The Sensitivity Conjecture

Kunal Chawla

November 16, 2021

Kunal Chawla

The Sensitivity Conjecture

November 16, 2021 1 / 26

Let $f : \{\mathbb{Z}/2\mathbb{Z}\}^n \to \{0,1\}$ be a boolean function.

2

イロト イヨト イヨト イヨト

Let $f: \{\mathbb{Z}/2\mathbb{Z}\}^n \to \{0,1\}$ be a boolean function.

Definition

The local sensitivity of f at x is

$$s(f,x) := |\{i : f(x+e_i) \neq f(x)\}|.$$

Let $f: \{\mathbb{Z}/2\mathbb{Z}\}^n \to \{0,1\}$ be a boolean function.

Definition

The local sensitivity of f at x is

$$s(f,x) := |\{i : f(x+e_i) \neq f(x)\}|.$$

Definition

The sensitivity of f is

$$\max_{x\in\{\mathbb{Z}/2\mathbb{Z}\}^n} s(f,x)$$

Definition

The local block sensitivity, bs(f, x) of f at x is the maximum number of disjoint subsets $B_1, ..., B_k \subset \{1, ..., n\}$ such that

$$f(x+\sum_{i\in B_j}e_i)\neq f(x).$$

Definition

The local block sensitivity, bs(f, x) of f at x is the maximum number of disjoint subsets $B_1, ..., B_k \subset \{1, ..., n\}$ such that

$$f(x+\sum_{i\in B_j}e_i)\neq f(x).$$

Definition

The block sensitivity, bs(f) is

 $\max_{x\in\{\mathbb{Z}/2\mathbb{Z}\}^n}bs(f,x).$

э

E 6 4

э

• The deterministic decision-tree complexity.

- The deterministic decision-tree complexity.
- The degree of *f* as a polynomial.

- The deterministic decision-tree complexity.
- The degree of *f* as a polynomial.
- The certificate complexity of f.

- The deterministic decision-tree complexity.
- The degree of *f* as a polynomial.
- The certificate complexity of f.

Question

How does block sensitivity relate to sensitivity?

Proposition

For any boolean function f, $bs(f) \ge s(f)$.

Image: A matrix and a matrix

2

Proposition

For any boolean function f, $bs(f) \ge s(f)$.

Proof.

Singletons are sets.

æ

Image: A matrix and a matrix

Proposition

For any boolean function f, $bs(f) \ge s(f)$.

Proof.

Singletons are sets.

Conjecture (Sensitivity Conjecture)

There exists C > 0 such that

 $bs(f) \leq s(f)^C$

for all boolean functions f.

A related problem

Let Q^n be the graph defined as follows:

- The vertices of Q^n are elements of $(\mathbb{Z}/2\mathbb{Z})^n$
- Two elements $x, y \in \{\mathbb{Z}/2\mathbb{Z}\}^n$ are adjacent if there exists some *i* with $y = x + e_i$.

A related problem

Let Q^n be the graph defined as follows:

- The vertices of Q^n are elements of $(\mathbb{Z}/2\mathbb{Z})^n$
- Two elements $x, y \in \{\mathbb{Z}/2\mathbb{Z}\}^n$ are adjacent if there exists some *i* with $y = x + e_i$.

Conjecture (Hypercube Sensitivity)

If H is an induced subgraph of Q^n with $|V(H)| \ge 2^{n-1} + 1$ vertices, then $\Delta(H) \ge \sqrt{n}$.

• Let $X_i: (\mathbb{Z}/2\mathbb{Z})^n \to \{-1,1\}$ be given by

$$X_i(x)=(-1)^{x_i}.$$

э

ヨト イヨト

Image: A matrix and a matrix

• Let $X_i: (\mathbb{Z}/2\mathbb{Z})^n \to \{-1,1\}$ be given by

$$X_i(x)=(-1)^{x_i}.$$

• The monomials $\prod_{i \in I} X_i$ are the characters of $(\mathbb{Z}/2\mathbb{Z})^n$, so that every f is a polynomial.

