the mask operations set (f ), to
each window of pixels (wij) in the image to produce the
response (rij) of the window.

rij = f(wij) (1)

As equation 1 indicates, in local processing algorithms, the
response of each local window rij only depends on the pixels
in the local window wij .

2.2 Image Data Redundancy
Image processing exploits two major types of redundancy

in image data which are quantifiable: coding redundancy,
and interpixel or spatial redundancy [6]. In the following
sections, we present an overview of these data redundancies.

2.2.1 Coding Redundancy
An image is said to contain coding redundancy if the

number of bits per pixel that is required to represent the
image is higher than is necessary [6]. To remove coding
redundancy in an image, the gray levels of the image are
encoded in a way such that a higher number of bits are
assigned to less probable gray levels and vice versa. The
coding redundancy of an image is measured based on the
entropy of the image. Entropy is the average information of
an image per pixel, which is calculated as [6]:

H = −
GL−1∑
i=0

Pi × log2Pi (2)

where GL and Pi are the number of gray levels and the
probability of occurrence of gray level i in the image,
respectively. For an image with GL gray levels, the sum of
the average coding redundancy per pixel (Cr) and average
information per pixel (entropy H) is a constant value [7]:

Cr +H = log2(GL) (3)

In other words, for an image with a given number of gray
levels (GL), the entropy of the image (H) determines the
coding redundancy of the image (Cr).

Cr = log2(GL)−H (4)



Coding redundancy has been exploited in several image
compression algorithms to reduce the size of the image.
Huffman coding, Golomb coding, and arithmetic coding are
among the common lossless compression algorithms that
benefit from coding redundancy in images [6].

2.2.2 Interpixel Redundancy
When measuring the coding redundancy of an image, it

is assumed that the pixels in the image are uncorrelated.
However, in real-world images, the neighboring pixels are
correlated because they usually belong to one object or
background with similar gray levels. The correlations among
image pixels, which result from the structural or geometrical
relationships between the objects in the image lead to
interpixel redundancy [6]. As a result, for many pixels, much
of information that the pixel carries is redundant and it can
be predicted with a reasonably high accuracy from the values
of its neighboring pixels.

Markov model is usually used to measure interpixel
redundancy in an image. Markov model assumes that the
probability that a pixel at a location has a certain gray level is
a function of the gray levels of some number of neighbouring
pixels [8]. The number of neighbouring pixels is the order of
the Markov source. When pixels in an image are assumed to
be independent random variables, in fact it is assumed that
the image is a Markov source of 0th order. This is the case
when coding redundancy is calculated. A kth order Markov
source considers each window of k+1 pixels in an image as a
(k+1)-dimension gray-level vector. If the k+1 neighbouring
pixels share information with each other, then the entropy
of the kth order Markov source will be less than that of
the 0th order Markov source, which is the original image.
The decrease in entropy is considered to reflect the removal
of interpixel redundancy among the pixels of windows with
k + 1 pixel size:

IPr = H −Hk (5)

In equation 5, IPr is the interpixel redundancy, H and Hk

are the entropies of the original image and the kth order
Markov source of the image, respectively. The interpixel
redundancy calculated based on Markov model depends on
the size of windows of pixels, based on which gray-level
vectors are built.

There are many lossless image compression algorithms
that take advantage of interpixel redundancy in images
including run-length coding, difference coding, lossless pre-
dictive coding, LZW coding, and vector coding. Lossy
predictive coding is an example for lossy image compression
algorithms, which exploit interpixel redundancy [6] [8].

2.3 Window Memoization Technique
Introduced in [4], window memoization is an optimization

technique for local image processing algorithms that exploits

the data redundancy of images to reduce the processing time.
The general concept of memoization in computer programs
has been around for a long time where the idea is to speed
up the computer programs by avoiding repetitive/redundant
function calls [9] [10] [11]. Nevertheless, in practice, the
general notion of memoization has not gained success due to
two main reasons: 1) the proposed techniques usually require
detailed profiling information about the runtime behaviour
of the program which makes it difficult to implement [12],
and 2) the techniques are usually generic methods which
do not concentrate on any particular class of input data
or algorithms [13]. In contrast, in designing the window
memoization technique in [4], the unique characteristics of
image processing algorithms have been carefully taken into
account to enable window memoization to both be easy to
implement and improve the performance significantly.

