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A versatile resource program was developed for diffusion tensor image (DTI) computation

and fiber tracking. The software can read data formats from a variety of MR scanners. Tensor

calculation is performed by solving an over-determined linear equation system using least

square fitting. Various types of map data, such as tensor elements, eigenvalues, eigenvectors,

diffusion anisotropy, diffusion constants, and color-coded orientations can be calculated.

The results are visualized interactively in orthogonal views and in three-dimensional mode.

Three-dimensional tract reconstruction is based on the Fiber Assignment by Continuous

Tracking (FACT) algorithm and a brute-force reconstruction approach. To improve the time

and memory efficiency, a rapid algorithm to perform the FACT is adopted. An index matrix

for the fiber data is introduced to facilitate various types of fiber bundles selection based on

approaches employing multiple regions of interest (ROIs). The program is developed using

C++ and OpenGL on a Windows platform.

© 2005 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Diffusion tensor imaging (DTI) and DTI-based axonal mapping
are becoming important tools to study brain white matter
anatomy and its abnormalities [1]. However, data processing
and analyses of DTI are not trivial. Unlike conventional MRI,
DTI requires involved post-processing (tensor calculation) to
produce images. Tensor calculation software is not readily
available and data visualization and quantification are often
not straightforward. DTI calculation can produce various
types of images, including apparent diffusion constant
(ADC) maps, anisotropy maps, principal eigenvalue maps,
eigenvector images, color maps, and so on. In addition, three-

∗ Corresponding author. Tel.: +1 410 614 2702; fax: +1 410 614 1948.
E-mail address: susumu@mri.jhu.edu (S. Mori).

dimensional tract reconstruction based on DTI was recently
introduced, which requires further computational processing
[2–9]. Although this non-invasive in vivo method for fiber
tracking is a promising technique for the understanding
of human brain anatomy and functional connections, the
reconstruction of neuronal projections by fiber tracking is not
trivial and existing programs might be time-consuming or not
user-friendly. As the importance of DTI technology in clinical
practice is expected to grow in the near future, the need for
resource programs that researchers and clinicians can use to
rapidly process DTI data, obtain fiber tracts, and view images
in three-dimensional with user-friendly interfaces, becomes
paramount.

0169-2607/$ – see front matter © 2005 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.cmpb.2005.08.004
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In this paper, we introduce our DTI processing and
analysis software written in Visual C++ and OpenGL. The
software allows users to perform DTI-related calculations,
fiber tracking and editing, and ROI analysis with 3D visual-
ization, user-friendly interface design, and memory-efficient
data structure. The fiber tracking is based on the previously
published Fiber Assignment by Continuous Tracking (FACT)
method and brute-force fiber searching approach [2,3]. In
order to improve the computational time and memory usage,
we introduced an efficient tracking algorithm and an index
matrix for fiber coordinate storage. To assure user friend-
liness, the application software and its components were
developed on a Windows platform.

2. Theory and methods

2.1. DTI computation

Before tensor calculation, the Automated Image Registration
(AIR) realignment procedure is performed to minimize mis-
registration due to subject motion [10]. In addition, the pro-
gram allows the user to inspect visually the individual images
and to discard the corrupted ones. This process is necessary
because image corruption often occurs due to motion-related
phase errors [11–14].

Most DTI acquisition sequences are based on a spin echo
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tensor in the laboratory frame,

D =




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


 (5)

The tensor for free diffusion (isotropic diffusion) can be
visualized as a sphere, while the anisotropic diffusion of a
white matter tract can be viewed as an ellipsoid. Diffusion
is then faster along the principal or long axis of the ellipsoid
and slower along the other two orthogonal axes. The diffusion
tensor is symmetric (Dij = Dji, with i, j = x, y, z) and thus has six
independent variables.

