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1 Introduction

Definition 1. Let S be a surface with complexity 3g− 3 + p ≥ 2. The curve
complex C(S) is the simplical complex whose 0-cells are isotopy classes of
essential closed curves, and k-cells are sets of k isotopy classes which can be
realized disjoint

We also make use of the arc and curve graph, whose vertex set is the set
of isotopy classes of arcs and curves in (S, ∂S), with edges defined similarly.
If S is a sphere with p ≤ 3 punctures, a torus with at most one puncture, or
a four-holed sphere, we say that S is sporadic. The curve graph for these are
defined slightly differently, and we don’t consider them in this report.

Definition 2. Let X be a geodesic metric space. We say that X is δ-
hyperbolic if there exists some δ ≥ 0 such that for all x, y, z ∈ X, the δ-
neighbourhood of [x, y] ∪ [y, z] contains [x, z].

For my final paper I decided to compare and contrast three different
proofs of hyperbolicity of the curve complex. The first is by Masur and
Minsky in 1998, which relies on Teichmuller theory [MM98]. The second is
by Matt Clay, Kasra Rafi, and Saul Schleimer [CRS15], who use a surgery
procedure discovered by Hatcher [Hat91] together with the same ‘guessing
geodesics’ lemma used by Masur-Minsky. With this argument, Clay-Rafi-
Schleimer show uniform hyperbolicity of the curve complex. The third, by
Sebastian Hensel, Piotr Przytycki, and Richard Webb [HPW13], uses a sim-
ilar construction with a more direct proof of hyperbolicity. Not only do they
show uniform hyperbolicity, but they extract an effective δ.

The mapping class group acts on the curve complex. From this action, we
can deduce multiple interesting statements about the mapping class group :

• The mapping class group has infinite diameter

• pseudo-Anosovs act hyperbolically on C(S), while reducible and elliptic
elements act reducibly.

• The distance formula for elements of MCG(S).

Similar programs have been executed in the study of Out(Fn). Bestv-
ina and Feighn showed that the free factor complex of the free group is
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δ-hyperbolic. They did this y studying Outer space, the analogue of Teich-
muller space for Out(Fn). Handel and Mosher used Masur-Minsky’s ‘guessing
geodesics’ lemma to show that the splitting graph of the free group is hyper-
bolic. Instead of relying on another so-called ‘geometric space’, they worked
directly on the splitting graph to show a property similar to exponential
divergence [HM13].

2 Why the Main Theorem is Not Trivial

The geometry of the curve complex is unclear from just the definition. It
is visuially clear when two curves are at distance 1 or 2, but it is harder to
detect when two curves are very far apart in the curve graph. This raises the
question: does the curve graph has infinite diameter?

Any space of bounded diameter is trivially δ-hyperbolic. To see why the
main theorem is not trivial, we first show the following:

Theorem 1. For S not sporadic, diam C(S) =∞.

The proof relies on the theory of laminations. A lamination on S is
a closed subset foliated by geodesics. For more information, see the book
of Bonahon [Bon99]. The key fact we use is that the space of geodesics
laminations with the topology of Hausdorff convergence is compact.

Proof. Now let γ1, γ2, ... be a sequence of geodesics which converge to some
filling lamination λ which is not a geodesic (for instance, take γ transverse to
the vertical foliation of some pseudo-Anosov ϕ and let γi = ϕi(γ)). We claim
that dC(γ1, γn) → ∞, maybe after passing to some subsequence. Suppose
for contradiction that dC(γ1, γn) is bounded. Pass to a subsequence again to
suppose that dC(γ1, γn) = M <∞. Then for each γn we can find a sequence

γ1 = β
(n)
0 , ..., β

(n)
M = γn of disjoint curves witnessing dC(γ1, γn) = M .

Now by compactness we have that β
(n)
M−1 has a subsequence which con-

verges to some lamination µ. Since β
(n)
M−1 and β

(n)
M = γn are disjoint, the

limiting laminzations cannot have any transverse intersection. That is to
say, the intersection µ∩λ can only contain leaves. Since λ is filling then this
intersection is nonempty, hence if λ is a minimal lamination in λ we have
λ ⊂ µ.

