The Sensitivity Conjecture

Kunal Chawla

November 16, 2021

Let $f:\{\mathbb{Z} / 2 \mathbb{Z}\}^{n} \rightarrow\{0,1\}$ be a boolean function.

Let $f:\{\mathbb{Z} / 2 \mathbb{Z}\}^{n} \rightarrow\{0,1\}$ be a boolean function.

Definition

The local sensitivity of f at x is

$$
s(f, x):=\left|\left\{i: f\left(x+e_{i}\right) \neq f(x)\right\}\right| .
$$

Let $f:\{\mathbb{Z} / 2 \mathbb{Z}\}^{n} \rightarrow\{0,1\}$ be a boolean function.

Definition

The local sensitivity of f at x is

$$
s(f, x):=\left|\left\{i: f\left(x+e_{i}\right) \neq f(x)\right\}\right| .
$$

Definition

The sensitivity of f is

$$
\max _{x \in\{\mathbb{Z} / 2 \mathbb{Z}\}^{n}} s(f, x)
$$

Definition

The local block sensitivity, bs (f, x) of f at x is the maximum number of disjoint subsets $B_{1}, \ldots, B_{k} \subset\{1, \ldots, n\}$ such that

$$
f\left(x+\sum_{i \in B_{j}} e_{i}\right) \neq f(x)
$$

Definition

The local block sensitivity, bs (f, x) of f at x is the maximum number of disjoint subsets $B_{1}, \ldots, B_{k} \subset\{1, \ldots, n\}$ such that

$$
f\left(x+\sum_{i \in B_{j}} e_{i}\right) \neq f(x)
$$

Definition

The block sensitivity, bs (f) is

$$
\max _{x \in\{\mathbb{Z} / 2 \mathbb{Z}\}^{n}} b s(f, x) .
$$

The block sensitivity is polynomially related to other complexity measures, such as

The block sensitivity is polynomially related to other complexity measures, such as

- The deterministic decision-tree complexity.

The block sensitivity is polynomially related to other complexity measures, such as

- The deterministic decision-tree complexity.
- The degree of f as a polynomial.

The block sensitivity is polynomially related to other complexity measures, such as

- The deterministic decision-tree complexity.
- The degree of f as a polynomial.
- The certificate complexity of f.

The block sensitivity is polynomially related to other complexity measures, such as

- The deterministic decision-tree complexity.
- The degree of f as a polynomial.
- The certificate complexity of f.

Question

How does block sensitivity relate to sensitivity?

Proposition

For any boolean function $f, b s(f) \geq s(f)$.

Proposition

For any boolean function $f, b s(f) \geq s(f)$.

Proof.

Singletons are sets.

Proposition

For any boolean function $f, b s(f) \geq s(f)$.

Proof.

Singletons are sets.

Conjecture (Sensitivity Conjecture)

There exists $C>0$ such that

$$
b s(f) \leq s(f)^{c}
$$

for all boolean functions f.

A related problem

Let Q^{n} be the graph defined as follows:

- The vertices of Q^{n} are elements of $(\mathbb{Z} / 2 \mathbb{Z})^{n}$
- Two elements $x, y \in\{\mathbb{Z} / 2 \mathbb{Z}\}^{n}$ are adjacent if there exists some i with $y=x+e_{i}$.

A related problem

Let Q^{n} be the graph defined as follows:

- The vertices of Q^{n} are elements of $(\mathbb{Z} / 2 \mathbb{Z})^{n}$
- Two elements $x, y \in\{\mathbb{Z} / 2 \mathbb{Z}\}^{n}$ are adjacent if there exists some i with $y=x+e_{i}$.

Conjecture (Hypercube Sensitivity)

If H is an induced subgraph of Q^{n} with $|V(H)| \geq 2^{n-1}+1$ vertices, then $\Delta(H) \geq \sqrt{n}$.

