
Infinite Sequences and Series 
Tests for Convergence and Divergence – A Summary 
 
Theorems on Algebraic Operations on Series: Let ∑ na and ∑ nb  be any two series. 

1. If ∑ na and ∑ nb   both converge, then )(∑ ± nn ba  must converge. 

2. If ∑ na converges, and C is a real number, then ∑ naC must converge. 

If ∑ na diverges, and C is a real number,  then ∑ naC must diverge. 

3. If one of  ∑ na or ∑ nb converges and the other diverges, then )(∑ ± nn ba  must diverge. 
 

 
TESTS FOR CONVERGENCE/DIVERGENCE 
Geometric Series: 

Let a and r be real numbers.  A series of the form ∑
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if |r| < 1, and diverges if |r| ≥ 1. 

 
Harmonic Series and p-Series: 

The series ∑
∞
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The p-series has the form ∑
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and it converges if p > 1 and diverges if p ≤ 1. 

 
The n-th Term Test (The Test for Divergence): 
Let ∑ na  be any series.  If 0lim ≠
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The Integral Test: 
Let f be continuous and decreasing on [k, ∞) such that f(x) ≥ 0 on [k, ∞).  Let an = f(n), then: 
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The Direct Comparison Test: 
Let ∑ na and ∑ nb  be any two series such that an≥ 0 and bn ≥ 0 for all (large) n. 

 If an≤ bn for all (large) n and if ∑ nb converges, then ∑ na  must converge. 

 If an≥ bn for all (large) n and if ∑ nb diverges, then ∑ na  must diverge. 
Remember it as: if the smaller series diverges, the larger series must diverge, and if the larger series converges, 
the smaller series must converge. 
(note: no conclusion can be made if the “smaller” series converges or the “larger” series diverges: in this case, try 
using the Limit Comparison Test) 



The Limit Comparison Test: 

Let ∑ na and ∑ nb  be any two positive series.  If C
b
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∑ na converges iff ∑ nb converges. 

∑ na diverges iff ∑ nb diverges. 

To choose an appropriate ∑ nb , look at the behaviour of ∑ na for large n, take the highest power of n in 
the numerator and denominator (ignoring coefficients) and simplify: 
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(note: it happens that putting bn in the denominator usually makes the algebra easier – but ultimately it doesn’t 
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The Alternating Series Test: 
Def/ An alternating series is a series whose terms alternate in sign. 
 Ex. –12 + 22 - 32 + 42 - … 
Let ∑ na be any alternating series.  If |an| ≥|an+1| for all n, and if 0||lim =
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converge. 
Remember this by: an alternate series only converges if its nth term converges to zero, and it’s terms are 
non-increasing (ie. ignoring minus signs, each term is smaller than or same as its predecessor).  
(note: this test only tells if the alternating series converges—it tells you NOTHING about the positive-term series; 
also if the series fails the “non-increasing” condition of this test, no conclusion can be made about convergence or 
divergence of the series) 
Tip: ALWAYS check the nth term first, because the series and its positive term series diverge if the nth 
term is not zero.  Also, to tell whether a function decreases or increases, you can use the First Derivative 
Test. 
 
Absolute and Conditional Convergence 
Let ∑ na be any series.  ∑ na converges absolutely if ||∑ na  converges.  If ∑ na converges absolutely, 

then the series ∑ na itself must converge. 

Let ∑ na be any series.  ∑ na converges conditionally if ∑ na  converges but ||∑ na  diverges. 
 
The Root Test 
Let ∑ na be any series.  Suppose Lan
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then: 
 If 0 ≤ L < 1, ∑ na converges absolutely. 

 If L > 1 (including L = +∞), ∑ na diverges. 
 If L = 1, no conclusion can be made. 
 

 
The Ratio Test 
Let ∑ na be any series of non-zero terms.  

Suppose L
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 If 0 ≤ L < 1, ∑ na converges absolutely. 

 If L > 1 (including L = +∞), ∑ na diverges. 
 If L = 1, no conclusion can be made. 
*This test is very useful if an contains a factorial or 
if you are dealing with power series. 

- Prepared by LM 