Passing to a further subsequence and inducting, we have that {γ1}n≥1
converges to some lamination which is not a geodesic, a contradiction.
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3 Guessing Geodesics

A well known fact about hyperbolic spaces is the that geodesics are contract-
ing, in the sense that there exists some C,D > 0 depending only on δ such
that for any geodesic γ, and for any two points x, y ∈ X which are distance
C away from γ satisfy d(π(x), π(y)) ≤ D, where π : X → γ is the nearest
point projection.

While Hensel-Przytycki-Webb directly show that all triangles are slim,
Masur-Minsky and Rafi-Clay-Schleimer both use the contraction property to
identify hyperbolicity. Masur-Minsky make the following definition

Definition 3. A path γ : I → X is contracting if there exists a map π :
X → I and constants a, b, c ≥ 0 satisfying the following properties:

1. (Retraction) For any t ∈ I, diam(γ([t, π(γ(t)))) ≤ c.

2. (Lipschitz) If d(x, y) ≤ 1 then diam γ([π(x), π(y)]) ≤ c.

3. (Contracting) If d(x, γ(π(π(x)))) ≥ a and d(x, y) ≤ b · d(x, γ(π(x)))
then diam γ[π(x), π(y)] ≤ c.

The map π should be thought of as a coarse closest-point projection. We
also take the map to I instead of im(γ), so that we don’t have to care about
the parametrization speed of γ.

In a hyperbolic space, every two points can be connected by a contracting
path. To detect hyperbolicity, we should coarsen this condition. A family of
paths is coarsely transitive if there exists D ≥ 0 such that any two points
x, y more than D distance apart can be connected by a path in the family.
A family of paths is contracting if each path is contracting, for a uniform
choice of a, b, c.

Masur and Minsky prove the following:

Theorem 2. If X is a geodesic metric space which admits a coarsely tran-
sitive and contracting path family Γ, then X is hyperbolic. In addition, the
paths in Γ are uniformly quasi-geodesic.

Since the projection π maps to an interval, as opposed to a subset of the
space X, Masur and Minsky use a modified definition of quasi-geodesics. Say
that a path γ : I → X is a (K,C, s)-quasigeodesic if for all x, y ∈ I,

lengths(γ[x, y]) ≤ Kd(γ(x), γ(y)) + C.

5



Here, lengths is ns where n is the smallest integer such that [x, y] can be
divided into n closed subintervals J1, ..., Jn with diam(γ(Ji)) ≤ s.1

Now we say that X has stability of quasi-geodesics if for all K ≥ 1, C, s ≥
0 there exists R = R(K,C, s) > 0 such that any (K,C, s)-quasigeodesic is in
an R-neigbhourhood of the geodesic connecting its eendpoints.

The proof of the theorem is in two steps:

Lemma 1. If X has a coarsely transitive path family Γ then X has stability
of quasi-geodesics and the paths in Γ are uniform quasi-geodesics.

Sketch of Proof. Assume WLOG that Γ is actually transitive, because for
any curve of length ≤ D the constant map provides a contracting projection.

Let γ : [0,M ]→ X be a path in Γ, and let α : [0, L]→ X be a (K,C, s)-
quasigeodesic connecting the endpoints of α. We want to show that α is in a
uniform neighbourhood of γ. If α makes a long excursion away from γ, then
by the contraction property we can circumvent this by travelling along the
projection to γ. Since our R is allowed to depend on (K,C, s), this will show
the claim.

Applying the same argument to a bona fide geodesic [γ(0), γ(M)] we
deduce that α is in a uniformly bounded neighbourhood of any geodesic
connecting its endpoints.

Lemma 2. Stability of quasi-geodesics implies hyperbolicity.

Proof. Let x, y, z ∈ X. We want to show that [x, y] is in a uniform δ-
neighbourhood of [x, z] ∪ [z, y]. Let z′ ∈ [x, y] minimize distance to z. We
claim that [x, z′] ∪ [z′, z] is a (3, 0, 0)−quasigeodesic. Let u ∈ [x, z′] and
v ∈ [z′, z], so that by choice of z′ we have

d(u, v) ≤ d(z′, v)

and
d(u, v) ≥ d(u, z′)− d(z′, v).

Then adding twice the first inequality to the second we obtain

3d(u, v) ≥ d(z′, v) + d(z′, u).

By the stability of quasi-geodesics, [x, z′]∪ [z′, z] (in particular [x, z′]) is in a
uniformly bounded neighbourhood of [x, z]. Repeating the argument for all
segments in the triangle shows that X is δ-hyperbolic.

