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Intermolecular and intramolecular FRET between two spectrally
overlapping green fluorescent protein variants fused to two
different host proteins or at two different sites within the same
protein offers a unique opportunity to monitor real-time
protein–protein interactions or protein conformational changes.
By using fluorescence digital imaging microscopy, one can
visualize the location of green fluorescent proteins within a living
cell and follow the time course of the changes in FRET
corresponding to cellular events at a millisecond time resolution.
The observation of such dynamic molecular events in vivo
provides vital insight into the action of biological molecules.
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Abbreviations
BFP blue fluorescent protein
BRET bioluminescence resonance energy transfer
CaM calmodulin
CFP cyan fluorescent protein
FLIM fluorescence lifetime imaging microscopy
FRET fluorescence resonance energy transfer
GFP green fluorescent protein
RFP red fluorescent protein
YFP yellow fluorescent protein

Introduction
In 1948, Förster formulated the principle of FRET [1,2], a
phenomenon that occurs when two different chromophores
(donor and acceptor) with overlapping emission/absorption
spectra are separated by a suitable orientation and a dis-
tance in the range 10–80 Å (Figure 1). In the early 1970s,
after a long period of silence, groundbreaking work on
FRET revealed the spatial proximity relationships of two
fluorescence-labeled sites in biological macromolecules,
thereby establishing the use of FRET as a spectroscopic
ruler [3]. All of this early work used either fluorescent
analogs of biomolecules or fluorescent reagents covalently
or noncovalently attached to macromolecules as donors or
acceptors of FRET [4]. 

Over the past decade, the use of FRET for structure
elucidation became less significant, as atomic-resolution
structural information on biological macromolecules was
more effectively determined by X-ray crystallography or
NMR spectroscopy. Recently, however, the introduction of
the green fluorescent protein (GFP) to FRET-based imaging
microscopy gave new life to its use as a sensitive probe of

protein–protein interactions and protein conformational
changes in vivo. This was the beginning of real-time in vivo
imaging of dynamic molecular events, providing researchers
with crucial insight into the biological mechanisms as well as
the physiological functions of a cell [5–8].

FRET meets GFP
GFP has a number of amazing properties that enable its
use for in vivo imaging. Firstly, GFP can be expressed in a
variety of cells, where it becomes spontaneously fluores-
cent without the aid of a cofactor [9]. Secondly, GFP can
be fused to a host protein to create a fusion protein that
usually retains both the fluorescence of the GFP and the
biochemical function of the original host. Thirdly, fusion
proteins can be targeted to specific organelles, such as the
nucleus or endoplasmic reticulum, by adding an appro-
priate signaling peptide. Finally, and most importantly,
mutagenesis of GFP has produced many mutants with
varying spectral properties that can be used as donors and
acceptors of FRET [9–15]. 

One pair of fluorescent proteins originally used for
FRET was a BFP (blue fluorescent protein) donor and a
GFP acceptor. The BFP donor is a GFP mutant with a
Tyr66His mutation that creates excitation and emission
peaks around 383 and 447 nm, respectively [10,16]. The
most commonly used GFP acceptor is also a GFP
mutant — with a Ser65Thr mutation that eliminates an
undesirable excitation peak of wild-type GFP at 395 nm
and creates single excitation and emission peaks at
around 488 and 509 nm, respectively [10–13]. However,
BFP has the lowest quantum yield and is the most
bleachable of all GFP mutants [10,15] and, as its excita-
tion peak is in the ultraviolet (UV) range, cellular
autofluorescence and scattering are a significant source of
noise with the BFP–GFP pair [17,18].

To address the above-mentioned problems, GFP mutants
with longer wavelengths are now often used as FRET
partners: CFP (cyan fluorescent protein) and YFP (yellow
fluorescent protein). CFP contains a Tyr66Typ mutation
[10] that creates excitation and emission peaks of 436 and
476 nm, respectively. YFP was rationally designed from
the GFP crystal structure [19] — it was suggested that a
Thr203Tyr mutation would create a π–π stacking interac-
tion between Tyr203 and Tyr66, thereby red-shifting the
spectra and creating excitation and emission peaks of 516
and 529 nm, respectively [14]. Additionally, the CFP–YFP
pair allows FRET to be detected at larger distances, as the
calculated R0 (the distance at which 50% energy transfer
occurs) between randomly oriented chromophores is
5.2 nm, whereas for BFP–GFP, it is only 4 nm. [17]. More
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recently, novel YFPs and red fluorescent proteins (RFPs)
have been cloned from corals [20], producing yet another
FRET pair, GFP–RFP [21].