• Let $X_i: (\mathbb{Z}/2\mathbb{Z})^n \to \{-1,1\}$ be given by

$$X_i(x)=(-1)^{x_i}.$$

- The monomials $\prod_{i \in I} X_i$ are the characters of $(\mathbb{Z}/2\mathbb{Z})^n$, so that every f is a polynomial.
- Let $\mu(x) = X_1(x)...X_n(x)$.

Proposition

For any boolean function $f : (\mathbb{Z}/2\mathbb{Z})^n \to \{-1,1\}$, we have $s(f) \ge \sqrt{\deg(f)}$.

Proposition

For any boolean function $f : (\mathbb{Z}/2\mathbb{Z})^n \to \{-1,1\}$, we have $s(f) \ge \sqrt{\deg(f)}$.

Proof.

• Let $m = \deg(f)$. By permuting indices, and restricting to $(\mathbb{Z}/2\mathbb{Z})^m$, assume WLOG that m = n.

Proposition

For any boolean function $f : (\mathbb{Z}/2\mathbb{Z})^n \to \{-1,1\}$, we have $s(f) \ge \sqrt{\deg(f)}$.

- Let $m = \deg(f)$. By permuting indices, and restricting to $(\mathbb{Z}/2\mathbb{Z})^m$, assume WLOG that m = n.
- The Fourier coefficient $X_1...X_n$ is

$$\frac{1}{2^n}\sum_{x\in(\mathbb{Z}/2\mathbb{Z})^n}f(x)\mu(x)\neq 0.$$

Proposition

For any boolean function $f : (\mathbb{Z}/2\mathbb{Z})^n \to \{-1,1\}$, we have $s(f) \ge \sqrt{\deg(f)}$.

Proof.

- Let $m = \deg(f)$. By permuting indices, and restricting to $(\mathbb{Z}/2\mathbb{Z})^m$, assume WLOG that m = n.
- The Fourier coefficient $X_1...X_n$ is

$$\frac{1}{2^n}\sum_{x\in(\mathbb{Z}/2\mathbb{Z})^n}f(x)\mu(x)\neq 0.$$

• Hence $|\{x : \mu(x)f(x) = 1\}| \neq |\{x : \mu(x)f(x) = -1\}|.$

Proposition

For any boolean function $f : (\mathbb{Z}/2\mathbb{Z})^n \to \{-1,1\}$, we have $s(f) \ge \sqrt{\deg(f)}$.

Proof.

- Let $m = \deg(f)$. By permuting indices, and restricting to $(\mathbb{Z}/2\mathbb{Z})^m$, assume WLOG that m = n.
- The Fourier coefficient $X_1...X_n$ is

$$\frac{1}{2^n}\sum_{x\in(\mathbb{Z}/2\mathbb{Z})^n}f(x)\mu(x)\neq 0.$$

• Hence $|\{x : \mu(x)f(x) = 1\}| \neq |\{x : \mu(x)f(x) = -1\}|$.Let *E* be the larger set.

Proposition

For any boolean function $f : (\mathbb{Z}/2\mathbb{Z})^n \to \{-1,1\}$, we have $s(f) \ge \sqrt{\deg(f)}$.

Proof.

- Let $m = \deg(f)$. By permuting indices, and restricting to $(\mathbb{Z}/2\mathbb{Z})^m$, assume WLOG that m = n.
- The Fourier coefficient $X_1...X_n$ is

$$\frac{1}{2^n}\sum_{x\in(\mathbb{Z}/2\mathbb{Z})^n}f(x)\mu(x)\neq 0.$$

• Hence $|\{x : \mu(x)f(x) = 1\}| \neq |\{x : \mu(x)f(x) = -1\}|$.Let *E* be the larger set.

Proposition

For any boolean function $f : (\mathbb{Z}/2\mathbb{Z})^n \to \{-1,1\}$, we have $s(f) \ge \sqrt{\deg(f)}$.

Proof.

• By Hypercube Sensitivity, there exists $x \in E$ such that $x + e_i \in E$ for $\lceil \sqrt{n} \rceil$ values of *i*.

Proposition

For any boolean function $f : (\mathbb{Z}/2\mathbb{Z})^n \to \{-1,1\}$, we have $s(f) \ge \sqrt{\deg(f)}$.