Hypercube Sensitivity implies Sensitivity

- Let $X_{i}:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow\{-1,1\}$ be given by

$$
X_{i}(x)=(-1)^{x_{i}} .
$$

Hypercube Sensitivity implies Sensitivity

- Let $X_{i}:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow\{-1,1\}$ be given by

$$
X_{i}(x)=(-1)^{x_{i}} .
$$

- The monomials $\prod_{i \in I} X_{i}$ are the characters of $(\mathbb{Z} / 2 \mathbb{Z})^{n}$, so that every f is a polynomial.

Hypercube Sensitivity implies Sensitivity

- Let $X_{i}:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow\{-1,1\}$ be given by

$$
X_{i}(x)=(-1)^{x_{i}} .
$$

- The monomials $\prod_{i \in I} X_{i}$ are the characters of $(\mathbb{Z} / 2 \mathbb{Z})^{n}$, so that every f is a polynomial.
- Let $\mu(x)=X_{1}(x) \ldots X_{n}(x)$.

Hypercube Sensitivity implies Sensitivity

Proposition

For any boolean function $f:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow\{-1,1\}$, we have $s(f) \geq \sqrt{\operatorname{deg}(f)}$.

Hypercube Sensitivity implies Sensitivity

Proposition

For any boolean function $f:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow\{-1,1\}$, we have $s(f) \geq \sqrt{\operatorname{deg}(f)}$.

Proof.

- Let $m=\operatorname{deg}(f)$. By permuting indices, and restricting to $(\mathbb{Z} / 2 \mathbb{Z})^{m}$, assume WLOG that $m=n$.

Hypercube Sensitivity implies Sensitivity

Proposition

For any boolean function $f:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow\{-1,1\}$, we have $s(f) \geq \sqrt{\operatorname{deg}(f)}$.

Proof.

- Let $m=\operatorname{deg}(f)$. By permuting indices, and restricting to $(\mathbb{Z} / 2 \mathbb{Z})^{m}$, assume WLOG that $m=n$.
- The Fourier coefficient $X_{1} \ldots X_{n}$ is

$$
\frac{1}{2^{n}} \sum_{x \in(\mathbb{Z} / 2 \mathbb{Z})^{n}} f(x) \mu(x) \neq 0 .
$$

Hypercube Sensitivity implies Sensitivity

Proposition

For any boolean function $f:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow\{-1,1\}$, we have $s(f) \geq \sqrt{\operatorname{deg}(f)}$.

Proof.

- Let $m=\operatorname{deg}(f)$. By permuting indices, and restricting to $(\mathbb{Z} / 2 \mathbb{Z})^{m}$, assume WLOG that $m=n$.
- The Fourier coefficient $X_{1} \ldots X_{n}$ is

$$
\frac{1}{2^{n}} \sum_{x \in(\mathbb{Z} / 2 \mathbb{Z})^{n}} f(x) \mu(x) \neq 0 .
$$

- Hence $|\{x: \mu(x) f(x)=1\}| \neq|\{x: \mu(x) f(x)=-1\}|$.

Hypercube Sensitivity implies Sensitivity

Proposition

For any boolean function $f:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow\{-1,1\}$, we have $s(f) \geq \sqrt{\operatorname{deg}(f)}$.

Proof.

- Let $m=\operatorname{deg}(f)$. By permuting indices, and restricting to $(\mathbb{Z} / 2 \mathbb{Z})^{m}$, assume WLOG that $m=n$.
- The Fourier coefficient $X_{1} \ldots X_{n}$ is

$$
\frac{1}{2^{n}} \sum_{x \in(\mathbb{Z} / 2 \mathbb{Z})^{n}} f(x) \mu(x) \neq 0
$$

- Hence $|\{x: \mu(x) f(x)=1\}| \neq|\{x: \mu(x) f(x)=-1\}|$.Let E be the larger set.

Hypercube Sensitivity implies Sensitivity

Proposition

For any boolean function $f:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow\{-1,1\}$, we have $s(f) \geq \sqrt{\operatorname{deg}(f)}$.

Proof.