Window memoization minimizes the number of redundant
computations by identifying similar groups of pixels in
the image using a memory array, reuse table, to store the
results of previously performed computations. When a set
of computations has to be performed for the first time, they
are performed and the corresponding results are stored in the
reuse table. When the same set of computations has to be
performed again, the previously calculated result is reused
and the actual computations are skipped. This eliminates the
redundant computations and leads to high speedups.

Implementing window memoization in software speeds up
the computations required to complete an image process-
ing task. In the previous work [4], an optimized software
architecture for window memoization has been presented
where the typical speedups range from 1.2x to 7.9x with a
maximum factor of 40x. In hardware, window memoization
yields high speedups with an overhead in hardware area that
is significantly less than that of conventional performance
improvement techniques. In the previous work [14], an op-
timized hardware architecture for window memoization has
been presented where the typical and maximum speedup fac-
tors are 1.6x and 1.8x, respectively, with 40% less hardware
in comparison to conventional optimization techniques.

3. Perfect Window Memoization

Perfect window memoization is an abstract version of
window memoization which makes it easier to model the
behaviour of data. It is a processing model for local image
processing algorithms that detects and eliminates the com-
putational redundancy of input image to improve the per-
formance. In order to define this model, first, we define the
concept of Gray-level vector or symbol in image. Afterward,
we describe the model and as a result, we present a definition
of computational redundancy which is more accurate than its
previous definition in [4].



3.1 Symbols in Image
The windows of pixels are essential parts of designing

or implementing local processing algorithms. When dealing
with the windows of pixels in an image as the building
blocks of the image, it is more convenient to consider the
windows of pixels as a higher dimension gray levels or gray-
level vectors. Gray-level vectors, which we call symbols, are
defined based on the size of local windows. For windows
of m×m pixels, an m2-dimensional symbol represents all
the windows in the image whose corresponding pixels are
identical. In other words, a symbol represents all identical
windows in the image. A window win belongs to (or
matches) a symbol sym if each pixel in win is equal to
the corresponding pixel in sym:

∀pix ∈ win, ∀pix′ ∈ sym, pix = pix′ =⇒ win ∈ sym
(6)

where pix and pix′ are corresponding pixels of window win
and symbol sym, respectively. In the above definition, a
window belongs to a symbol if all the pixels in the window
are identical to the corresponding pixels in the symbol.
We relax the equality requirement such that similar but not
necessarily identical windows may belong to one symbol:

∀pix ∈ win, ∀pix′ ∈ sym,MSB(d, pix) = pix′

=⇒ win ∈ sym (7)

where MSB(d, pix) represents d most significant bits of
pixel pix in window win and pix′ has d bits. By reducing
d, windows that are similar but not identical are assigned to
one symbol. This will potentially introduce inaccuracy in the
result of the algorithm to which perfect window memoization
is applied. However, in practice, for d >= 4, the accuracy
loss in responses is usually negligible [4].

Ignoring the geometry of objects in an image, for a given
local window size, the image can be characterized by the
probability of occurrences of symbols in the image. Assume
that a discrete random variable, si in the interval [0, s),
represents the symbols of an image. The probability of
occurrence of each symbol (si) in the image is:

P (si) =
ni

n
, i = 0, 1, 2, ..., s− 1 (8)

where s is the total number of symbols in the image, ni

is the number of times that the ith symbol appears in the
image, and n is the number of total windows in the image.

3.2 Perfect Window Memoization
We define an abstract processing model, perfect window

memoization, which minimizes the number of redundant
mask operations sets performed on an image. Perfect win-
dow memoization is a high level model that gives an
estimation (upper-bound) of performance gain in software
and hardware, obtained by eliminating the redundant mask
operations sets.

In local image processing algorithms, the response of the
mask, rij , solely depends on the pixels in the local window,
wij , covered by the mask (equation 1). All the windows in
the image that contain similar pixels are identified by one
symbol, si. Thus, for a given algorithm, a symbol si will
produce the same response for ni times. This means that
much of the mask operations sets that are applied to symbol
si are unnecessary or redundant.

Perfect window memoization uses a reuse table to store
symbols, si, and the corresponding responses, ri. The reuse
table in perfect window memoization is in fact a perfect
cache. The perfect cache never inserts the same data again.
In other words, each symbol is inserted only once and when
inserted, it is never evicted. Although perfect cache is a
theoretical model, similar to processor cache modelings, it is
a well accepted model for the behaviour of data with regard
to redundancy (or locality).

