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1 Random Walks, Harmonic Functions, and Bound-

aries

Over the past semester we’ve studied random walks on groups of nonpositive curvature.
One interesteing relation is that between asymptotic properties of random walks and the
existence of bounded harmonic functions. For example, transience for any markov chain is
equivalent to the existence of a positive non-constant subharmonic function [Woe94].

First consider the case of the free group F2 acting on its Cayley graph Γ. Here our space
has a natural compactification Γ∪ ∂Γ, where ∂Γ is the Gromov boundary. The action of F2

extends continuously to the boundary.
One can show that a simple random walk will converge almost surely to the Gromov

boundary. Since cancellations are unlikely, the distance of sample path to the origin is
bounded below by a sum of i.i.d random variables with positive expectation. Hence by the
Strong Law of Large Numbers a random walk will almost surely leave any bounded set for
all time. Since the Cayley graph is a tree, this implies any random walk will converge to a
point in the Gromov boundary. This provides us with a hitting measure ν on the Gromov
boundary. This measure is defined as ν(A) = P(limn→∞ ωn ∈ A).

Letting µ be the measure driving the simple random walk, we have that

µ ∗ ν(A) =
1

4

4∑
i=1

P( lim
n→∞

ωn ∈ g−1
i A)

=
1

4

4∑
i=1

P( lim
n→∞

gωn ∈ A)

= P( lim
n→∞

ωn+1 ∈ A)

= ν(A).

So that µ ∗ ν = ν. We say that ν is µ-stationary.
Transience of the random walk already provides us with a large number of harmonic

functions. Fix any measurable A ⊂ ∂Γ with positive hitting measure, and then ϕA(g)
be the probability that a random walk starting at g lands in A. That is to say, we set
ϕA(g) = g∗ν(A). Since ν is µ-stationary, then ϕA is µ-harmonic. Likewise, given any
bounded function f on Γ we can produce a µ-harmonic function on F2 the same way, by
defining ϕ(g) = Ef(limn→∞ ωn).

It is a natural question whether every bounded harmonic function arises in this way.
Can the space of bounded harmonic functions be identified with the space of bounded har-
monic functions on some geometric ‘boundary’? To answer the question, we borrow some
techniques from PDEs. Recall the Poisson Representation Formula for bounded harmonic
functions on the disk.

Theorem 1. Let h(z) : D→ R be a bounded harmonic function. Then there exists a bounded
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function h : D→ R such that

h(reiθ) =
1

2π

∫ 2π

0

h(eiθ)
1− r2

1 + r2 − 2r cos(θ − ϕ)
dϕ.

Let SL(2,R) act on the D by fractional linear transformations, and set ĥ(g) = h(g(0)).
Let m be the Lebesgue probability measure on S1. Then the Poisson formula states

ĥ(g) =

∫
S1

h(ξ)
dgm

dm
dm(ξ)

=

∫
S1

h(ξ)dgm(ξ)

=

∫
S1

h(gξ)dm(ξ)

2 The Maximal Boundary

A common theme in geometric group theory is to study proximal systems. A metric G-
space X is proximal if for any two points x, y ∈ X we have lim infn→∞ d(T nx, T ny) = 0.
Proximality is a powerful tool, underlying results like linear escape of random walk [Gou21]s,
and the ping-pong lemma [CM17]. The idea behind the boundary is to examine a Lie group
action which is strongly proximal. A G-space is strongly proximal if for every measure π
there exists some sequence gn ∈ G such that gnπ converges to a point measure.

From here onwards, we will follow Furstenberg’s seminal paper [Fur63].

Definition 1. Let G be a Lie group and M a compact G-space. We say that M is a boundary
of G if the action of G is transitive and strongly proximal.

Definition 2. A closed subgroup H ⊂ G is a B-subgroup if G/H is a boundary of G.

The action of G on M induces an action on the space of probability measures on M . We
can use this action to deduce information about the possible boundaries M .

Definition 3. A group G has the fixed-point property if whenever G acts on a compact
convex subset of a locally convex topological vector space, then G has a fixed point.