Performing the natural logarithm on both sides of the Eq.
(4), re-arranging the terms, and introducing the following vec-
tors [16],

D̄ =
[

Dxx Dyy Dzz Dxy Dxz Dyz

]T
(6)

and

ḡ =
[

g2
x g2

y g2
z 2gxgy 2gxgz 2gygz

]T
(7)

we have,

∑
(gigj)Dij = ḡt · D̄ = ln

(S/S0) = ADC (8)

tejskal–Tanner imaging sequence, in which a pair of gradient
ulses is positioned around a 180◦ refocusing pulse for dif-
usion weighting [15]. The dependence of the observed echo
ignal intensity S on diffusion weighting is:

= S0 e−bD (1)

here S0 is the signal obtained without diffusion sensitizing
radient and D is the water diffusion constant, also known as
he apparent diffusion constant (or ADC value), which can be
alculated from Eq. (1) by performing a logarithmic transfor-
ation:

= ADC = ln(S/S0)
b

(2)

The constant b is the diffusion-weighting factor which, for
ectangular gradients, is defined by:

= �2ı2G2
(

� − ı

3

)
(3)

here � is the gyromagnetic ratio, ı and G the duration and the
mplitude of the diffusion sensitizing gradient pulse along a
iven direction and � is the time interval between the diffu-
ion gradient pulses.

For anisotropic samples, Eq. (1) has to be re-written in a
ore general form,

= S0 e−bgtDg = S0 e−b
∑

i,j=x,y,z
(gigj)Dij (4)

here g represents the normalized diffusion sensitizing gra-
ient vector, i.e., g = (gx, gy, gz)t = G/|G|. D is a 3 × 3 diffusion
i,j=x,y,z
b

Because the tensor has six independent components, at
least six measurements taken from different non-collinear
gradient directions (and diffusion weightings if applicable) and
one reference image S0 are required to determine it. By apply-
ing different gradients gk (k = 1, . . ., K; K ≥ 6) and acquiring the
corresponding signals Sk, we obtain a system of equations
from which the tensor can be calculated,

ḡt
k · D̄ = ln

(Sk/S0)
bk

= ADCk (k = 1, . . . , K; K ≥ 6) (9)

This system can be rewritten compactly in matrix form:

AD̄ = B (10)

where A is a K × 6 matrix,

A =




ḡt
1

ḡt
2

...

ḡt
K




=


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...
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...
...

g2
Kx g2

Ky g2
Kz 2gkxgKy 2gKxgKz 2gKygKz




(11)

and B is a K-dimensional ADC vector,

B =
[

ADC1 ADC2 · · · ADCK

]T
(12)

The matrix A is solely dependent on the diffusion gradi-
ent directions, while the vector B is composed of ADC maps
derived from each of the diffusion directions.
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If at least six independent diffusion-weighted images, K = 6,
are acquired, the tensor can be determined uniquely. When
K > 6, which happens frequently in practice in order to improve
signal to noise ratio and to reduce the bias of tensor estima-
tion, Eq. (10) is over-determined [17,18]. In general, there is
no solution to such an over-determined system. Instead, a
best “compromise” (or fitting) solution is sought, the one that
comes closest to satisfying all equations simultaneously. This
is generally defined in the least-squares sense, i.e., minimizing
the sum of the squares of the differences between the “true”
and calculated solutions, after which this over-determined
problem becomes a solvable linear least-squares problem. The
solution is given by multiplying the pseudo-inverse of the
matrix A, denoted as A+, and vector B:

D̄ = A+B = (ATA)
−1

ATB (13)

One of the best ways to compute A+ is to use singular value
decomposition [19].

2.2. Diffusion anisotropy calculation and visualization

From the diffusion tensor, three eigenvectors that define the
direction of the diffusion system can be determined by diago-
nalizing the tensor for each voxel. The eigenvalues �1, �2 and
�3, which correspond to the three eigenvectors, represent the

and the spherical diffusion variance (SDV) defined as [21]:

SDV =

√√√√ 1
K

K∑
k=1

(ADCk − ADCmean)2 (K ≥ 6) (19)

where ADCmean denotes the average over all calculated ADC
maps. The SDV image is not based on tensor calculation.