- By Hypercube Sensitivity, there exists $x \in E$ such that $x + e_i \in E$ for $\lceil \sqrt{n} \rceil$ values of *i*.
- As $\mu(x + e_i) = -\mu(x)$ we have $f(x + e_i) \neq f(x)$, for at least \sqrt{n} values of *i*.

Theorem

There exists an induced subgraph $H \subset Q^n$ such that $|V(H)| = 2^{n-1} + 1$ and $\Delta(H) \leq \lceil \sqrt{n} \rceil$.

э

Theorem

There exists an induced subgraph $H \subset Q^n$ such that $|V(H)| = 2^{n-1} + 1$ and $\Delta(H) \leq \lceil \sqrt{n} \rceil$.

• Let
$$\mu(x) := (-1)^{x_1 + \dots x_n}$$

Theorem

There exists an induced subgraph $H \subset Q^n$ such that $|V(H)| = 2^{n-1} + 1$ and $\Delta(H) \leq \lceil \sqrt{n} \rceil$.

- Let $\mu(x) := (-1)^{x_1 + \dots x_n}$.
- Let $I_1, ..., I_k$ be a partition of $\{1, ..., n\}$.

Theorem

There exists an induced subgraph $H \subset Q^n$ such that $|V(H)| = 2^{n-1} + 1$ and $\Delta(H) \leq \lceil \sqrt{n} \rceil$.

- Let $\mu(x) := (-1)^{x_1 + \dots x_n}$.
- Let $I_1, ..., I_k$ be a partition of $\{1, ..., n\}$.Let

$$V_j = \{x : x_i = 0 \text{ for } i \in I_j\}.$$

Theorem

There exists an induced subgraph $H \subset Q^n$ such that $|V(H)| = 2^{n-1} + 1$ and $\Delta(H) \leq \lceil \sqrt{n} \rceil$.

Proof.

• Let
$$\mu(x) := (-1)^{x_1 + ... x_n}$$

• Let $I_1, ..., I_k$ be a partition of $\{1, ..., n\}$.Let

$$V_j = \{x : x_i = 0 \text{ for } i \in I_j\}.$$

$$\sum_{\mathbf{x}\in\cap_{j\in J}V_j}\mu(\mathbf{x})=\mathbf{1}_{n=\sum_{j\in J}|I_j|}.$$

• By inclusion-exclusion,

$$\sum_{x\in (\mathbb{Z}/2\mathbb{Z})^nigvee \cup_{j=1}^k V_j} \mu(x) = (-1)^k.$$

3

イロト イヨト イヨト イヨト

Proof.

• By inclusion-exclusion,

$$\sum_{x\in (\mathbb{Z}/2\mathbb{Z})^n\setminus \cup_{j=1}^k V_j} \mu(x) = (-1)^k.$$

• Therefore

$$\sum_{x \in \cup_{j=1}^{k} V_j} \mu(x) = (-1)^{k+1}.$$

2

イロト イヨト イヨト イヨト

Proof.

• By inclusion-exclusion,

$$\sum_{\mathsf{x}\in (\mathbb{Z}/2\mathbb{Z})^n\setminus \cup_{j=1}^k V_j} \mu(\mathsf{x}) = (-1)^k.$$

• Therefore

$$\sum_{x \in \cup_{j=1}^{k} V_j} \mu(x) = (-1)^{k+1}.$$

• So

$$\sum_{x \in \bigcup_{j=1}^{k} V_j} (-1)^{k+1} \mu(x) + \sum_{x \notin \bigcup_{j=1}^{k} V_j} (-1)^k \mu(x) = 2.$$

æ

イロト イヨト イヨト イヨ

Proof.

• Let

$$H_1=\{x
otin \cup_{j=1}^kV_j ext{ such that } (-1)^k\mu(x)=1\}.$$

• Let

$$H_1 = \{x \notin \cup_{j=1}^k V_j \text{ such that } (-1)^k \mu(x) = 1\}.$$

• Let

$$H_2 = \{x \in \cup_{j=1}^k V_j \text{ such that } (-1)^{k+1} \mu(x) = 1\}.$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

• Let

$$H_1 = \{x \notin \cup_{j=1}^k V_j \text{ such that } (-1)^k \mu(x) = 1\}.$$

• Let

$$H_2 = \{x \in \cup_{j=1}^k V_j \text{ such that } (-1)^{k+1} \mu(x) = 1\}.$$

• Let
$$H = H_1 \cup H_2$$
, so that $|E| = 2^{n-1} + 1$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘

• If $x \in H_2$ then $(-1)^k \mu(x + e_i) = 1$ for all i.