When perfect window memoization receives a window
for the first time, there is no matching symbol in the reuse
table and thus, a miss occurs. Therefore, it applies the mask
operations set to the window and inserts its matching symbol
and its response into the reuse table. Upon encountering
the same window again in the future, this time there is a
matching symbol in the reuse table and thus, a hit occurs.
As a result, perfect window memoization does not perform
the mask operations set on the recent window. Instead, it
looks up or reuses the corresponding response from the
reuse table. In other words, each symbol is inserted into
the reuse table only once and the mask operations set is
applied to its corresponding windows only once regardless
of the probability of occurrence of the symbol in the image.
This means that when a symbol is inserted into the reuse
table, it is never replaced with another symbol. Eventually,
all symbols of an image along with their responses will be
stored in the reuse table.

For a symbol whose windows appear in the image ni

times, ni − 1 mask operations sets can be skipped and
their corresponding responses can be reused. In other words,
the number of hits for the windows of a symbol with the
population of ni will be ni − 1. The number of hits for all
windows in the image will be n− s where n and s are the
number of windows and symbols in the image, respectively.
The hit rate (HR) is defined as the percentage of the times
that the incoming windows find a matching symbol in the
reuse table and therefore, reuse their previously calculated
responses.

In order to insert all symbols of an image into the reuse
table, the reuse table size must be equal to the number of
symbols in the image. In practice, however, the required
size may be too large to afford. Therefore, perfect window
memoization explores inserting a variable portion of sym-
bols in the image into the reuse table. The symbols with
higher probabilities of occurrence will contribute more to
performance gain if inserted into the reuse table because for



such symbols, higher number of mask operations sets can
be skipped.

For a reuse table of m entry size, the number of hits
will be the sum of populations of the m most frequent
symbols (the total number of windows that belong to m
inserted symbols) minus the number of inserted symbols (or
the number of misses), which is m.

HR(m) =
n0 + n1 + ...+ nm−1

n
− m

n
(9)

where n0, n1, n2, ..., nm−1 are the populations of m most
frequent symbols in the image, and n and m are the total
number of windows in the image and the number of inserted
symbols (or the reuse table size), respectively. Although
hit rate is a discrete function of m (the reuse table size),
to simplify the analysis, we model its behaviour with a
continuous function. Assume that P is a continuous function
that models the probability density function (PDF ) of the
image symbols, which have been sorted in descending order.
We can write:

HR(m) =

∫ m−1

0

P (x)dx− m

n
(10)

where
∫m−1

0
P (x)dx is the probability of m most frequent

symbols (or inserted symbols).
In contrast to normal caches in processor architecture

where the cache size is always smaller than the number of
unique entries, in window memoization, when input images
are simple (i.e. small number of symbols), it is possible that
the reuse table size is larger than the total number of symbols
in the image (i.e. m > s). In this case, the reuse table will not
be filled with the symbols, which means that the total number
of misses will be equal to the total number of symbols (s),
rather than the reuse table size (m). Thus, a more accurate
equation for hit rate is:

HR(m) =

∫ m−1

0

P (x)dx− min(m, s)

n
(11)

In other words, if m ≤ s then m indicates the total number
of misses. Otherwise, the total number of misses will be s.

Ignoring some details of implementations of perfect win-
dow memoization in software and hardware, HR(m) indi-
cates what percentage of mask operations sets can be skipped
and their corresponding responses can be reused, given that
m most frequent symbols have been inserted into the reuse
table. The hit rate of perfect cache is independent of the
reuse mechanism implemented in software or hardware. It
only depends on the characteristic of the image data and
the size of perfect cache. For a given reuse table size,
it represents the percentage of computations that can be
skipped. This is in fact the definition of computational
redundancy [4] with the exception that it is now defined for a

given reuse table size1. This is a more accurate definition of
the computational redundancy because not only it considers
the image itself, it also takes into consideration the amount
of memory space allocated for detecting and eliminating the
redundant computations which is an inseparable part of any
memoization technique. Thus, we define the computational
redundancy, Compr as:

Compr(m) =

∫ m−1

0

P (x)dx− min(m, s)

n
(12)

where m is the size of reuse table,
∫m−1

0
P (x)dx is the prob-

ability of m most frequent symbols (or inserted symbols),
and s is the total number of symbols in the image.