Intramolecular FRET to monitor protease
cleavage, calcium signaling and phosphorylation
Intramolecular FRET can be measured when both the GFP
donor and the acceptor are fused to the same host molecule
(Figures 1a and 2). One of the first demonstrations of this
technique was performed by Mitra et al. [22], who fused a
BFP and GFP in the same molecule, separated by a flexible
polypeptide linker containing a Factor Xa protease cleavage
site. When incubated with Factor Xa, cleavage of the linker
was followed by a decrease in FRET. Subsequently, Heim
and Tsien [16] demonstrated a similar phenomenon with a
25-residue linker containing a trypsin cleavage site. The

first biologically significant example occurred when a linker
containing the caspase-3 cleavage site (DEVD) was fused
between a BFP–GFP or a CFP–YFP pair [23,24]. When the
HeLa cells were irradiated with UV light to induce apoptosis,
a fivefold change in the fluorescence emission ratio was
observed. This construct was then used to screen novel
apoptosis-inducing agents [25,26]. 

Romoser et al. demonstrated the use of intramolecular
FRET to measure Ca2+-calmodulin (CaM) signaling by
fusing the CaM-binding domain [27,28] from smooth
muscle myosin light chain kinase (M13) [29] between BFP
and GFP [30,31]. In the Ca2+-saturated medium, CaM
binds Ca2+ and wraps around the M13 peptide, causing the
GFP mutants to move further apart and resulting in a
decrease in FRET. This hybrid protein returns to its
resting state when the Ca2+ level drops, thereby illustrating

574 Biophysical methods

Figure 1

Intramolecular and intermolecular FRET. (a) Intramolecular FRET can
occur when both the donor and acceptor chromophores are on the
same host molecule, which undergoes a transition, for example,
between ‘open’ and ‘closed’ conformations. In each square box
corresponding to CFP or YFP (shown in cyan or yellow, respectively),
a diagonal line represents the chromophore. The amount of FRET
transferred strongly depends on the relative orientation and distance
between the donor and acceptor chromophores: the parallel
orientation and the shorter distance (<100 Å) generally yield larger
FRET. (b) Intermolecular FRET can occur between one molecule
(protein A) fused to the donor (CFP) and another molecule (protein B)
fused to the acceptor (YFP). When the two proteins bind to each
other, FRET occurs. When they dissociate, FRET diminishes.
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Figure 2

FRET imaging microscopy experiment. In FRET experiments, a single
transfection (intramolecular FRET) or co-transfection (intermolecular
FRET) of the constructs must first be performed. The occurrence of
FRET can be observed by exciting the sample at the donor excitation
wavelengths while measuring the fluorescence intensities emitted at
wavelengths corresponding to the emission peaks of the donor versus
those of the acceptor. If the acceptor and donor are at a favorable
distance and orientation, donor emission intensity decreases (CFP,
cyan) while the acceptor emission (YFP, yellow) intensity increases.

CFP YFPgene

CFP gene A

YFP gene B

Cell

Light source

Intramolecular FRET
Intermolecular FRET

Excitation filter

Emission filter

Transfect Co-transfect

F
lu

or
es

ce
nc

e
in

te
ns

ity

Time (s)
Current Opinion in Structural Biology

Stimulus

480 nm 535 nm

440 nm



that changes in FRET can report the dependency of
Ca2+-CaM activity on intracellular Ca2+ concentration. 

In the same year, Miyawaki et al. [14] independently created
novel Ca2+ indicators named cameleons, which consist of a
tandem fusion of CFP, CaM, M13 peptide and YFP. Upon
an increase in Ca2+ concentration, the CaM component of
the hybrid protein binds Ca2+ and preferentially wraps
around the fused M13 peptide. This conformational
change results in a decrease in the distance between the
two GFP mutants and, therefore, an increase in FRET
[14,21,32,33•]. As cameleons include CaM within the
engineered molecule, they are much less inert to endoge-
nous CaM and therefore monitor Ca2+ changes more
specifically. More recently, we have rationally designed a
new class of cameleons that offer a larger dynamic range in
physiologically significant levels of Ca2+ concentrations in
the cytosol [34•]. Other GFP-based Ca2+ indicators have
used a single circularly permuted GFP [35] fused with
CaM and an M13 peptide [36,37].