- Let $m=\operatorname{deg}(f)$. By permuting indices, and restricting to $(\mathbb{Z} / 2 \mathbb{Z})^{m}$, assume WLOG that $m=n$.
- The Fourier coefficient $X_{1} \ldots X_{n}$ is

$$
\frac{1}{2^{n}} \sum_{x \in(\mathbb{Z} / 2 \mathbb{Z})^{n}} f(x) \mu(x) \neq 0 .
$$

- Hence $|\{x: \mu(x) f(x)=1\}| \neq|\{x: \mu(x) f(x)=-1\}|$.Let E be the larger set.

Hypercube Sensitivity implies Sensitivity

Proposition

For any boolean function $f:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow\{-1,1\}$, we have $s(f) \geq \sqrt{\operatorname{deg}(f)}$.

Proof.

- By Hypercube Sensitivity, there exists $x \in E$ such that $x+e_{i} \in E$ for $\lceil\sqrt{n}\rceil$ values of i.

Hypercube Sensitivity implies Sensitivity

Proposition

For any boolean function $f:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow\{-1,1\}$, we have $s(f) \geq \sqrt{\operatorname{deg}(f)}$.

Proof.

- By Hypercube Sensitivity, there exists $x \in E$ such that $x+e_{i} \in E$ for $\lceil\sqrt{n}\rceil$ values of i.
- As $\mu\left(x+e_{i}\right)=-\mu(x)$ we have $f\left(x+e_{i}\right) \neq f(x)$, for at least \sqrt{n} values of i.

Why is \sqrt{n} sharp?

Theorem

There exists an induced subgraph $H \subset Q^{n}$ such that $|V(H)|=2^{n-1}+1$ and $\Delta(H) \leq\lceil\sqrt{n}$.

Why is \sqrt{n} sharp?

Theorem

There exists an induced subgraph $H \subset Q^{n}$ such that $|V(H)|=2^{n-1}+1$ and $\Delta(H) \leq\lceil\sqrt{n}$.

Proof.

- Let $\mu(x):=(-1)^{x_{1}+\ldots x_{n}}$.

Why is \sqrt{n} sharp?

Theorem

There exists an induced subgraph $H \subset Q^{n}$ such that $|V(H)|=2^{n-1}+1$ and $\Delta(H) \leq\lceil\sqrt{n}$.

Proof.

- Let $\mu(x):=(-1)^{x_{1}+\ldots x_{n}}$.
- Let I_{1}, \ldots, I_{k} be a partition of $\{1, \ldots, n\}$.

Why is \sqrt{n} sharp?

Theorem

There exists an induced subgraph $H \subset Q^{n}$ such that $|V(H)|=2^{n-1}+1$ and $\Delta(H) \leq\lceil\sqrt{n}$.

Proof.

- Let $\mu(x):=(-1)^{x_{1}+\ldots x_{n}}$.
- Let I_{1}, \ldots, I_{k} be a partition of $\{1, \ldots, n\}$. Let

$$
V_{j}=\left\{x: x_{i}=0 \text { for } i \in I_{j}\right\}
$$

Why is \sqrt{n} sharp?

Theorem

There exists an induced subgraph $H \subset Q^{n}$ such that $|V(H)|=2^{n-1}+1$ and $\Delta(H) \leq\lceil\sqrt{n}\rceil$.

Proof.

- Let $\mu(x):=(-1)^{x_{1}+\ldots x_{n}}$.
- Let I_{1}, \ldots, I_{k} be a partition of $\{1, \ldots, n\}$. Let

$$
V_{j}=\left\{x: x_{i}=0 \text { for } i \in I_{j}\right\}
$$

- By the binomial theorem,

$$
\sum_{x \in \cap_{j \in J} V_{j}} \mu(x)=1_{n=\sum_{j \in J}\left|I_{j}\right| .} .
$$

Proof.

- By inclusion-exclusion,

$$
\sum_{x \in(\mathbb{Z} / 2 \mathbb{Z})^{n} \backslash \cup_{j=1}^{k} v_{j}} \mu(x)=(-1)^{k} .
$$

Proof.

- By inclusion-exclusion,

$$
\sum_{x \in(\mathbb{Z} / 2 \mathbb{Z})^{n} \backslash \cup_{j=1}^{k} v_{j}} \mu(x)=(-1)^{k} .
$$

- Therefore

$$
\sum_{x \in \cup_{j=1}^{k} V_{j}} \mu(x)=(-1)^{k+1}
$$

Proof.