4. Computational Redundancy versus
Data Redundancy

Perfect window memoization benefits from a character-
istic of image data, computational redundancy, to improve
the performance of local image processing algorithms. Our
goal in this section is to show mathematically that, for a
given reuse table size, the sum of the coding and interpixel
redundancy of an image has a positive relationship with the
computational redundancy of the image or:

(Cr + IPr) ∝+ Compr(m) (13)

The relation above enables us to categorize images based
on their potential performance improvement obtained by
window memoization in software and hardware without
actually implementing the window memoization technique.
By combining equations 4 and 5, the left-hand-side of
relation 13 can be written as:

Cr + IPr = log2(GL)−Hk (14)

where GL is the number of gray levels of the image and
Hk is the entropy the kth order Markov source of the image.
This gives:

(Cr + IPr) ∝− Hk (15)

From relations 13 and 15, the problem to solve comes
down to:

Hk ∝− Compr (16)

1In the previous definition of computational redundancy [4], the as-
sumptions was m >= s and thus, the computational redundancy would
be independent of reuse table size (m) and equation 11 would become
Compr = HR = 1− s

n
.



4.1 Exponential Model for the Probability of
Symbols
P is the probability density function (or histogram) of

symbols in the original image (Img), which are sorted in
descending order. P has a peak at 0 and moving along
X axis, it usually drops rapidly. P can be modeled by an
exponential distribution with the area under curves of unity:

P (x) =
1

λ
e

−x
λ (17)

where λ is the scale factor of the distribution. In order
to verify that the probability density functions of image
symbols are exponential (equation 17), we performed the
curve fitting for all images of our dataset used in this
research (i.e. 40 natural images of 512 × 512 pixels). The
experimental data shows that the exponential curve models
the probability density functions of image symbols very
accurately. The average RMSE for 40 images is 0.54%.

4.2 Analytical Model of Entropy
Using a continuous model for the probability density

function of symbols, P , we can calculate the continuous
entropy of kth order Markov source of the image based on
its probability density function .

Hk = −
∫ +∞

−∞
P (x)× log2(P (x))dx (18)

where P (x) = 1
λe

−x
λ . In equation 18, we can transform log2

into the natural logarithm using:

log2P (x) = log2e× lnP (x)

= log2e× ln(
1

λ
e

−x
λ )

= log2e× [ln(
1

λ
)− x

λ
] (19)

Substituting equations 17 and 19 into equation 18, we get:

Hk = −
∫ +∞

0

1

λ
e

−x
λ × log2e× [ln(

1

λ
)− x

λ
]dx

= log2e× (ln(λ) + 1) (20)

4.3 Analytical Model of Computational Redun-
dancy

Substituting equation 17 in equation 12, we can calculate
the computational redundancy of the image:

Compr(m) =

∫ m−1

0

1

λ
e

−x
λ dx− min(m, s)

n

= (1− e−
m−1

λ )− min(m, s)

n
(21)

4.4 Final Relation
In this section, we show that the entropy of the kth order

Markov source of an image has a negative relationship with
the computational redundancy of the image (i.e. relation 16).
In other words, for two given images, we want to show:

Hk
1 < Hk

2 =⇒ Compr1(m) > Compr2(m) (22)

Substituting equation 20 in the left hand side of the
relation above gives:

log2e× (ln(λ1) + 1) < log2e× (ln(λ2) + 1)

=⇒ λ1 < λ2 (23)

For two given images and a given reuse table size, m, with
the assumption that m < s, relation 23 and equation 21 leads
to2:

λ1 < λ2 =⇒ Compr1(m) > Compr2(m) (24)

which is the relation that we wanted to prove. In other words,
the entropy of kth order Markov source of an image has a
negative relationship with the computational redundancy of
the image for a given reuse table size m:

Hk ∝− Compr(m) (25)

Comparing the relation above and relation 15, we can
conclude:

(Cr + IPr) ∝+ Compr (26)

5. Results
For experimental results, we used 40 natural images of

512 × 512 pixels. The window size was 3 × 3 pixels. In
equation 7, we chose d to be 43. We ran experiments for all
40 images with different reuse table sizes of 1K to 512K
(1K, 2K, 4K, 8K, 16K, 32K, 64K, 128K, 256K, and 512K).
Each memory element contains a gray-level vector, which
is 3 × 3 pixels of d bits. Figure 1 shows the results for
two cases; reuse table sizes of 1K and 512K (m = 1k and
m = 512k).

In order to quantify the accuracy of relation 26 with
respect to the experimental data, we calculate the percentage
of cases that for any given pair of images out of 40 images,
relation 26 holds4. In other words, for two given images, we
verify that the following holds:

(Cr1 + IPr1) < (Cr2 + IPr2) => Compr1 < Compr2 (27)

Table 1 shows the accuracy of experimental data with
respect to relation 26. As it is seen, in the worst scenario,
87% of the cases matches the analytical model.