Anisotropy images only show the magnitude of the
anisotropy. Because the direction of the principal eigenvec-
tor is also important, color mapping is widely used, in which
information regarding orientation (color) is combined with
information on anisotropy (image intensity). For color cod-
ing, the principal eigenvector is projected into three different
directions (to different color components) in the image refer-
ence frame using:

(r, g, b) = FA · (vx, vy, vz) (20)

where r, g, and b represent red, green, and blue components
of the voxel color, and (vx, vy, vz) is the normalized principal
eigenvector, which is associated with the largest eigenvalues.
In this equation, FA was used for intensity weighting and
(vx, vy, vz) for color coding. The software has a choice to use
any anisotropy map for the intensity weighting and secondary
or tertiary eigenvector for the color coding.

While moving along the eigenvector direction, the tract hits
the boundary of the voxel at point x1. At this point, the
tracking direction is changed to that of the new voxel.
Adapting this strategy iteratively in both directions starting
from the seed point, a continuous fiber trajectory can be
obtained. The tracking is stopped when FA is lower than
the threshold or the angle between two eigenvectors to be
connected is greater than a threshold (sharp turn); the
thresholds are user definable in the program.
magnitude of diffusivity in the three directions. Based on these
three diffusivities and the mean diffusivity (�) the fractional
anisotropy (FA) was calculated to yield values between 0 and
1:

FA =
√

3√
2

√
(�1 − �)2 + (�2 − �)2 + (�3 − �)2√

�2
1 + �2

2 + �2
3

(14)

where

� = �1 + �2 + �3

3
(15)

It is clear from this definition that fully anisotropic tis-
sues (�1 > 0, �2 = �3 = 0) have FA = 1, while fully isotropic tissues
(�1 = �2 = �3) have FA = 0.

Two other commonly used anisotropy definitions are the
relative anisotropy (RA) and the volume ratio (VR), defined,
respectively, as [20]:

RA =
√

3√
2

√
(�1 − �)2 + (�2 − �)2 + (�3 − �)2

�1 + �2 + �3
(16)

VR = 1 − �1�2�3

�3
(17)

In addition, the following measures of anisotropy calcula-
tions are supported.

FAi,j =
√

2
√

(�i − (�i + �j)/2)2 + (�j − (�i + �j)/2)2

√
�2

i
+ �2

j

(i, j = 1, 2, 3)

(18)
Fig. 1 – Illustration of fiber tracking algorithm. The black
arrows are principal eigenvectors which correspond to the
longest axis of the diffusion ellipsoid. The dashed route is
the tracked fiber tract. The tracking starts from the seed
point x0, which has a FA value bigger than the threshold.
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Fig. 2 – Schematic diagram of the difference between the single tracking (B) and brute-force search approaches (C). Suppose
(A) represents the shape of a white matter tract of interest with an anatomical landmark indicated by a white circle. If a
tracking is initiated from the landmark, there are four possibilities for the results, each representing one branch of the tract
(B). This is because a propagation result from one pixel can delineate only one line. Conversely, the line propagation can be
initiated from all pixels and all propagation results that penetrate the anatomical landmark are searched, which leads to
more comprehensive delineation of the tract of interest. Images in (D and E) compare the tracking results by conventional
(D) and brute-force approach (E) for the genu of the corpus callosum.

2.3. Fiber tracking

DTI provides a unique tool for investigating brain structures
and for assessing axonal fiber architectures in vivo. The
fiber-tracking algorithm is based on the Fiber Assignment
by Continuous Tracking (FACT) approach, by which tracking
is performed using a continuous coordinate system rather
than a discrete voxel-based matrix grid (see Fig. 1) [2,3]. The
fiber tracking is started at the center of each voxel having a
fractional anisotropy (FA) value greater than a user-defined
threshold, and proceeds along the principal eigenvector direc-
tion. At the point where the track intercepts the voxel’s bound-
ary, the tracking direction is changed to that of its neighbor.
Applying this tactic iteratively, a continuous fiber trajectory
can be obtained. Tracking is stopped at voxels where FA is
lower than the threshold (FA threshold) or where the angle

between two eigenvectors to be connected by the tracking is
greater than a user-defined threshold (angle threshold).

