Proof of the Kramers-Kronig Relation
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The Kramers-Kronig relation, in essence, states the relations between the real and imaginary part of the frequency
response of a time-causal system. Precisely speaking, let u(t) be the unit step function®, and g(t) be some arbitrary
function. The causal channel h(t) is defined with the impulse response of h(t) = u(t)g(t). Let the frequency response
of the channel be H(w) = R(w)+jX (w). Then the real part and imaginary part of H(w) satisfy the Kramers-Kronig
relations, which are
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The improper integration is in the sense of the Cauchy principle value. Here, we give a proof without any reliance
on the theory of complex variables.

PROOF: The unitary Fourier transform pair is define as
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Under this definition, the Fourier transform of u(t) is
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The Fourier transform of g(t) is G(w), which is expressed in terms of its real part and imaginary part as G(w) =
a(w) + jB(w). Then, the frequency response of the channel becomes

H(w) =U(w) ® G(w)
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Since h(t) = g(t) only in the interval t € (0, +00), the function g(t) defined over the interval ¢ € (—oo,400) can be

considered either odd or even 2.

If g(t) is odd, (w) = 0. The real part and the imaginary part of H(w) become

R(w) =¢% fo (foc)ddwo , (5)

X () =\/§5(w) 7 (©)

Substituting (5) to (6) gives the result in (1).

Similarly, when ¢(t) is even, 8(w) = 0. The real part and the imaginary part of H(w) become

Substituting (5) to (6) gives the result in (2).
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1Tt is interpreted as a functional here.
2 Any function can be expressed as the sum of an even function and an odd function.