- By inclusion-exclusion,

$$
\sum_{x \in(\mathbb{Z} / 2 \mathbb{Z})^{n} \backslash \cup_{j=1}^{k} v_{j}} \mu(x)=(-1)^{k} .
$$

- Therefore

$$
\sum_{x \in \cup_{j=1}^{k} v_{j}} \mu(x)=(-1)^{k+1}
$$

- So

$$
\sum_{x \in \cup_{j=1}^{k} v_{j}}(-1)^{k+1} \mu(x)+\sum_{x \notin \cup j=1}^{k} v_{j}(-1)^{k} \mu(x)=2 .
$$

- Let

$$
H_{1}=\left\{x \notin \cup_{j=1}^{k} V_{j} \text { such that }(-1)^{k} \mu(x)=1\right\}
$$

Proof.

- Let

$$
H_{1}=\left\{x \notin \cup_{j=1}^{k} V_{j} \text { such that }(-1)^{k} \mu(x)=1\right\}
$$

- Let

$$
H_{2}=\left\{x \in \cup_{j=1}^{k} V_{j} \text { such that }(-1)^{k+1} \mu(x)=1\right\} .
$$

Proof.

- Let

$$
H_{1}=\left\{x \notin \cup_{j=1}^{k} V_{j} \text { such that }(-1)^{k} \mu(x)=1\right\}
$$

- Let

$$
H_{2}=\left\{x \in \cup_{j=1}^{k} V_{j} \text { such that }(-1)^{k+1} \mu(x)=1\right\} .
$$

- Let $H=H_{1} \cup H_{2}$, so that $|E|=2^{n-1}+1$.

Proof.

- If $x \in H_{2}$ then $(-1)^{k} \mu\left(x+e_{i}\right)=1$ for all i.

Proof.

- If $x \in H_{2}$ then $(-1)^{k} \mu\left(x+e_{i}\right)=1$ for all i. Also, $x+e_{i} \in V_{j}$ as long as $i \in I_{j}$.

Proof.

- If $x \in H_{2}$ then $(-1)^{k} \mu\left(x+e_{i}\right)=1$ for all i. Also, $x+e_{i} \in V_{j}$ as long as $i \in I_{j}$.Hence $\operatorname{deg}(x) \leq \max _{j}\left|I_{j}\right|$.

Proof.

- If $x \in H_{2}$ then $(-1)^{k} \mu\left(x+e_{i}\right)=1$ for all i. Also, $x+e_{i} \in V_{j}$ as long as $i \in I_{j}$.Hence $\operatorname{deg}(x) \leq \max _{j}\left|I_{j}\right|$.
- If $x \in H_{1}$ then $(-1)^{k+1} \mu\left(x+e_{i}\right)=1$, and there is at most onei such that $x+e_{i} \in V_{j}$.

Proof.

- If $x \in H_{2}$ then $(-1)^{k} \mu\left(x+e_{i}\right)=1$ for all i. Also, $x+e_{i} \in V_{j}$ as long as $i \in I_{j}$. Hence $\operatorname{deg}(x) \leq \max _{j}\left|I_{j}\right|$.
- If $x \in H_{1}$ then $(-1)^{k+1} \mu\left(x+e_{i}\right)=1$, and there is at most onei such that $x+e_{i} \in V_{j}$. Hence $\operatorname{deg}(x) \leq k$.

Proof.

- If $x \in H_{2}$ then $(-1)^{k} \mu\left(x+e_{i}\right)=1$ for all i. Also, $x+e_{i} \in V_{j}$ as long as $i \in I_{j}$.Hence $\operatorname{deg}(x) \leq \max _{j}\left|I_{j}\right|$.
- If $x \in H_{1}$ then $(-1)^{k+1} \mu\left(x+e_{i}\right)=1$, and there is at most one i such that $x+e_{i} \in V_{j}$. Hence $\operatorname{deg}(x) \leq k$.
- This implies $\Delta(H) \leq \max \left\{\max _{j}|I|_{j}, k\right\}$.