In addition to their involvement in investigating protease
cleavage and Ca2+ signaling, fluorescent indicators were
designed using intramolecular FRET to examine the
phosphorylation of the transcription factor cyclic adeno-
sine monophosphate (cAMP)-responsive element binding
protein (CREB) [38]. This construct consisted of the
kinase-inducible domain (KID) of CREB flanked by GFP
and BFP. The phosphorylation of a specific serine residue
in the KID domain by cAMP-dependent protein kinase A
(PKA) [39,40] induced a FRET-detectable conformational
change, which can be used as an in vivo screening system
for kinases. Another fluorescent indicator was created to
study the phosphorylation of the adaptor protein CrkII,
which was sandwiched between CFP and YFP. CrkII is
involved in signal transduction of the tyrosine kinase
receptors when phosphorylated on its Tyr221 residue [41].
This phosphorylation induces an intramolecular interac-
tion between the SH2 domain and Tyr221 within CrkII,
which brings CFP and YFP closer and, therefore, allows
FRET to occur [42]. Most recently, using a similar fusion
construct, Mochizuki et al. [43•] were able to monitor the
cellular signaling of G proteins of the Ras family, which
cycle between GDP-bound (inactive) and GTP-bound
(active) forms.

Intermolecular FRET to visualize
protein–protein interactions
Intermolecular FRET can occur when the GFP donor and
the acceptor are on different macromolecules (Figures 1b
and 2); however, this form of FRET is more difficult to
observe because the stoichiometry of acceptors to donors
can vary with transfection efficiencies, and also the donor
and acceptor host proteins may not be constitutively
bound in vivo. Optimal conditions occur when all the
donors are paired with an acceptor, as any unpaired protein
adds noise to the signal. Additionally, if the distance or
orientation between the pairs are unfavorable, FRET may

not occur, even if the two proteins form a complex [33•]. A
successful FRET system yields information about the loca-
tion and exact timing of the interaction that is not available
from conventional detection systems such as co-immuno-
precitation, cross-linking, yeast two-hybrid, phage display
or unlinked noncomplementing mutant detection [44]. 

Despite the aforementioned experimental requirements,
a number of excellent applications have been reported.
An early example of GFP-based intermolecular FRET
occurred with Bcl-2 and Bax, which play a crucial role in
apoptosis, as well as in the initiation and progression of
human cancer [45–47]. A direct interaction in the mito-
chondria between Bcl-2 and Bax was shown when a GFP
fused to the N terminus of Bcl-2 and a BFP fused to the
N terminus of Bax were co-expressed in the same cell
[48]. Similarly, biochemical studies were done to reveal
the formation of the SNARE (soluble N-ethylmaleimide-
sensitive factor attachment protein receptor) complexes
that are involved in synaptic vesicle formation [49,50].
When the N termini of the two core proteins in the
SNARE complex, SNAP-25 and synaptobrevin, were
fused to CFP and YFP, respectively, FRET was observed
[51]. Both these examples used a mathematical correction
method [52] to deduce the stoichiometry of acceptors to
donors for quantifying FRET efficiency.

Llopis et al. [53] demonstrated ligand-dependent FRET in
HeLa cells between CFP tagged to the retinoic acid
receptor (RAR) and YFP tagged to the nuclear receptor
interaction domains of the coactivators steroid receptor
coactivator-1 (SRC-1) and peroxisome proliferator-activated
receptor binding protein (PBP). The RAR nuclear receptor
activates transcription by binding to a coactivator (SRC-1
or PBP), which can be induced by hormone stimulation
[54–56]. FRET was proved convincingly by following a
time course of CFP and YFP emission intensities, during
which CFP emission was significantly quenched by YFP
after stimulation. Subsequently, acceptor bleaching exper-
iments further demonstrated FRET, whereby the donor
emission (CFP) increased upon acceptor photobleaching
(YFP) [33•]. In a similar way, van der Wal et al. [57] showed
phosphatidylinositol bisphosphate metabolism on the
plasma membrane in response to an external stimulus by
tagging CFP and YFP to pleckstrin homology domains of
phospholipase C (PLC). Most FRET fusion reported in
the literature occurs at either the N or C terminus; however,
Janetopoulos et al. [58•] showed that it is possible to fuse
CFP and YFP mutants to a loop region of the α subunit
and β subunit of G-protein heterotrimers, respectively.
This construction allowed the observation of G-protein-
mediated cell signaling, during which the G-protein
heterotrimer dissociates and associates upon the addition
and removal of stimulants such as chemoattractants,
hormones and neurotransmitters [59]. 