One challenge is how to find the interception point of the
three-dimension axonal tract and the boundary of the voxel as
efficiently as possible. To get the appropriate answer, the 3D-
space fiber track within the voxel is parameterized by its arc
length, s, and expressed as a set of linear parameter functions:




x = x0 + vxs

y = y0 + vys

z = z0 + vzs

(21)

where v = (vx, vy, vz) is the principal eigenvector, x0 = (x0, y0,
z0) is the starting point where the fiber track enters the
voxel and x = (x, y, z) is the interception point where the fiber

Fig. 3 – Fiber trajectories selection using multiple ROIs. The selected fiber tracts are shown in solid lines. The operations are
n firs
fi erat
( roug
amed AND, OR, and NOT, respectively. If ROI-A was defined
bers to those that penetrate both ROI-A and ROI-B; (b) OR op

c) NOT operation, will remove a subset of fibers that pass th
t and ROI-B second, then (a) AND operation will restrict the
ion will select fibers passing through either ROI-A or ROI-B;
h ROI-B.
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track leaves the current voxel and enters the next. The sur-
faces of the cube-shaped voxel can be described as a set of
3D-planes that are equated with x, y, or z being the con-
stants. Tracking from x0 along the direction v by increas-
ing parameter s, the track will hit the cube-boundary at the
point where at least one of its x, y, or z components becomes
a constant. Thus, the minimum s that makes x, y, or z in
this equation a constant number is the expected solution
for the interception point of the tract and the cube surface.
Another problem that needs to be addressed here is how to
assign the direction of the eigenvector consistently, since its
sign can be positive or negative. To decide the direction of
the new vector to be connected by tracking, an inner prod-
uct between it and the present vector is carried out. If the
result is positive, we keep the sign of the new eigenvec-
tor, otherwise, we swap its sign. Tracking is implemented
in both forward and backward directions initiated from the
seed point to get a complete fiber trajectory. A minimum
fiber length testing is subsequently performed on the fiber
chain to remove tracts shorter than a user-defined thresh-
old. For visualization, 3D-interpolation and smoothing were
implemented on the jagged tract followed by the continuous
tracking, resulting in an equally sampled and smoothed 3D
curve.

Fiber tracking could start by identifying an anatomical
landmark and drawing a region of interest (ROI). The prob-
lem with this approach, however, is that whenever the track-

2. Take the eigenvector v at x0 as the current direction.
3. Find out the interception point x of the track on the bound-

ary of the voxel by Eq. (21), where s is minimal.
4. If the tract hits the boundary of the image block, go to step

9.
5. If FA of the new voxel associated with x is less than the

threshold, go to step 9.
6. Get inner product between current and new eigenvectors,

swap sign of new vector if the result is negative.
7. If the angle between current direction v and new direction

associated with x is greater than the set threshold, go to
9.

8. Assign x to x0, and go to step 2.

Fig. 4 – Interfaces to import image files and parameters.
First, manufacturer of the source data is specified (a). In a
subsequent window (b), various imaging parameters and
filenames are specified.
ing meets a branching point, it would be forced to follow
only one of them. In other words, the number of tracts
yielded by this technique would not be more than the num-
ber of pixels in a ROI. To remedy this unwanted situation,
brute-force fiber tracking is adopted in our work by track-
ing from every single voxel in the whole 3D-image data
set, after which the trajectories passing through the ROI are
identified [4,22,9]. This approach leads to more comprehen-
sive branching-patterns of the fiber bundles. These bundles
include not only the fibers that started from the ROI points
but also from other seed points where the tracking leads to the
ROI, which may suggest the branching or merging of the tracts
(Fig. 2).