Proof.

- If $x \in H_{2}$ then $(-1)^{k} \mu\left(x+e_{i}\right)=1$ for all i. Also, $x+e_{i} \in V_{j}$ as long as $i \in I_{j}$.Hence $\operatorname{deg}(x) \leq \max _{j}\left|I_{j}\right|$.
- If $x \in H_{1}$ then $(-1)^{k+1} \mu\left(x+e_{i}\right)=1$, and there is at most onei such that $x+e_{i} \in V_{j}$. Hence $\operatorname{deg}(x) \leq k$.
- This implies $\Delta(H) \leq \max \left\{\max _{j}|I|_{j}, k\right\}$.
- Let l_{j} be a partition of $[n]$ into $\sim \sqrt{n}$ pieces of size $\sim \sqrt{n}$, so that $\Delta(H) \leq\lceil\sqrt{n}\rceil$.

We've seen

- Why Hypercube Sensitivity implies the Sensitivity conjecture.

We've seen

- Why Hypercube Sensitivity implies the Sensitivity conjecture.
- Why the \sqrt{n} is sharp

Theorem

If H is an induced subgraph of Q^{n} with $|V(H)| \geq 2^{n-1}+1$ vertices, then $\Delta(H) \geq \sqrt{n}$.

Lemma

Let H be a graph. If λ is an eigenvalue of the adjacency matrix $A(H)$, then $|\lambda| \leq \Delta(H)$.

Lemma

Let H be a graph. If λ is an eigenvalue of the adjacency matrix $A(H)$, then $|\lambda| \leq \Delta(H)$.

Proof.

Let v be an eigenvector for λ and suppose that v_{1} is the largest coordinate of v (in absolute value).

Lemma

Let H be a graph. If λ is an eigenvalue of the adjacency matrix $A(H)$, then $|\lambda| \leq \Delta(H)$.

Proof.

Let v be an eigenvector for λ and suppose that v_{1} is the largest coordinate of v (in absolute value). Then

$$
\left|\lambda v_{1}\right|=\left|\sum_{k=1}^{m} A_{1, k} v_{k}\right| \leq \sum_{k=1}^{m}\left|A_{1, k} \| v_{1}\right| \leq \Delta(H)\left|v_{1}\right|
$$

Lemma

Let H be a graph. If λ is an eigenvalue of the adjacency matrix $A(H)$, then $|\lambda| \leq \Delta(H)$.

Proof.

Let v be an eigenvector for λ and suppose that v_{1} is the largest coordinate of v (in absolute value). Then

$$
\left|\lambda v_{1}\right|=\left|\sum_{k=1}^{m} A_{1, k} v_{k}\right| \leq \sum_{k=1}^{m}\left|A_{1, k}\right|\left|v_{1}\right| \leq \Delta(H)\left|v_{1}\right| .
$$

We have actually proven the following:

Lemma

Let B be a matrix such that $|B| \leq A(H)$ entrywise. Then if λ is an eigenvalue of B, we have $\lambda \leq \Delta(H)$.

The Strategy Now

Construct an auxiliary object with nice spectral properties.

The Strategy Now

Construct an auxiliary object with nice spectral properties.

Question

How can we estimate the eigenvalues of a pseudo-adjacency matrix of H ?

Theorem (Cauchy's interlace Theorem)

Suppose that A is a symmetric $n \times n$ matrix, and B is a principal $m \times m$ submatrix, where $m<n$. If the eigenvalues of A are $\lambda_{1} \leq \ldots \leq \lambda_{n}$ and the eigenvalues of B are $\beta_{1} \leq \ldots \leq \beta_{m}$, then

$$
\lambda_{i} \leq \beta_{i} \leq \lambda_{i+n-m}
$$

Lemma (Min-Max principle)