Kunal Chawla

< □ > < 同 >

• If $x \in H_2$ then $(-1)^k \mu(x + e_i) = 1$ for all *i*. Also, $x + e_i \in V_j$ as long as $i \in I_j$.

• If $x \in H_2$ then $(-1)^k \mu(x + e_i) = 1$ for all *i*. Also, $x + e_i \in V_j$ as long as $i \in I_j$. Hence deg $(x) \leq \max_j |I_j|$.

- If $x \in H_2$ then $(-1)^k \mu(x + e_i) = 1$ for all *i*. Also, $x + e_i \in V_j$ as long as $i \in I_j$. Hence deg $(x) \leq \max_j |I_j|$.
- If $x \in H_1$ then $(-1)^{k+1}\mu(x+e_i) = 1$, and there is at most one *i* such that $x + e_i \in V_j$.

- If $x \in H_2$ then $(-1)^k \mu(x + e_i) = 1$ for all *i*. Also, $x + e_i \in V_j$ as long as $i \in I_j$. Hence deg $(x) \leq \max_j |I_j|$.
- If $x \in H_1$ then $(-1)^{k+1}\mu(x+e_i) = 1$, and there is at most one *i* such that $x + e_i \in V_j$. Hence $\deg(x) \le k$.

- If $x \in H_2$ then $(-1)^k \mu(x + e_i) = 1$ for all *i*. Also, $x + e_i \in V_j$ as long as $i \in I_j$. Hence deg $(x) \leq \max_j |I_j|$.
- If $x \in H_1$ then $(-1)^{k+1}\mu(x+e_i) = 1$, and there is at most one *i* such that $x + e_i \in V_j$. Hence $\deg(x) \le k$.
- This implies $\Delta(H) \leq \max\{\max_j |I|_j, k\}$.

- If $x \in H_2$ then $(-1)^k \mu(x + e_i) = 1$ for all *i*. Also, $x + e_i \in V_j$ as long as $i \in I_j$. Hence deg $(x) \leq \max_j |I_j|$.
- If $x \in H_1$ then $(-1)^{k+1}\mu(x+e_i) = 1$, and there is at most one *i* such that $x + e_i \in V_j$. Hence $\deg(x) \le k$.
- This implies $\Delta(H) \leq \max\{\max_j |I|_j, k\}$.
- Let I_j be a partition of [n] into $\sim \sqrt{n}$ pieces of size $\sim \sqrt{n}$, so that $\Delta(H) \leq \lceil \sqrt{n} \rceil$.

We've seen

• Why Hypercube Sensitivity implies the Sensitivity conjecture.

We've seen

- Why Hypercube Sensitivity implies the Sensitivity conjecture.
- Why the \sqrt{n} is sharp

If H is an induced subgraph of Q^n with $|V(H)| \ge 2^{n-1} + 1$ vertices, then $\Delta(H) \ge \sqrt{n}$.

Let H be a graph. If λ is an eigenvalue of the adjacency matrix A(H), then $|\lambda| \leq \Delta(H)$.

æ

▶ < ∃ >

Image: A matrix and a matrix

Let H be a graph. If λ is an eigenvalue of the adjacency matrix A(H), then $|\lambda| \leq \Delta(H)$.

Proof.

Let v be an eigenvector for λ and suppose that v_1 is the largest coordinate of v (in absolute value).

Let H be a graph. If λ is an eigenvalue of the adjacency matrix A(H), then $|\lambda| \leq \Delta(H)$.

Proof.

Let v be an eigenvector for λ and suppose that v_1 is the largest coordinate of v (in absolute value). Then

$$|\lambda v_1| = \left|\sum_{k=1}^m A_{1,k} v_k\right| \le \sum_{k=1}^m |A_{1,k}| |v_1| \le \Delta(H) |v_1|.$$

Let H be a graph. If λ is an eigenvalue of the adjacency matrix A(H), then $|\lambda| \leq \Delta(H)$.