A sophisticated method of quantifying FRET is fluorescence
lifetime imaging microscopy (FLIM), in which the lifetimes
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of the donor alone (τD) and also in the presence of the
acceptor (τDA) are measured (as opposed to measuring
emission intensity) [8,60]. If FRET occurs, τDA will be
different from τD and this difference can be used to calcu-
late FRET efficiency. The major advantage of FLIM is
that it permits an internally calibrated measurement of
FRET. Also, as only donor emission is monitored, factors
that affect the quantum yield of the acceptor can be dis-
regarded. Verveer et al. [61••] used the FRET between a
GFP fused to the C terminus of ErbB1 (ErbB1–GFP)
and a Cy3-labeled antibody to the phosphotyrosine
(pTyr72) of ErbB1 to determine the characteristic lifetime
of the phosphorylated and unphosphorylated forms of
ErbB1–GFP. ErbB1 is a tyrosine kinase receptor that is
thought to be activated by a ligand-induced dimerization
on the plasma membrane [62]. However, these studies
revealed a ligand-independent mechanism for the activa-
tion of ErbB1. Additionally, they demonstrated the
flexibility in designing such experiments, as FRET can
occur between combinations of GFPs and synthetic dyes
such as Cy3 and Cy5. 

Finally, another technology for monitoring protein–protein
interaction is bioluminescence resonance energy transfer
(BRET), which relies on the same principles as FRET,
except that the donor is a bioluminescent macromolecule
(Renilla luciferase) that acquires luminescence when
activated by a cofactor [63]. Xu et al. successfully applied
the BRET method to assay the interaction between proteins
encoded by the circadian clock genes kaiA and kaiB from
a strain of cyanobacterium Synechococcus sp. [64,65].
Subsequently, Angers et al. [66] demonstrated that BRET
could be used as a tool to study constitutive protein–protein
interactions in vivo between a β2 adrenergic receptor
(β2AR) fused to Renilla luciferase and another fused to
YFP. β2AR is a G-protein-coupled receptor that forms a
constitutive dimer; however, it displays an increase in BRET
upon receptor stimulation by isoproterenol, a hydrophilic
agonist. One disadvantage of BRET is that Renilla luciferase
generates a broad emission peak that substantially overlaps
with the YFP emission and, therefore, contributes to a low
signal to noise ratio for the system [63]. 

Conclusions and future directions 
Fluorescent imaging technology now offers numerous
benefits to the expanding field of structural biology. High-
resolution techniques such as X-ray crystallography and
NMR spectroscopy determine three-dimensional structures
of biological molecules, whereas fluorescence imaging
technology, along with other imaging methods, unveils
both temporal and spatial information on molecular
structures in living cells. A combination of new and existing
techniques provides a more comprehensive picture of
studied biological molecules from the cellular level
(approximately micrometers) to the atomic level (approxi-
mately angstroms). High-resolution structural information
can also help molecular cell biologists in the successful
design of fluorescently active constructs used in in vivo

imaging, as exemplified in CaM/GFP-based Ca2+ indicator
studies [14,34•]. The knowledge of several high-resolution
structures of CaM in complex with target peptides has
provided vital information about the approximate distance
between fused FRET partners. 

FRET imaging microscopy has been proven to be an
extremely useful tool in the detection of protein–protein
interactions and protein conformational changes in a single
cell. Future directions of FRET imaging include biologi-
cally interesting applications involving cellular events
coupled to specific molecular signaling processes; imaging
in thick tissues or organisms using multiphoton excitation
microscopy [67,68]; and detection of single-molecule
FRET using evanescent wave microscopy [69]. 

More specifically, future biological applications of FRET
imaging microscopy may include the simultaneous obser-
vation of a series of reversible molecular processes in living
cells. We may, for example, soon find it possible to monitor
a signaling cascade using different FRET markers: a tyro-
sine receptor–ligand interaction; conformation-dependent
activation and autophosphorylation of the receptor in the
cytoplasmic domain; docking of a signaling protein to the
phosphorylated receptor; assembly of a cytosolic protein
signaling module and activation of intracellular effectors;
and activation of the transcription of certain gene(s). In
addition, two-photon excitation microscopy has been
successfully used to detect the three-dimensional localization
of fluorescent proteins exhibiting FRET in different
tissues of various organisms [70]. Also, the total reflection
method has been employed to detect EGFR signaling on
the surface of living cells [71•]. The future of FRET
imaging microscopy is bright, as microscope technology
advances and possible applications of GFP-based FRET
become infinite. 
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