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Consider the problem of an obliquely incident TMy polarized plane wave reflected by a dielectric half space as shown
in Fig. 1. The electric and magnetic field of the incident plane wave are given by

~Ei =e−jk0(x sin θi+z cos θi)~ay (1a)

~Hi =
−1

jωµ0
∇× ~Ei (1b)

The reflected electric and magnetic field are given by

~Er =Γe−jk0(x sin θi−z cos θi)~ay (2a)

~Hr =
−1

jωµ0
∇× ~Er (2b)

where Γ is the angle-dependent reflection coefficient. The refracted electric and magnetic field are given by

~Et =τe−jk1(x sin θt+z cos θt)~ay (3a)

~Ht =
−1

jωµ0
∇× ~Et (3b)

where τ is the angle-dependent reflection coefficient. Applying the Snell law of reflection, which is

sin θt
sin θi

=

√
ε0µ0√
ε1µ1

(4)

we obtain the expressions of Γ and τ , which are given by

Γ =
η1 cos θi − η0 cos θt
η1 cos θi + η0 cos θt

(5)

τ =
2η1 cos θi

η1 cos θi + η0 cos θt
(6)

Partial Reflection For non-magnetic materials, i.e. µ0 = µ1 = 1, partial reflection occurs when ε0 < ε1. Given
the expression of the incident, reflected, and refracted wave in (1), (2), (15), we are ready to verify the Poynting
theorem. The time-averaged Poynting vector is defined as

~S =
1

2

[
~E × ~H∗

]
(7)
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Figure 1: Plane wave partially reflected by a half space. The dashed lines mark the surface to verify the Poynting
theorem.
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The Poynting vectors of the incident, reflected, and refracted wave are given by

~Si =
sin θi
2η0

~ax +
cos θi
2η0

~az (8)

~Sr =
(αη0 − η1 cos θi)

2 sin θi
2η0(αη0 + η1 cos θi)2

~ax −
cos θi(αη0 − η1 cos θi)

2

2η0(αη0 + η1 cos θi)2
~az (9)

~St =
η21µ0µ1 cos θi sin(2θi)

η0(αη0 + η1 cos θi)2
~ax +

2αη1 cos θ2i
(αη0 + η1 cos θi)2

~az (10)

where α =
√

1− (η1η0 sin θi)2 and α > 0. It is observed that all the Poynting vectors are real-valued. There is real

power flowing into the half space. The power is conserved in the z direction. This is verified by applying the Poynting
theorem to the surfaces that are parallel to the dielectric interface and bound the interface in between. It can be
shown that

~Si · (−~az) + ~Sr · (−~az) = ~St · ~az (11)

Total Reflection Total reflection occurs when ε0 > ε1 and θi > θc, where θc denotes the critical angle and
θc = arcsin(

√
ε1/ε0). Then, cos θt in (5) and (6) becomes an imaginary number, which is given by

cos θt = −j

√(
η1
η0

sin θi

)2

− 1 = −jβ (12)

The Poynting vectors of the incident, reflected, and refracted wave are given by

~Si =
sin θi
2η0

~ax +
cos θi
2η0

~az (13)

~Sr =
sin θi
2η0

~ax −
cos θi
2η0

~az (14)

~St =2e−
2βµ1ω
η1

z

(
η21µ0µ1 cos2 θi sin θi
β2η30 + η0η21 cos2 θi

~ax + i
βη1 cos2 θi

β2η20 + η21 cos2 θi
~az

)
(15)

It is observed that the Poynting vector of the refracted wave in (15) attenuates exponentially with respect to z. The
part of the Poynting vector of the refracted wave in the z direction is reactive. Therefore, there is no real power
flowing into the half space. The other part of the Poynting vector of the refracted wave in the x direction carries real
power. Since its amplitude attenuates in the z direction, most of the carried power is along the interface between
the two media. This wave is also known as the surface wave. It is easy to see that the real power is conserved in the
z direction, satisfying the Poynting theorem.
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Figure 2: Plane wave totally reflected by a half space. The dashed lines mark the surface to verify the Poynting
theorem.
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