1This is for s > 0, for s = 0 we take the normal length.
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4 Reduction to the Complex of Arcs and Curves

Both Clay-Rafi-Schleimer and HPW show that the complex of arcs and curves
is hyperbolic, and then argue that AC(S) is quasi-isometric to C(S) in or-
der to conclude. This is true because both are geodesic spaces, so that
δ-hyperbolicitty is a quasi-isometry invariant.

To obtain (effective) uniform hyperbolicity, both groups needed to show
that the quasi-isometry constants of the map between AC(S) and C(S) can
be chosen uniformly. We take our exposition from HPW.

Suppoose that C(S) is connected, so that S is not a four-holed spehre
or a once-punctured torus. Construct the map r : AC(0)(S) → C(0)(S) by
assigning to an arc γ a boundary component of the regular neighbourhood of
γ ∪ ∂S. To each curve we assign r(γ) = γ. Clearly there is some ambiguity
in the definition of r, bceause we had to make a choice for each arc. Because
the different boundary components of N(γ∪∂S) are disjoint, make whatever
choice you’d like.

We claim that r is 2-lipschitz. If a and b are disjoint arcs that do not fill
S, then r(a) and r(b) are disjoint. Now suppose that a, b are disjoint and do
not fill S, so that S must be the two-holed torus. Then the endpoints of a, b
must be on the same componenet, so that r(a), r(b) intersect at most once.
Therefore (r(a) ∪ r(b))c is a two-holed disc, so that dC(r(a), r(b)) ≤ 2.

Also for any arc a and curve b which are disjoint, the curves a and r(b)
are disjoint. Hence r is a (2, 2)-quasiisometry.

5 Surgery Sequences

Masur-Minsky’s proof relies on Teichmuller theory to construct a coarsely
transitive family of paths, Hensel-Przytycki-Webb and Clay-Rafi-Schleimer
both work directly on the surface. They make use of ‘surgery sequences’ as
constructed by Hatcher [Hat91]

Let a and b be arcs in minimal position, with chosen endpoints α and β.
Let x be the first point of intersection. In a regular neighbourhood NS(α∪β),
let N ′ be a component that contains the portion of b between β and x. Now
let ab be a component of the boundary of N ′.

If A is a system of disjoint arcs, and b is a directed arc cutting A, then
we can construct a new system Ab by taking the first arc a1 in A intersecting
b, and surgering a1 along b.
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Figure 1: Surgery of a along b

HPW use a slightly modified construction. Again let a and b be directed
arcs in minimal position. Let x ∈ a ∩ b be an intersection point, and let
a′ ⊂ a, b′ ⊂ b be subarcs with endpoints α, x (resp. β, x ). If a′ ∪ b′ is an
embedded arc, we say that a′ ∪ b′ is the one-corner arc obtained from aα, bβ.
‘One-corner’ tranlates to the Polish word ‘jeden ròg’, which is similar to
‘jednoroz.ec’, the Polish word for ‘unicorn’. Hence HPW call these ‘unicorn’
arcs.

We have a linear order on unicorn arcs by declaring a′ ∪ b′ ≤ a′′ ∪ b′′ is
a′′ ⊂ a′ and b′ ⊂ b′′. Then we have a sequence (a = c0, ..., cn = b) of unicorn
arcs between a and b. Denote this path by P(aα, bβ).

Let us confirm that P(aα, bβ) is indeed a path in AC(S). Suppose that
c is a unicorn path. If c is adjacent to b we are done, otherwise let x be
the intersection point defining c and let b′ be the subpath of c from x to
β. Construct c′ by travelling from x to b′ along a until an intersection x′,
and traversing along b until reaching β. Then c < c′. The arc c′ can be
homotoped off c by traversing different sides of a, b in some sufficiently small
regular neighbourhood.

While both groups use surgery sequences in a key way, they take different
approaches. HPW use unicorn paths to construct slim triangles between
points, and use this to directly show hyperbolicity. On the other hand, CRS
use a slightly different approach. One characterization of δ-hyperbolicity is
the exponential divergence property: for any two points x, y with distance
≥ R from some basepoint o, the length of the shortest path from x to y
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which avoids the ball BR(o) grows exponentially in R. CRS find a collection
of paths such that, for any two paths γ1, γ2 which have one endpoint close
together, the paths grow exponentially closer.