Proof.

Let v be an eigenvector for λ and suppose that v_1 is the largest coordinate of v (in absolute value). Then

$$|\lambda v_1| = \left|\sum_{k=1}^m A_{1,k} v_k\right| \le \sum_{k=1}^m |A_{1,k}| |v_1| \le \Delta(H) |v_1|.$$

We have actually proven the following:

Lemma

Let B be a matrix such that $|B| \leq A(H)$ entrywise. Then if λ is an eigenvalue of B, we have $\lambda \leq \Delta(H)$.

Kunal Chawla

The Strategy Now

Construct an auxiliary object with nice spectral properties.

The Strategy Now

Construct an auxiliary object with nice spectral properties.

Question

How can we estimate the eigenvalues of a pseudo-adjacency matrix of H?

Theorem (Cauchy's interlace Theorem)

Suppose that A is a symmetric $n \times n$ matrix, and B is a principal $m \times m$ submatrix, where m < n. If the eigenvalues of A are $\lambda_1 \leq ... \leq \lambda_n$ and the eigenvalues of B are $\beta_1 \leq ... \leq \beta_m$, then

 $\lambda_i \leq \beta_i \leq \lambda_{i+n-m}.$

Lemma (Min-Max principle)

Suppose A is an $n \times n$ symmetric matrix, and let $R_A(x) = \frac{\langle Ax, x \rangle}{\langle x, x \rangle}$ be the Rayleigh quotient. If $\lambda_1 \leq ... \leq \lambda_k \leq ... \lambda_n$ are the eigenvalues of A, then

$$\lambda_k = \min_U \{\max_x \{R_A(x) | x \in U \text{ and } x \neq 0 | dim(U) = k\}\},$$

and

$$\lambda_k = \max_U \{ \min_x \{ R_A(x) | x \in U \text{ and } x \neq 0 | \dim(U) = n - k + 1 \} \}$$

Lemma (Min-Max principle)

Suppose A is an $n \times n$ symmetric matrix, and let $R_A(x) = \frac{\langle Ax, x \rangle}{\langle x, x \rangle}$ be the Rayleigh quotient. If $\lambda_1 \leq ... \leq \lambda_k \leq ... \lambda_n$ are the eigenvalues of A, then

$$\lambda_k = \min_U \{\max_x \{R_A(x) | x \in U \text{ and } x \neq 0 | dim(U) = k\}\},$$

and

$$\lambda_k = \max_U \{\min_x \{R_A(x)|x \in U \text{ and } x \neq 0 | dim(U) = n-k+1\}\}.$$

Proof.

Count dimensions

Theorem (Cauchy's interlace Theorem)

Suppose that A is a symmetric $n \times n$ matrix, and B is a principal $m \times m$ submatrix, where m < n. If the eigenvalues of A are $\lambda_1 \leq ... \leq \lambda_n$ and the eigenvalues of B are $\beta_1 \leq ... \leq \beta_m$, then

 $\lambda_i \leq \beta_i \leq \lambda_{i+n-m}.$

Let $A = \begin{bmatrix} B & X^T \\ X & Z \end{bmatrix}$, and let $\{v_k, ..., v_n\}$ be the last n - k + 1 eigenvectors of A, and $\{w_1, ..., w_m\}$ the eigenvectors of B.

Let $A = \begin{bmatrix} B & X^T \\ X & Z \end{bmatrix}$, and let $\{v_k, ..., v_n\}$ be the last n - k + 1 eigenvectors of A, and $\{w_1, ..., w_m\}$ the eigenvectors of B. Let $V = \text{span}\{v_k, ..., v_n\}$, $W = \text{span}(w_1, ..., w_k)$. Lift $\widehat{W} = \begin{pmatrix} W \\ 0 \end{pmatrix}$.