Suppose A is an $n \times n$ symmetric matrix, and let $R_{A}(x)=\frac{\langle A x, x\rangle}{\langle x, x\rangle}$ be the Rayleigh quotient. If $\lambda_{1} \leq \ldots \leq \lambda_{k} \leq \ldots \lambda_{n}$ are the eigenvalues of A, then

$$
\lambda_{k}=\min _{U}\left\{\max _{x}\left\{R_{A}(x) \mid x \in U \text { and } x \neq 0 \mid \operatorname{dim}(U)=k\right\}\right\},
$$

and

$$
\lambda_{k}=\max _{U}\left\{\min _{x}\left\{R_{A}(x) \mid x \in U \text { and } x \neq 0 \mid \operatorname{dim}(U)=n-k+1\right\}\right\} .
$$

Lemma (Min-Max principle)

Suppose A is an $n \times n$ symmetric matrix, and let $R_{A}(x)=\frac{\langle A x, x\rangle}{\langle x, x\rangle}$ be the Rayleigh quotient. If $\lambda_{1} \leq \ldots \leq \lambda_{k} \leq \ldots \lambda_{n}$ are the eigenvalues of A, then

$$
\lambda_{k}=\min _{U}\left\{\max _{x}\left\{R_{A}(x) \mid x \in U \text { and } x \neq 0 \mid \operatorname{dim}(U)=k\right\}\right\},
$$

and

$$
\lambda_{k}=\max _{U}\left\{\min _{x}\left\{R_{A}(x) \mid x \in U \text { and } x \neq 0 \mid \operatorname{dim}(U)=n-k+1\right\}\right\} .
$$

Proof.

Count dimensions

Theorem (Cauchy's interlace Theorem)

Suppose that A is a symmetric $n \times n$ matrix, and B is a principal $m \times m$ submatrix, where $m<n$. If the eigenvalues of A are $\lambda_{1} \leq \ldots \leq \lambda_{n}$ and the eigenvalues of B are $\beta_{1} \leq \ldots \leq \beta_{m}$, then

$$
\lambda_{i} \leq \beta_{i} \leq \lambda_{i+n-m}
$$

Proof.

Let $A=\left[\begin{array}{cc}B & X^{T} \\ X & Z\end{array}\right]$, and let $\left\{v_{k}, \ldots, v_{n}\right\}$ be the last $n-k+1$ eigenvectors of A, and $\left\{w_{1}, \ldots, w_{m}\right\}$ the eigenvectors of B.

Proof.

Let $A=\left[\begin{array}{cc}B & X^{T} \\ X & Z\end{array}\right]$, and let $\left\{v_{k}, \ldots, v_{n}\right\}$ be the last $n-k+1$ eigenvectors of A, and $\left\{w_{1}, \ldots, w_{m}\right\}$ the eigenvectors of B.
Let $V=\operatorname{span}\left\{v_{k}, \ldots, v_{n}\right\}, W=\operatorname{span}\left(w_{1}, \ldots, w_{k}\right)$. Lift $\widehat{W}=\binom{W}{0}$.

Proof.

Let $A=\left[\begin{array}{cc}B & X^{T} \\ X & Z\end{array}\right]$, and let $\left\{v_{k}, \ldots, v_{n}\right\}$ be the last $n-k+1$ eigenvectors of A, and $\left\{w_{1}, \ldots, w_{m}\right\}$ the eigenvectors of B.
Let $V=\operatorname{span}\left\{v_{k}, \ldots, v_{n}\right\}, W=\operatorname{span}\left(w_{1}, \ldots, w_{k}\right)$. Lift $\widehat{W}=\binom{W}{0}$.
Since $\operatorname{dim} V=n-k+1$ and $\operatorname{dim} \widehat{W}=k$, there exists some $\hat{w} \in V \cap \widehat{W}$. Hence $R_{A}(\hat{w})=R_{B}(w)$

Proof.