We quote the following lemma from Furstenberg:

Lemma 1. If G is solvable or compact, then G has the fixed-point property.

Proposition 1. If G has the fixed-point property, then the only boundaries are singletons.

Proof. Let M be a boundary of G. As M is compact, then the set of probability measures
is a compact convex set of measures on M . So we let π be a probability measure fixed by G.
As M is a strongly proximal G-space, then we can pick a sequence gn so that gnπ converges
to a point measure. As π is fixed by G, then π must have been a point measure, hence G has
a global fixed point on M . As the action of G is transitive, then M must be a singleton.
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We use the action ofG on the space of measures in order to construct a maximal boundary,
corresponding to a minimal B-subgroup. From now on, let G be a semi-simple Lie group
with finite center. We have an Iwasawa decomposition G = KS, where K is a maximal
compact subgroup and S is a solvable normal subgroup. In the case G = SL(2,R), then
K = SO(2) and S is the group of unimodular upper triangular matrices.

Our main tool will in constructing the minimal B-subgroup is be the following theorem:

Theorem 2. There is a compact subgroup K0 ⊂ K and a point p0 ∈ G/S so that the measure
π0 = mK0p0 is a limit of measures µ ∗m, and π0 is fixed by S.

Here mG is the Haar measure on G.

Proof. The group G acts on the set of measures Q on M := G/S. Let σ : G→ G/S be the
natural quotient map. Since S is solvable, we can find a measure π ∈ Q fixed by S. In the
Iwasawa decomposition G = KS we can uniquely write g = ks. Therefore ρ : K → G/S
is a homeomorphism. Then we can find a unique measure π on K with σ(π) = π. We
view π as a measure on G. Since σ(sπ) = sσ(π) = sπ = π = σ(π), then sπ ∗ π = π ∗ π.
Then π1 := π ∗ π is invariant under S. We can recursively define πn = π ∗ πn−1. Let K0

be the closed subgroup generated by the support of π0. Then the measures νn = 1
n

∑n
k=0 πk

are supported on K0. By compactness the sequence νn has a converging subsequence that
satisfies π ∗ ν = ν. Hence ν = mK0 . This proves the theorem.

In the case G = SL(2,R), we have K0 is the trivial group, G/S = D, and π0 is a point
mass at ∞.

Now we let H(G) be the subgroup of G that fixes π0. We want to say that H(G) is the
minimal B-subgroup of G. We first show that G/H(G) is a boundary.

Theorem 3. Let G be a semi-simple Lie group with finite center. Then H(G) = K0S,
H(G) has the fixed point property, H(G) is unbounded and is a B-subgroup of G. Also, any
maximal comapct subgroup of G is transitive on B(G).

Proof. Clearly H(G) contains K0 and S. By our Iwasawa decomposition we can write
H = (H ∩K)S. Then if k ∈ H(G) ∩K we have kπ0 = π0. In other words, kmK0 = mK0 , so
that k ∈ K0. Hence H(G) = K0S.

SinceH(G) is a subgroup ofG, then we can make the identificationH(G)/S ∼= σ(H(G)) ⊂
M . We have σ(H(G)) = K0p0, which is the support of π0. Since π0 is invariant under H(G),
we have a measure on H(G)/S invariant under H(G). As S is solvable then it has the fixed
point property, so existence of an invariant measure on H(G)/S implies that H(G) has the
fixed point property. Hence H(G) is unbounded.

Now we show that G/H(G) is a boundary. Since S is a subgroup of H(G) we have a
natural equivariant map τ : G/S → G/H(G). Pick a sequence of measures µn∗m converging
to π0. As τ is equivariant we can write µnτm = τµn ∗m → τπ0. Pick as π0 = MK0p0 and
K0 ⊂ H(G) then τ(K0p0) is a single point, so that τπ0 is a point measure on G/H(G).