Let $A = \begin{bmatrix} B & X^T \\ X & Z \end{bmatrix}$, and let $\{v_k, ..., v_n\}$ be the last n - k + 1 eigenvectors of A, and $\{w_1, ..., w_m\}$ the eigenvectors of B. Let $V = \text{span}\{v_k, ..., v_n\}$, $W = \text{span}(w_1, ..., w_k)$. Lift $\widehat{W} = \begin{pmatrix} W \\ 0 \end{pmatrix}$. Since dim V = n - k + 1 and dim $\widehat{W} = k$, there exists some $\hat{w} \in V \cap \widehat{W}$. Hence $R_A(\hat{w}) = R_B(w)$

Let $A = \begin{bmatrix} B & X^T \\ X & Z \end{bmatrix}$, and let $\{v_k, ..., v_n\}$ be the last n - k + 1 eigenvectors of A, and $\{w_1, ..., w_m\}$ the eigenvectors of B. Let $V = \text{span}\{v_k, ..., v_n\}$, $W = \text{span}(w_1, ..., w_k)$. Lift $\widehat{W} = \begin{pmatrix} W \\ 0 \end{pmatrix}$. Since dim V = n - k + 1 and dim $\widehat{W} = k$, there exists some $\widehat{w} \in V \cap \widehat{W}$. Hence $R_A(\widehat{w}) = R_B(w)$ Hence

$$\lambda_k \leq \min_{x \in V} R_A(x) \leq R_A(\hat{w}) = R_B(w) \leq \max_{w \in W} R_B(x) = eta_k.$$

Let $A = \begin{bmatrix} B & X^T \\ X & Z \end{bmatrix}$, and let $\{v_k, ..., v_n\}$ be the last n - k + 1 eigenvectors of A, and $\{w_1, ..., w_m\}$ the eigenvectors of B. Let $V = \text{span}\{v_k, ..., v_n\}$, $W = \text{span}(w_1, ..., w_k)$. Lift $\widehat{W} = \begin{pmatrix} W \\ 0 \end{pmatrix}$. Since dim V = n - k + 1 and dim $\widehat{W} = k$, there exists some $\widehat{w} \in V \cap \widehat{W}$. Hence $R_A(\widehat{w}) = R_B(w)$ Hence

$$\lambda_k \leq \min_{x \in V} R_A(x) \leq R_A(\hat{w}) = R_B(w) \leq \max_{w \in W} R_B(x) = \beta_k.$$

The other direction is similar, with $V = \text{span}(v_1, ..., v_{k+n-m})$ and $W = \text{span}(w_k, ..., w_m)$.

Consider the following sequence of matrices given by

$$A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $A_n = \begin{bmatrix} A_{n-1} & I \\ I & -A_{n-1} \end{bmatrix}$.

Consider the following sequence of matrices given by

$$A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $A_n = \begin{bmatrix} A_{n-1} & I \\ I & -A_{n-1} \end{bmatrix}$.

Lemma

Replacing every -1 with 1, we get the adjacency matrix of Q^n .

Consider the following sequence of matrices given by

$$A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $A_n = \begin{bmatrix} A_{n-1} & I \\ I & -A_{n-1} \end{bmatrix}$.

Lemma

 $A_n^2 = nI$

Consider the following sequence of matrices given by

$$A_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $A_n = \begin{bmatrix} A_{n-1} & I \\ I & -A_{n-1} \end{bmatrix}$.

Lemma

The eigenvalues of A_n are $\pm \sqrt{n}$ with multiplicity 2^{n-1} .

If H is an induced subgraph of Q^n with $|V(H)| \ge 2^{n-1} + 1$, then $\Delta H \ge \sqrt{n}$.

3

If H is an induced subgraph of Q^n with $|V(H)| \ge 2^{n-1} + 1$, then $\Delta H \ge \sqrt{n}$.

Proof.

Let A_H be the induced principle submatrix of A.

If H is an induced subgraph of Q^n with $|V(H)| \ge 2^{n-1} + 1$, then $\Delta H \ge \sqrt{n}$.

Proof.

Let A_H be the induced principle submatrix of A. As $|H| \ge 2^{n-1} + 1$, then by Cauchy's interlacing theorem, we have

$$\Delta H \geq \lambda_1(A_H) \geq \lambda_{2^{n-1}}(A_n) = \sqrt{n}.$$

In Summary

We

- **1** Translated a problem into a combinatorial statement about graphs.
- Incountered a variational representation of eigenvalues.
- Used spectral methods to lower bound the maximum degree of a graph.