The brute-force tracking results in a large amount of coor-
dinate data. For example, a typical DW-image matrix, size of
256 × 256 × 50, yields more than 200,000 fiber tracts (with FA
threshold 0.4 and tract-turning angle threshold 70◦). These
tracts must be stored in a way that is both memory and opera-
tion efficient, so that the process of searching or labeling fiber
bundles penetrating a ROI is easier and quicker. To address
this question, an index matrix with the same size as the
original image is introduced in which each voxel holds the
pointers to the fiber data chains passing through this voxel.
In this way, identifying the fiber chains associated with any
voxels becomes straightforward and efficient. Additionally, an
attribute table is kept with each fiber chain in which visual-
ization features, such as fiber color and labeling status, are
stored.

In summary, the tracking algorithm can be described as
follows:

1. Start from a seed point x0 with FA value greater than the
set threshold.
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9. Restart from the original seed point x0, swap the eigenvec-
tor v at x0, perform tracking in reverse direction from step
2 again. If tracking has been completed for both directions,
proceed to next step.

10. Combine the tracking results of both directions from seed
point together to produce a fiber coordinate chain. If it
passes the minimum fiber length test, then perform 3D-
curve interpolation and smoothing and create an attribute
table with this fiber chain.

11. Apply 1–10 iteratively, until the complete image is pro-
cessed.

12. Create an index matrix with the same size of the original
image, in which each voxel stores the pointers to the fiber
chains that penetrate this voxel.

2.4. Fiber data manipulation

The purpose of fiber data manipulation is to interactively
select axonal fibers passing through user-defined ROIs. Taking
advantage of the index matrix associated with the fiber coordi-
nate chains, it is straightforward to label the tracts of interest
penetrating a ROI. When multiple ROIs are used, we use three
kinds of ROI-based Boolean operations that enable the fiber
selections to be flexible and versatile [4,23,7]. These opera-
tions are: AND (intersection), OR (union), and NOT (exclusion).
The choice of operation depends on the characteristic trajec-
tory of each tract. As shown in Fig. 3, if ROI-A was drawn first
a
t

ROI-A passing through ROI-B). The OR operation, on the other
hand, will produce fibers passing through either ROI-A or ROI-
B (add more tracts on the results of ROI-A). The NOT operation
results in the fibers penetrating ROI-A but not ROI-B (remove
a subset from projections from construction results of ROI-A).
These operations can be employed sequentially to select the
tract pathways of interest.

3. Implementation and results

The program has been developed on the Windows platform
with user-friendly interface design (Fig. 4). It follows the
Windows-style convention for buttons and menus. Currently,
data formats of Philips, GE, Siemens, and Toshiba scanners,
DICOM and raw data matrix with user-specified header are
supported. The gradient orientation table, b-values, and other
imaging parameters needed for the tensor calculation are also
specified in this window. Alternatively, these parameters can
be specified in an ASCII file (called dpf file—DTI parameter file)
and then fed into the program.

The unlimited number of gradient orientations can be
specified in a gradient table window (Fig. 4(b)). Because of occa-
sional image corruption and subject motions (co-registration
error), users are not encouraged to perform signal averaging by
a scanner, but to acquire multiple redundant datasets which
are stored separately in image files. These multiple files can

F lcula
c
c
s
a
d

nd ROI-B next, the use of the AND operation will result in the
racts going through both ROI-A and ROI-B (restrict the fibers of

ig. 5 – A screen shot to inspect image quality. Before DTI ca

orrupted images from the subsequent least mean-square fitting
licking the corrupted images, these are crossed out as shown in
ignal averaging by the scanner), provides a visual clue to judge
nd standard deviation images can be displayed. Contamination
eviation images (white arrows).
be listed in this dialog window or in the dpf file so that the
software can read all images simultaneously.

tion, all individual images are visually inspected to discard

. In this example, there are three repeated scans. By
the figure. The three redundant datasets (rather than

the image quality. To further assist the inspection, mean
of corrupted images is manifested by bright standard
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3.1. DTI calculation

The following steps are adopted for diffusion tensor image
computation:

1. As an option, image co-registration is performed to remove
small bulk motions that occurred during the scans. This
procedure is based on AIR.