To prove the last claim, observe that K acts transitively on G/S. Since τ is surjective
and equivariant then K acts transitively on G/H(G).
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Now we show that B(G) := G/H(G) is a maximal boundary

Theorem 4. If B is any boundary of G, then there is an equivariant map from B(G) onto
B.

Proof. Since H(G) has the fixed point property, it leaves invariant some measure π on B.
Since B is a boundary, then there exists a sequence gn ∈ G so that gnπ converges to a point
measure δ. As H(G) contains S then all measures gnπ are of the form kπ for some k ∈ K.
As K is compact then this set is closed, so that gn → kπ. As this is a point measure, then
π is a point measure. Hence H must fix a point x ∈ B, so that H(G) is contained in the
stabilizer Hx of x. Hence we have an equivariant map G/H(G)→ G/Hx = B.

3 Examples

First let us carry out the development for SL(2,R). We claim that the maximal boundary is
precisely the space of 1-dimensional linear subspaces of R2. Clearly SL(2,R) acts transitively
on P 1, which is compact. We claim that the action is strongly proximal.

Let An =

[
2n 0
0 2−n

] [
cos π/4 − sin π/4
sin π/4 cos π/4

]
. Then let Bn = A1...An. Then for every

interval of I ⊂ D and every neighbourhood I of (0, 1), we have Bn maps I into U for n
sufficiently large. Therefore P 1 is a boundary for SL(2,R).

In our development, we can set K = SO(2) and S = AN , where

A = {
[
λ 0
0 λ−1

]
, λ ∈ R}, N = {

[
1 t
0 1

]
, t ∈ R}.

Then the normalizer of S is contained in a minimal B-subgroup. However, the normalizer
of S is precisely the stabilizer of some point in P 1. Hence H(G) = S and so SL(2,R)/S = P 1

is a maximal boundary for SL(2,R).
One can continue this development for SL(m,R). As in the two-dimensional case, we

have the Iwasawa decomposition K = SO(m) and S = AN , where A is the set of diagonal
matrices with determinant 1, and N is the set of upper-triangular matrices with 1’s on the
diagonal. Let Fm be the space of flags. That is to say, m−1-tuples (V1, ..., Vm−1) where each
Vk ⊂ Rm is a k-dimensional subspace and Vk ⊂ Vk+1. This is also compact, and SO(m) acts
transitively. Likewise, if we pick a diagonal matrix with entres g1 > g2 > ... > gn, then by a
similar argument we can see that Fm is a strongly proximal SL(m,R)-space. Likewise, the
normalizer of S is precisely the set of upper-triangular matrices, which preserve the standard
flag given by Vi = span(e1, ..., ei). Hence Fm is the maximal boundary for SL(m,R).

Likewise, the maximal boundary for SL(2,C) is the space of 1-dimensional complex lines.
However, we can identify SL(2,C) with the group of 4x4 unimodular matrices preserving the
Lorenz form x2 + y2 + z2 − t2. In other words, it leaves invariant the cone x2 + y2 + z2 = t2,
which can be identified with the 2-sphere x2 + y2 + z2 = 1. This gives an action of SL(2,C)
on S2 which is the maximal boundary.
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4 An Abstract Poisson Boundary

Using work of Gelfand, one can quickly construct a compact space which admits a Poisson
representation formula.

Definition 4. We say that a function f(g)→ R is left uniformly continuous (l.u.c) if it is
bounded, and if whenever gn → e we have f(gng)→ f(g) uniformly in g.

Let H be the family of l.u.c µ-harmonic functions. These will correspond to continuous
boundary functions. Now let Ω = (GN, µN) be the product space, and Xi the projection of
the ith coordinate.

Definition 5. Let A be the set of functions z(g, ω) : G× Ω→ R defined as such that

z(g, ω) = lim
n→∞

f(gX1X2...Xn),

where f is l.u.c. and the limit exists almost surely for each g.

Then A forms an algebra of functions on G× Ω, and we have a right G-action given by
zg(g′, ω) = z(gg′, ω). Since f is l.u.c. then the G-action is continuous.