5.1 Slim Unicorn Triangles

We outline HPW’s proof. The key observation is that unicorn paths give rise
to 1-slim triangles:

Lemma 3. Let aα, bβ, dδ be oriented arcs in minimal position. Then for
every c ∈ P(aα, bβ) there exists some c∗ ∈ P(aα, dδ) ∪ P(dδ, bβ) such that
dAC(c, c

∗) ≤ 1.

Proof. Suppose c intersects d, else we are done. Then let d′ ⊂ d be the subarc
given by starting at δ and traversing along d until hitting c. Let σ ∈ c ∩ d′
be this intersection point. One of the components of c \ {σ} is contained
in either a′ or b′, so suppose WLOG it is contained in a′. Then the curve
c∗ = (c ∩ a′) ∪ d′ is in P(aα, dδ). By traversing slightly to the left or right of
d, we see that dAC(c, c

∗) ≤ 1.

To conclude that the curve graph is hyperbolic, they need to show that
unicorn arcs are uniformly close to geodesics. First they show that subpaths
of unicorn paths are unicorn paths up to a constant error (of 1). In particular,
they show the following:

Lemma 4. For every 0 ≤ i < j ≤ n either P(cαi , c
β
j ) is a subpath of P(aα, bβ)

or j = i+ 2 and ci, cj are adjacent in AC(S).

The exception occurs because the unicorn arcs ci, cj may not be in mini-
mal position.

Now from a classical bisection argument and 1-slimness of unicorn trian-
gles, we have the following:

Lemma 5. Let x0, ..., xm with m ≤ 2k be a sequence of vertices in AC(S).
Then for any c ∈ P(x0, xm) there exists i andc∗ ∈ P(xi, xi+1) such that
dAC(S)(c, c

∗) ≤ k.

With the lemma, they conclude the following:

Proposition 1. Let γ be a geodesic between vertices a, b in AC(S). Then
there exists c ∈ P(a, b) such that dAC(c, γ) ≤ 6.
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Figure 2: The classical bisection argument

Proof. Let c ∈ a, b maximize distance to γ, and call this distance k. Now let
a′b′ be the longest subpath containing c which is within 2k of c, then a′b′ ∈
P(a, b). Then let a′′, b′′ be the closest points to a′, b′ in the geodesic γ. Apply-
ing our previous lemma and the triangle inequality gets us dAC(S)(a

′′, b′′) ≤ 6k.
Concatenate [a′, a′′]∪ [a′′, b′′]∪ [b′′, b′]. The path given by this concatenation is
of the form x0, ..., xm for m ≤ 8k. By our bisection lemma, k ≤ log2(8k) + 1,
so that k ≤ 6.

This estimate, together with the slim triangles estimate and the quasi-
isometry AC(S) → C(S) gives effective hyperbolicity of the curve complex.
In fact, it gives 17-hyperbolicity.

5.2 Projection Onto Surgery Sequences

CRS obtain hyperbolicity by finding a coarsely transitive collection of paths
which are exponentially converging. We sketch their argument here.

Let A be a collection of isotopy classes of arcs. We say that A is a system
if it forms an |A|-simplex in AC(S). That is to say, all curves and arcs in
A are disjoint. For two systems A,B let inner(A,B) = mina∈A,b∈B dAC(a, b).
We identify a vertex γ with the system {γ}.

Now we define the surgery sequence starting at A with target γ in-
ductively. Let A0 = A and Ai+1 = Aγi . Observe that | inner(Aγ, B) −
inner(A,B)| ≤ 1 and inner(Aγ, γ) ≤ inner(A, γ).

Now we show that our collection of surgery sequences forms a coarsely
disjoint and contracting collection of paths.

To see why they are coarsely transitive, fix a, b ∈ AC(S). Now pick an
arc γ disjoint from b, and let {Ai}Ni=0 be the surgery sequence starting at {a}
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with target γ. Then inner(AN , b) ≤ inner(AN , γ) + inner(γ, b) ≤ 2, so we are
done.

Now we define our projection mappings. For a vertex a ∈ AC(S) we
define the footprint ϕ(a) onto the surgery sequence started at A with target
γ as

{i ∈ [0, N ]|a ∩ Ai = ∅}.