2. Read data from various platforms (see Fig. 4).
3. Perform image quality inspection visually using the image

inspection window. This window allows users to discard
the corrupted images before the subsequent computations

(as shown in Fig. 5). The judgment of image quality is based
on visual inspection. This window has several features to
help this inspection. First, images from repeated measure-
ments are displayed together. Because these images are
acquired with the same imaging parameters, they should
look identical (Fig. 5, image files #1–3). Second, average and
standard deviation images of the repeated measurements
can be displayed. If there is a large amount of fluctuation in
imaging quality, it is detected by bright standard deviation
images (Fig. 5, white arrows). This window is also useful to
examine the quality of image co-registration. If slice levels
of the three redundant images are not identical, the AIR-
Fig. 6 – Screen shots demonstrating the program for DTI calculat
tensor is presented as a 3 × 3 image matrix, with the images arra
images (�1–�3) are also displayed. (b) Three eigenvector images (v
three types of anisotropy maps (FA, VA, and RA). All these image
Fig. 7 and values can be quantified for each pixel or by ROI draw
ion. The results are shown as a plain-view mode. In (a) the
nged as if positioned inside the tensor. Three eigenvalue

1–v3). (c) Color-coded orientation maps (first column) and
s can also be visualized by a tri-planar viewer shown in
ing.
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Fig. 7 – Windows for interactive visualization of various contrasts created after tensor calculation. The three 2D orthogonal
views can be controlled by mouse or directly specifying slice numbers (a). The 3D tri-planar view shows three slices
corresponding to the selected 2D slices three dimensionally. Transparency of the slices can be individually controlled. A
pull-down menu (black arrow) allows the user to load various types of images obtained from the tensor calculations, as well
as raw diffusion-weighted images. From a contextual menu (right mouse click), contrast/brightness can be controlled or
images can be exported as a file (white arrow). The menu also allows the user to switch to the plain image view (b) of the
selected slice orientations (axial, coronal, or sagittal).

based co-registration should be performed (step 1). Slight
mis-registration manifests as bright edges in the standard
deviation maps as can be seen in Fig. 5. If the signal is aver-
aged in a scanner, this type of quality check and corrections
cannot be performed.

4. For each image slice, calculate the over-determined matrix
A and the ADC vector B for the corresponding DTI scheme
using Eqs. (11) and (12).

5. Determine the pseudo-inverse of the matrix A using singu-
lar value decomposition and compute the tensor for each
pixel based on Eq. (13).

Once the calculation is finished, tensor element images are
displayed as shown in Fig. 6. The data used in this figure is a
256 × 256 × 55 dataset obtained with 15 gradient directions in
addition to one b = 0 image. The processing time is less than
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Fig. 8 – Examples of 3D fiber tracking results, visualization, and fiber editing. (a) Three types of ROI drawing tools (polygon,
oval, and rectangle) are available now (green arrow). As soon as an ROI is drawn, fibers that penetrate it are retrieved from
memory and shown by a color defined by the user. The fiber trajectories are shown both in three 2D orthogonal views and
the 3D tri-planar view. For multiple ROI approaches, three types of operations (OR, AND and NOT) are supported (white
arrow). In this example, projection fibers (red) and inferior fronto-occipital fascicules (yellow) are visualized using OR
operation. (b) An example of AND operation, in which only the motor pathway was visualized by defining the second ROI at
the precentral gyrus. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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1 min (Windows-XP, Pentium IV, 2 GHz, 1 GB RAM). We are rou-
tinely performing 30-orientation measurements with five b = 0
images with the same matrix size, which takes less than 3 min
to complete the DTI calculation.

From the tensor elements, various images are calculated
and ready for visualization. Fig. 7 shows one of the viewing
windows (2D and tri-planar viewer). From a pull-down list, a
contrast of interest can be selected and viewed. These include
various types of anisotropy maps and color-coded maps as
described in the last section, as well as raw diffusion-weighted
images and result images presented in Fig. 6. The visualiza-
tion includes three orthogonal 2D views (coronal, axial, and
sagittal) and a 3D tri-planar view. Images can be magnified or
shrunk, and interactively manipulated.

