AN OBJECT-ORIENTED APPROACH TO URBAN LAND-COVER AND LAND-USE CLASSIFICATION

Master of Science

2007

Michael Lackner Graduate Department of Geography University of Toronto

ABSTRACT

The greater availability of remotely sensed high-resolution imagery and recent advances in object-oriented analysis allows for more detail than ever before in urban image classification. This thesis explores object-oriented land-cover and land-use classifications with 1-meter resolution Ikonos imagery for an area in Mississauga, Ontario. First, three different ways of classifying land cover, with varying inclusion of ancillary building and road data, are examined. Second, the spatial relations of the landcover information are examined to derive land use. Formal accuracy assessments, as well as statistical and visual evaluations, for the land-cover and land-use classifications show that the object-oriented approach works well for classifying an urban area. The results of this thesis confirm the observed trend in the literature to move away from the traditional pixel-based techniques for urban image classification in exchange for object-oriented classification methods; which include shape, textural, and contextual information in addition to spectral information.

ii

ACKNOWLEDGEMENTS

I want to show my appreciation to many people who directly and indirectly helped me to complete this thesis and helped me through my academic life at the University of Toronto. I also want to thank some other people who are very important to me and have supported me for many years in different ways.

First of all, I would like to thank my committee members Dr. Tenley Conway (supervisor), Dr. Jing Chen (co-supervisor), and Dr. Don Boyes. Their feedback, ideas, and support were instrumental to the completion of this thesis. I also want to especially express my gratitude to Dr. Ferko Csillag (my initial supervisor), who sadly passed away much too early. Because of Ferko, I chose the University of Toronto for pursuing my Masters degree. I truly appreciate the short time I worked with him and got to know him.

I want to thank the faculty members of the UofT Geography Department whom I had the pleasure to work with through coursework or teaching assistantships for all the support and things I learned from them.

Many thanks also go to the Geography Department staff on the UTM and St. George campuses. Help with academic administrative issues, getting enough and good TAships, receiving office supplies and equipment, figuring out funding matters, getting computer labs set up – no matter what it was, I could count on someone's support.

I further want to thank staff of the UTM and Robarts GIS libraries for supplying me with some of the data for my thesis. In regards to data, I also want to thank Dr. Jing Chen for providing me with the Ikonos imagery that was suitable for the research I did.

Thanks also go to the people I had the opportunity to work with at the Cartography Center at the St. George campus. The two summers I worked there were a wonderful learning experience that will serve me well in my future professional life.

I specially want to thank friends and fellow graduate students whom I was fortunate to get to know at some point during my time at UofT – Jo Ashley, Hamish Asmath, Magda Biesiada, Chris Eckley, Gita Laidler, Carl Mitchell, Elizabeth Noble,

iii

Claire Oswald, Tarmo Remmel, Murray Richardson, Namrata Shrestha. Thanks for your friendship, support, and fun aside from academic matters.

I would also like to thank Dr. Joe Poracsky, my undergraduate advisor at Portland State University (Portland, OR, USA), for tremendous support, inspiration, and for introducing me to the world of remote sensing.

Very very special thanks go to my friends and family in Japan and back home in Austria, particularly to my mother. Although you are far away physically, you are very close to me no matter what the distance.

A very special thank you also goes to my dad, who unfortunately did not live long enough to share this time with me. I want to thank you for the great inspiration you gave me, which I will carry on forever.

I want to dedicate this work to my wife Chie. No words can express how thankful I am to have you in my life.

TABLE OF CONTENTS

Abstract	ii
Acknowledgements	iii
Table of Contents	
List of Tables	viii
List of Figures	
List of Appendices	xiii

CHAPTER 1 INTRODUCTION....

NTRO	DUCTION	1
1.1	Overview	1
1.2	Study Objectives	2
1.3	Organization of Chapters	3

2.1	Co	omplexity of the Urban Landscape – Remote Sensing Challenges	5
2.2	La	nd-Cover and Land-Use Classification Schemes	7
2.3	Cla	assification Methods in Urban Areas	10
2.3	5.1	Pixel-based and other non-object-oriented classification techniques	11
2.3	5.2	Object-oriented classification techniques	12
2.3	5.3	Classifying land use from land cover	14
		Object-oriented classification in urban areas	

CHAPTER 3 STUDY AREA

TUDY	AREA & DATA	17
3.1	Study Area Description	17
3.2	Ikonos Imagery	18
3.3	Ancillary Data	21

4.1 Land-Cover Classification Overview and Classification Scheme	
4.2 Land-Cover Classification with Roads and Buildings Ancillary Data	
 4.2.1 eCognition project setup and initial four segmentation levels	
 4.2.4 New segmentations for extracting more classes	48 49
 4.3 Land-Cover Classification with Roads Ancillary Data 4.3.1 Substituting ancillary-building-data rules in new classification 4.3.2 New segmentations for extracting remaining classes 	54
4.4 Land-Cover Classification without Ancillary Data	57
4.4.1 Classifying roads without ancillary data4.4.2 Extracting the remaining classes without ancillary data	

5.1	Land-Cover Statistics and Final Maps for All 3 Classifications	66
5.2	Assessing and Comparing Accuracies of Land-Cover Maps	71
5.3	Evaluation of Individual Land-Cover Classes	78
5.4	Statistical Comparison and Evaluation of Land-Cover Classifications	82

CHAPTER 6

LAND-	USE CLASSIFICATION	87
6.1	Land-Use Classification Scheme	87
6.2	Determining Meaningful Land-Use Segments and Classification Setup	89
6.3	Land-Use Class Hierarchy	94
6.4	Classifying the Land-Use Polygons	95
6.5	Classifying the Remaining Land Use	99

CHAPTER 7 LAND-USE CLASSIFICATION RESULTS AND EVALUATION......104

7.1	Visual and Statistical Description of Land-Use Maps	104
7.2	Land-Use Accuracy Assessment and Evaluation	107
7.3	Definition Problems with Land-Use Classes and Reference Data	111

CHAPTER 8

DISCU	SSION & CONCLUSION	114
8.1	Advantages and Limitations of the Applied Object-Oriented Methods .	114
8.2	Usefulness of Ancillary Data with Object-Oriented Classification	116
8.3	Potential Application in Other Locations	118
8.4	General Summary of Findings and Future Outlook	119
REFER	RENCES	121

PPENDICES