We have a natural map α : A → H given by setting f(g) := Ez(g, ω). That f is l.u.c
follows because z(g, ω) is defined in terms of an l.u.c. function, and that f is µ-harmonic
follows from the definition of z(g, ω).

We have another map β : H → A defined as follows: for g ∈ G let Wn(g) = f(gX1...Xn).
As f is µ-harmonic then Ef(gXn) = f(g). Therefore Wn(g) is a bounded martingale, so that
limn→∞Wn converges almost surely and defines a bounded function z(g, ω). We let β(f) := z.
By the DCT for conditional expectation we get Eβ(f) = f , so that α(β(f)). Likewise, we
have β(α(f)). We can equip both A and H with the L∞ norm, so that α and β are in fact
isometric isomorphisms. The purpose of this transformation H → A is that the latter is an
algebra. Indeed, it is a commutative C∗-algebra, so we can pull back the multiplication and
turn H into a commutative C∗-algebra as well. By Gelfand’s representation theorem, H is
isomorphic as a C∗-algebra to the space of continuous functions with compact support on
some topological spcae Π. As H contains the constants, then Π is compact. We call this
space the Poisson space of (G, µ).

Recall that the points of Π are algebra homomorphisms of H onto C. Clearly G acts
on H to the right by f g(g′) = f(gg′). Hence G acts continuously on Π. We easily obtain
a Poisson representation formula. Let C(Π) be the algebra of continuous complex valued
functions on Π. If ϕ ∈ C(Π) corresponds to a function f ∈ H, let L(φ) denote f(e). Observe
that L is a positive linear functions that sends 1 to 1, so that by the Riesz Representation
Theorem we have L(φ) = ν(φ) for some ν. We get

f(g) = f g(e) = L(ϕg) =

∫
Π

ϕg(p)dν =

∫
Π

ϕ(gp)dν(p).

We obtain the following:
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Theorem 5. There exists a probability measure ν on the Poisson space such that the formula

f(g) =

∫
Π

ϕ(gp)dν(p)

gives a one-to-one correspondence between l.u.c. µ-harmonic functions and continuous func-
tions on Π.

5 The Poisson Boundary and the Maximal Boundary

So far we’ve constructed two types of boundaries. The first is an abstract space that comes
equipped with a Poisson representation formula, but is utterly devoid of geometry. The
second is entirely geometric, but a priori does not admit a Poisson representation formula.
How are these two boundaries related?

Denote the Poisson space by Π. By similar techniques as in section 4, one can show the
following:

Theorem 6. Let K be a maximal compact subgroup of G. Then K acts transitively on Π.
Moreover, Π maps equivariantly onto any boundary B of G. Letting ν be the stationary
measure on Π, we have X1X2...Xnν converges almost surely to a point measure.

The relationship between the two boundaries is the following.

Theorem 7. The Poisson space is a finite covering of the maximal boundary B.

Recall that H(G) = K0S where K0 is compact (and so has finitely many connected
components), and S is connected. HenceH(G) only has finitely many connected components.
Letting H0(G) be the connected component of the identity of H(G), the group H(G)/H0(G)
is finite. For each Poisson space Π, the stabilizer Hπ of a point will be contained in H(G).
As H(G)/Hπ is finite, then Hπ contains H0(G). We deduce the following:

Theorem 8. A semi-simple group G with finite center possesses a finite number of Poisson
spaces, each of which is a finite covering spces of the maximal boundary B(G).

For the Poisson space Π we have a Poisson representation formula for l.u.c. harmonic
functions. By an approximation argument we get the following:

Theorem 9. Let G be a semi-simple Lie group with finite center, and let B(G) be its maximal
boundary. There then is a finite collection Πi of covering spaces with the following property. if
µ is any absolutely continuous probaiblity measure on G, then the family of bounded solutions
to

f(g) =

∫
f(gg′)dµ(g′)

is in one-to-one correspondence with the set of bounded measurable functions on some Πi,
given by

f(g) =

∫
Πi

f̂(p)dgν(p)

for some measure ν on Πi.
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