3.2. Fiber tracking

Before tracking is performed, a window is displayed to spec-
ify the two thresholds (FA and angle thresholds) for tracking.
Tracking is performed from all pixels, in which FA values are
higher than the threshold. For a typical 256 × 256 × 50 image
matrix, as shown in Fig. 7, using default thresholds (FA > 0.2
and tract-turning angle < 40◦), more than 570,000 fiber tracts
are found with average length of 31 pixels and maximum
length of 394 pixels (without interpolation). Of the voxels that
the tracts passing through, the average number of fibers per
voxel is 4.1, while the maximum number is up to 681. This
t

2
(
r
v
fi
a
w
p
p
(
u
o
t
p
t
z
u

d

4

4

D
c
b
o
m
F

fibrous tissues, such as muscles, tendons, heart, etc., whose
fiber directional pattern and organization is critical in follow-
ing its normal development and diagnosing disease.

Although the DTI-based fiber reconstruction technique is
a powerful technique, its limitations should be discussed.
First, the DTI-based tracking technique, which is based on
water movement, cannot distinguish orthograde and retro-
grade directions of axonal tracts. Second, image resolution
for a typical human DTI study is on the order of 1–5 mm.
Once an axon of interest enters a pixel of this size and
mixes with other axons of different destinations, informa-
tion about cellular level connectivity degenerates. Therefore,
cellular-level connectivity cannot be found by this technique.
It should always be kept in mind that the eigenvector derived
from the diffusion tensor is actually a voxel-averaged mea-
surement. Therefore, the principal eigenvector only corre-
sponds to the average fiber direction within the voxel. Thus,
DTI can reveal only macroscopic architecture of the white
matter.

4.2. Concluding remarks

A user-friendly DTI processing, analysis, and visualization
software was developed. Processing includes image quality
inspection, and DTI calculation that will yield ADC maps,
tensor maps, color maps, isotropic images, anisotropy mea-
surements, eigenvalue and eigenvector images. Visualization

r

racking procedure uses less than 3 min.
Results of the tracking can be displayed in the same three

D orthogonal and 3D tri-plane views, or a series of 2D slices
Fig. 7(b)). Because of the sheer number of the fiber tracts
econstructed by the brute-force approach, fibers are usually
isualized only after a ROI is drawn. Namely, in subsequent
ber visualization processes, tracking is no longer performed
nd only the fibers of interest that penetrate ROIs are shown,
hich allows real-time fiber-editing. Fig. 8(a) shows an exam-
le in which projection fibers that penetrate the cerebral
eduncle (RO1 #1) and the inferior fronto-occipital fascicules

ROI #2) are both visualized with different color assignment
sing OR operation. Fig. 8(b) shows an example of AND
peration, in which the second ROI (ROI #2) was drawn near
he precentral gyrus to identify trajectories form the cerebral
eduncle (ROI #1). This result should contain a high concen-
ration of fibers from the motor pathway. The user can rotate,
oom in/out, or shift on the 2D and 3D view interactively by
sing mouse or keyboard.

The tracking results can be saved and loaded using a
esigned compact format.

. Discussion and conclusion

.1. Applications and limitations of fiber tracking

iffusion tensor imaging is unique in its ability to quantify
hanges in neural tissue microstructure within the human
rain non-invasively. DTI-based tractography should improve
ur understanding of brain pathology, particularly of white
atter abnormalities occurring in head trauma, stroke, etc.

iber tractography methods could be applied to other soft
was implemented in 2D orthogonal and 3D tri-planar views.
Efficient fiber tracking was developed as a part of the analysis
tools. A rapid algorithm to perform CPU-intensive brute-force
fiber tracking and memory-efficient fiber coordinate stor-
age were developed and employed. The program has been
successfully adapted to various sources of data. The soft-
ware is available at http://mri.kennedykrieger.org/sitemap/
software.htm.
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