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We consider the problem of a plane wave scattered by a n-layer slab. Section 1 gives the problem description.
Section 2 gives the analytic solution. Section 3 shows some examples taken from published works and the
reproduced solutions.

1 Problem Statement

Consider the problem of a plane wave polarized in the +x direction and propagating in the +z direction.
This plane wave impinges on a n-layer dielectric slab as shown in Fig. 1. The plane wave undergoes multiple
transmissions and reflections.

The forward propagating wave in the i-th layer has non-zero electric and magnetic fields, which are given by
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The backward propagating wave in the i-th layer also has non-zero electric and magnetic fields, which are
given by
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The objective is to find the coefficient E'(;)”d of the forward propagating wave and the coefficient Eé’i)d of the
backward propagating wave in all layers.
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Figure 1: Forward and backward propagating waves in a multilayer slab.
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2 Analytic Solution

The total electric field in the i-th layer is given by Ef wd Ef’;)”d and the total magnetic field in the i-th layer

is given by H(fil)”d H(b.wd.

The tangential electric field and the tangential magnetic field at the interface located at z; must be continuous.
These boundary conditions are translated into
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Substituting (1), (2) into (3), we get the following relation
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Applying the boundary conditions to all interfaces at 27 ... z,, we have
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where T is a 2 x 2 matrix given by B(_nl)A(n) (1)A(1)

Since E(f&;’d =1 in Medium 0 and Eb“’)d = 0 in Medium n, Eé’é"d and Efwd in (5) are given by
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where 111, Th2, 151 and Tho are the elements of T'. Coeflicients of the forward and backward propagating
wave can be found by iterating from the coefficients in Medium 0 or in Medium n through (4).

3 Validation

Fig. 2 shows the responses of a single-section, two-section binomial, and two-section Tschebyscheff quarter-
wavelength transformers. The responses are consistent with those in [1, Fig. 5-19].

Fig. 3 shows the reflections of dielectric mirrors, which are consistent with those reported in [2, Fig. 6.3.2].
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Figure 2: Responses of a single-section, two-section binomial, and two-section Tschebyscheff quarter-
wavelength transformers.
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Figure 3: Dielectric mirror with quarter-wavelength layers.
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