Let $A=\left[\begin{array}{cc}B & X^{T} \\ X & Z\end{array}\right]$, and let $\left\{v_{k}, \ldots, v_{n}\right\}$ be the last $n-k+1$ eigenvectors of A, and $\left\{w_{1}, \ldots, w_{m}\right\}$ the eigenvectors of B.
Let $V=\operatorname{span}\left\{v_{k}, \ldots, v_{n}\right\}, W=\operatorname{span}\left(w_{1}, \ldots, w_{k}\right)$. Lift $\widehat{W}=\binom{W}{0}$.
Since $\operatorname{dim} V=n-k+1$ and $\operatorname{dim} \widehat{W}=k$, there exists some $\hat{w} \in V \cap \widehat{W}$. Hence $R_{A}(\hat{w})=R_{B}(w)$
Hence

$$
\lambda_{k} \leq \min _{x \in V} R_{A}(x) \leq R_{A}(\hat{w})=R_{B}(w) \leq \max _{w \in W} R_{B}(x)=\beta_{k} .
$$

Proof.

Let $A=\left[\begin{array}{cc}B & X^{T} \\ X & Z\end{array}\right]$, and let $\left\{v_{k}, \ldots, v_{n}\right\}$ be the last $n-k+1$ eigenvectors of A, and $\left\{w_{1}, \ldots, w_{m}\right\}$ the eigenvectors of B.
Let $V=\operatorname{span}\left\{v_{k}, \ldots, v_{n}\right\}, W=\operatorname{span}\left(w_{1}, \ldots, w_{k}\right)$. Lift $\widehat{W}=\binom{W}{0}$.
Since $\operatorname{dim} V=n-k+1$ and $\operatorname{dim} \widehat{W}=k$, there exists some $\hat{w} \in V \cap \widehat{W}$. Hence $R_{A}(\hat{w})=R_{B}(w)$
Hence

$$
\lambda_{k} \leq \min _{x \in V} R_{A}(x) \leq R_{A}(\hat{w})=R_{B}(w) \leq \max _{w \in W} R_{B}(x)=\beta_{k} .
$$

The other direction is similar, with $V=\operatorname{span}\left(v_{1}, \ldots, v_{k+n-m}\right)$ and $W=\operatorname{span}\left(w_{k}, \ldots, w_{m}\right)$.

Proof of the main theorem

Consider the following sequence of matrices given by

$$
A_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and } A_{n}=\left[\begin{array}{cc}
A_{n-1} & l \\
I & -A_{n-1}
\end{array}\right]
$$

Proof of the main theorem

Consider the following sequence of matrices given by

$$
A_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and } A_{n}=\left[\begin{array}{cc}
A_{n-1} & l \\
I & -A_{n-1}
\end{array}\right]
$$

Lemma

Replacing every -1 with 1 , we get the adjacency matrix of Q^{n}.

Proof of the main theorem

Consider the following sequence of matrices given by

$$
A_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and } A_{n}=\left[\begin{array}{cc}
A_{n-1} & l \\
I & -A_{n-1}
\end{array}\right]
$$

Lemma

$A_{n}^{2}=n l$

Proof of the main theorem

Consider the following sequence of matrices given by

$$
A_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and } A_{n}=\left[\begin{array}{cc}
A_{n-1} & I \\
I & -A_{n-1}
\end{array}\right]
$$

Lemma

The eigenvalues of A_{n} are $\pm \sqrt{n}$ with multiplicity 2^{n-1}.

Theorem

If H is an induced subgraph of Q^{n} with $|V(H)| \geq 2^{n-1}+1$, then $\Delta H \geq \sqrt{n}$.

Theorem

If H is an induced subgraph of Q^{n} with $|V(H)| \geq 2^{n-1}+1$, then $\Delta H \geq \sqrt{n}$.

Proof.

Let A_{H} be the induced principle submatrix of A.

Theorem

If H is an induced subgraph of Q^{n} with $|V(H)| \geq 2^{n-1}+1$, then $\Delta H \geq \sqrt{n}$.

Proof.

Let A_{H} be the induced principle submatrix of A. As $|H| \geq 2^{n-1}+1$, then by Cauchy's interlacing theorem, we have

$$
\Delta H \geq \lambda_{1}\left(A_{H}\right) \geq \lambda_{2^{n-1}}\left(A_{n}\right)=\sqrt{n} .
$$

In Summary

We
(1) Translated a problem into a combinatorial statement about graphs.
(2) Encountered a variational representation of eigenvalues.
(3) Used spectral methods to lower bound the maximum degree of a graph.