Then this is an interval. Define the projection π : AC(S)→ [0, N ] as follows:
let {aj} be the surgery sequence starting at {a} with target γ, and letting
π(a) be the least m ∈ [0, N ] such that there exists k with Am ∩ aj 6= ∅, else
we set π(a) = N .

The key lemma is that, for any two systems B and C, the surgery se-
quences have a common descendant within a constant distance of their union.
This constant will not depend on the surface, which will give us uniform hy-
perbolicity. Using this, they check that our family of paths is contracting.

Lemma 6. Suppose that A is a system and γ is a directed arc with inner(A, γ) ≥
6. Let B,C ⊂ A be subsystems. Let {Ai}Ni=0 be the surgery sequence starting
at A with target γ, and let {Bi}, {Ci} be the induced surgery sequences. Then
there exists k ∈ [0, N ] such that (i) Bk ∩ Ck 6= ∅ and inner(A0, Ai) ≤ 5 for
all i ∈ [0, k]

First they show that in the surgery sequence {Ai} and c ∈ [0, inner(A, γ)−
1] that there exists an index i such that inner(A,Ai) = c. This follows from
the triangle inequality inner(A, γ) ≤ inner(A,AN) + inner(AN , γ) and since
| inner(Aγ, γ)− inner(A, γ)| ≤ 1.

Now let ` be minimal such that inner(A,A`) = 3, which exists as inner(A, γ) ≥
6. Then inner(A,A`−1) = 2. Then b must hit every element of A`. By picking
a hyperbolic metric on the surface and straightening everything to geodesics,
isotope A` to be pairwise disjoint and in minimal position with γ.

Suppose that B` ∩ C` = ∅, else we are done. As inner(A,A`) = 3 then
both B` and C` must be filling, so let B′, C ′ be minimal filling subsystems.
By applying an euler characteristic argument there exists a common arc in
B`+1 ∩ C`+1.
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6 The ‘Geometric’ approach of Masur and

Minsky

6.1 Teichmuller Geometry

Masur and Minsky took a radically different approach from those of some
more modern proofs. They rely on the auxiliary geometric space - the Teich-
muller space. They use geodesics on the Teichmuller space to guess geodesics
in the curve graph. Again, fix S to be a non-sporadic surface, and denote by
T (S) the Teichmuller space of x.

For a point x ∈ T (S) and a curve α ⊂ S, we recall the extremal length
Extx(α). Now for two hyperbolic structures x, y ∈ T (S), the Teichmuller
distance dT (x, y) is the log of the dilatation of the Teichmuller map (S, x)→
(S, y). By writing out the definition of extremal length, we observe Kerchoff’s
characterization:

dT (x, y) =
1

2
log sup

α∈C(S)

Exty(α)

Extx(α)
.

We recall a few more facts related to Teichmuller space. A holomorphic
quadratical different on S is a form that can locally be written q(z) = ϕ(z)dz2

for a holomorphic ϕ. Then wherever q is nonzero, we can write q = dη2 for
holomorphic η, which locally gives us two foliations, given by the horizontal
and vertices axes in C. These are globally well-defined, and we call them the
horizontal and vertical foliations.

Now we can use q to define a Teichmuller geodesic as follows: for t ∈ R
let Lq(t) be the conformal structure given by scaling the vertical foliation
by et and the horizontal foliation by e−t. The map Lq(t) : R → T (s) is a
geodesic by Kerchoff’s’ characterization.

6.2 A Nice Family of Paths

Given a conformal structure (S, x), we can define the map x → C(S) by
sending x to a curve which minimizes extremal length. Our goal will be to
take a Teichmuller geodesic, and use this projection to construct a path in
C(S).

To do this, we first relate distance in the curve graph to intersection
numbers, and then to extremal lengths.
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Lemma 7. If α, β are curves, then dC(α, β) ≤ 2i(α, β) + 1.

Proof. Put α and β in minimal position. If i(α, β) = 0 we are done. If
i(α, β) = 1 then let γ be a component of the boundary of a regular neigh-
bourhood of α ∪ β. Since S is not sporadic, then γ is a nontrivial curve
disjoint from α and β, so that dC(α, β) ≤ 2.

