ANALYSIS FRAMEWORK

QUESTION		FUNCTION		ANSWER	
What are the data?	\rightarrow	Storage and retrieval	\rightarrow	Present existing data	
What is currently stored in the database? e.g. where are all the houses in the Toronto data set?					
What is the <u>pattern</u> in the data?	→	Constrained query	→	Find new patterns in existing data	
Search current data for entities with a certain characteristic e.g. where are all the houses in the floodplain?					
What <u>could</u> the data l	be? →	Modeling	→	Predicting new information	
Use a predictive e.g. if the r		s 4 m, which houses will be	e flooded?		

APPROACHING A PROBLEM

- This is just a framework to help organize a systematic approach to a problem
- The trick is to know:
 - What kind of question you're asking
 - Which functions will help you answer the question
 - What the answer should look like

FUNCTIONS AS TOOLS

- There are a wide variety of tools that may be available for a particular problem
- Individual analysis functions must be used within an organized and complete analysis strategy
- Think of each function as a tool in a toolbox

QUERIES, SEARCHES AND ATTRIBUTE OPERATIONS

CONSTRAINED QUERIES

Mathematical Operators

- + addition
- subtraction
- * multiplication
- / division
- ^ exponent

Boolean Operators

- AND Intersection of two or more sets
- OR <u>Union</u> of two or more sets
- NOT <u>Subtraction</u> of sets
- XOR <u>Combination</u> of sets (exclusive OR: A or B, but not both)

Relational Operators

- < less than
- > greater than
- = equals
- <= less than or equal to
- >= greater than or equal to
- \Leftrightarrow not equal to

Spatial Operators

Are completely within... Completely contain... Have their center in... Contain the center of... Intersect... Are within distance of...

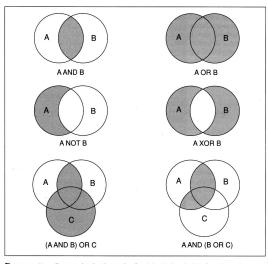


Figure 7.2. Venn diagrams showing the results of applying Boolean logic to the union and intersection of two or more sets. In each case the shaded zones are 'true'

FIELD TYPES

No decimal, -32768 to 32,767			
No decimal, -2,147,483,648 to 2,147,483,647			
Up to 7 significant digits			
Up to 15 significant digits			
Number of characters			
no parameter to set			
Binary large object (e.g. image data); no parameter to set			