2It can be shown that the argument is true for m ≥ s as well.
3The whole discussion holds for d ∈ {2, 3, 4, ..., 8}
4The total number of pairs of images for 40 images is 40(40−1)

2
= 780



1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Coding and Interpixel Redundancy (bits/pixel)

C
o

m
p

u
ta

ti
o

n
al

 R
ed

u
n

d
an

cy

 

 

Reuse Table Size = 1KVector
Reuse Table Size = 512KVector

Fig. 1: Computational Redundancy versus Coding and Inter-
pixel Redundancy

Table 1: Accuracy of experimental data for relation 26
Reuse Table Size 1K 2K 4K 8K 16K

Accuracy 96% 93% 91% 89% 88%
Reuse Table Size 32K 64K 128K 256K 512K

Accuracy 87% 87% 87% 87% 87%

6. Conclusion
In this paper, we introduced perfect window memoization;

a high-level processing model for detection and elimination
of redundant computations in local image processing algo-
rithms. We refined the notion of computational redundancy
in image data to present the behaviour of redundant com-
putations in image processing more accurately. In previous
work [4] [14], it has been shown that the computational
redundancy of image data can be exploited, via the window
memoization technique, to improve the performance of local
image processing algorithms. Perfect window memoization
gives the upper-bound of performance gain in software and
hardware, obtained by the window memoization technique.
We showed that the computational redundancy of an image
is inherited from two principal redundancies in image data:
coding redundancy and interpixel redundancy. It was shown
that the amount of coding and interpixel redundancy of an
image has a direct effect on the computational redundancy
of the image. This leads to the fact that the coding and
interpixel redundancy of an image has a positive relationship
with the performance gain (speedup) obtained by exploiting
the computational redundancy of the image in software and
hardware. This is a simple, yet useful concept that can
be utilized in design of data redundancy-based optimiza-
tion techniques in image processing. The experimental data
matches our analytical model of computational redundancy
with very high accuracy.

References
[1] B. Haas, T. Coradi, M. Scholz, M. H. P. Kunz, U. Oppitz, L. Andre,

V. Lengkeek, D. Huyskens, A. V. Esch, and R. Reddick, “Automatic
segmentation of thoracic and pelvic CT images for radiotherapy
planning using implicit anatomic knowledge and organ-specific seg-
mentation strategies,” Phys. Med. Biol, vol. 53, pp. 1751–1771, 2008.

[2] A. C. Hodgea, A. Fensterabc, D. B. Downeyb, and H. M. Ladakabcd,
“Prostate boundary segmentation from ultrasound images using 2D
active shape models: Optimisation and extension to 3D,” Computer
methods and programs in biomedicine, vol. 84, pp. 99–113, 2006.

[3] A. Gubern-Merida and R. Marti, “Atlas based segmentation of the
prostate in MR images,” in MICCAI: Segmentation Challenge Work-
shop, 2009.

[4] F. Khalvati, “Computational redundancy in image processing,” Ph.D.
dissertation, University of Waterloo, 2008.

[5] T. Tuytelaars and K. Mikolajczyk, “Survey on local invariant features,”
FnT Computer Graphics and Vision, vol. 1, no. 1, pp. 1–94, 2008.

[6] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Prentice
Hall, 2008.

[7] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and
Machine Vision. PWS, 1999.

[8] R. Easton, Basic Principles of Imaging Science. Chester F. Carlson
Center for Imaging Science, Rochester Institute of Technology, 2005.

[9] D. Michie, “Memo functions and machine learning,” Nature, vol. 218,
pp. 19–22, 1968.

[10] R. S. Bird, “Tabulation techniques for recursive programs,” ACM
Computing Surveys, vol. 12, no. 4, pp. 403–417, 1980.

[11] W. Pugh and T. Teitelbaum, “Incremental computation via function
caching,” in ACM Symposium on Principles of Programming Lan-
guages, 1989, pp. 315–328.

[12] W. Wang, A. Raghunathan, and N. K. Jha, “Profiling driven compu-
tation reuse: An embedded software synthesis technique for energy
and performance optimization,” in IEEE VLSID-04 Design, 2004, p.
267.

[13] J. Huang and D. J. Lilja, “Extending value reuse to basic blocks with
compiler support,” IEEE Transactions on Computers, vol. 49, pp. 331–
347, 2000.

[14] F. Khalvati and M. D. Aagaard, “Window memoization: an efficient
hardware architecture for high-performance image processing,” Jour-
nal of Real-Time Image Processing, vol. DOI 10.1007/s11554-009-
0128-y, 2009.