Now we induct on i(α, β) ≥ 2. We essentially use a surgery argument.
Take two points of α ∩ β which are adjacent in α (the subsegment between
them in α has interior disjoint from β). There are two ways to perofmr
surgery, by replacing a segemtn of β with a segment of α. These two surgery
procedures produce nontrivial curves β1, β2 with i(α, βj) ≤ i(, β) − 1. Now
neither curve can be peripheral, so that d(α, β) ≤ 2 + d(α, βj). Induction
does the job.

Using the relation Extx(α) Extx(β) ≥ i(α, β)2 and the lemma we end up
with the following statement:

Lemma 8. Let Φ : T (S) → C(S) be the map sending a structure x to the
collection of curves of shortest extremal length. Then there exists c = c(S)
such that diam Φ(x) ≤ c for all x ∈ T (S).

Therefore the map Φ Now denote by Lq a Teichmuller geodesic as de-
scribed in in the previous section. Consider the map F : R→ C(S) given by
sending t to one of the curves in Φ(Lq(t)).

We claim that the collection of such paths {Fq} is coarsely transitive.
Let α and β be curves with dC(α, β) ≥ 3. Then the union α ∪ β must be
filling. Hence there exists a holomorphic quadratic differential with α, β as
its horizontal and vertical foliations. Then Fq(∞) and Fq(−∞) are α and β,
respectively.

Now we define our projection π : C(S)→ R. To a curve β, let |β|q,h, |β|v,h
be the q-lengths of the projection of β to the horizontal and vertical foliations.
We say that β is balanced with respect to q if |β∗|q,h = |β∗|q,v for the q-
geodesic representative β∗. Observe that β∗ is geodesic with respect to qt as
well, and |β∗|qt,h, |β∗|qt,v are equal to et|β∗|q,h, e−t|β∗|q,v.

Now if β is not vertical or horizontal with respect to q, there exists t
such that β is balanced with respect to qt. Let πq(β) = t. If β is vertical or
horizontal, let πq(β) be ∞ or −∞, respectively.

To finish the proof, we will need to show the following:
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Theorem 3. The path family {Fq} satisfies the contraction property for the
projections πq.

6.3 The Nested Train-Track Argument

In this section we will recall some of the theory of train-tracks. A train-track
on S is an embedded 1-complex τ such that

• Each edge (branch) is smoothly embedded and has well-defined tangent
vectors at endpoints

• At each vertex (switch) the corresponding vectors are tangent

• The valence of each switch is at lesat 3, unless the switch is in a closed
curve component

• Every component R of S \ τ is not one of the following: an annulus,
once-punctured disk, or unpunctured disk with 0, 1, 2 cusps.

A transverse measure τ is a nonnegative function on the branches with
satisfies the switch condition, that for any switch, the sums over incoming
and outgoing branches are equal. Let P (τ) be the set of transverse measures
supported on τ .

We say that a train-track is recurrent if every branch is contained in a
closed train-route. Say that σ < τ if σ is a subtrack of τ , and say that ω is
carried on τ if we can homotope S in a way that takes every route on σ to a
route on τ .

Say that τ is maximal if it is not a proper subtrack of any other track,
which is equivalent to required that all complementary regions are ideal tri-
angles or punctured monogons.

When trying to understand the geometry of the curve graph, one key
difficulty is detecting when two curves are far apart. Suppose α and β are
disjoint curves. Suppose that α is carried on a maximal train-track τ and
passes through every branch. Then β is also carried on τ (else it would
intersect τ and hence α).

This is the key idea. If we let {τj}nj=0 be a sequence of maximal train-
tracks such that P (τj) ⊂ intP (τj−1), and βj is a sequence of curves such that
β ∈

∫
(P (τj−1)) \ P (τj), then dC(β1, βj) ≥ j.
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Using this, Masur and Minsky show that if two curves are both far from
another, and close to each other, then both are nested in extensions of the
same track. As a result, theyir intersection numbers with other curves are
very large compared to their intersection with each other. They make this
quantitative in the following way:

Lemma 9. Given Q, k > 0 there exists D, d such that for any α, β,∈ C(S),
if (i) dC(α, β) ≥ D, (ii) dC(γ, β) ≤ d · dC(α, β), then

min
α′

i(β, α′) ·min
α′

i(γ, α′) ≥ Q · i(β, γ)

where α′ varies over the k-neighbourhood of α in C.

Using the nesting property, Masur and Minsky show that the projections
πq are contracting.
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