Infinite Sequences and Series

Tests for Convergence and Divergence - A Summary
Theorems on Algebraic Operations on Series: Let $\sum a_{n}$ and $\sum b_{n}$ be any two series.

1. If $\sum a_{n}$ and $\sum b_{n}$ both converge, then $\sum\left(a_{n} \pm b_{n}\right)$ must converge.
2. If $\sum a_{n}$ converges, and C is a real number, then $\sum \mathrm{C} a_{n}$ must converge.

If $\sum a_{n}$ diverges, and C is a real number, then $\sum \mathrm{C} a_{n}$ must diverge.
3. If one of $\sum a_{n}$ or $\sum b_{n}$ converges and the other diverges, then $\sum\left(a_{n} \pm b_{n}\right)$ must diverge.

TESTS FOR CONVERGENCE/DIVERGENCE

Geometric Series:

Let a and r be real numbers. A series of the form $a+a r+a r^{2}+a r^{3}+\ldots+a r^{n}+\ldots=\sum_{n=0}^{\infty} a r^{n}$ is called a
geometric series. Geometric series converges to $\frac{a}{1-r}$ if $|r|<1$, and diverges if $|r| \geq 1$.

Harmonic Series and \boldsymbol{p}-Series:

The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is called the harmonic series and it diverges.
The p-series has the form $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ and it converges if $p>1$ and diverges if $p \leq 1$.

The n-th Term Test (The Test for Divergence):
Let $\sum a_{n}$ be any series. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then $\sum a_{n}$ must diverge.
(note: if $\lim _{n \rightarrow \infty} a_{n}=0$, no conclusion can be made)

The Integral Test:

Let f be continuous and decreasing on $[k, \infty)$ such that $f(x) \geq 0$ on $[k, \infty)$. Let $a_{n}=f(n)$, then:

$$
\begin{aligned}
& \sum_{n=k}^{\infty} a_{n} \text { converges iff } \int_{k}^{\infty} f(x) d x \text { converges. } \\
& \sum_{n=k}^{\infty} a_{n} \text { diverges iff } \int_{k}^{\infty} f(x) d x \text { diverges. }
\end{aligned}
$$

The Direct Comparison Test:

Let $\sum a_{n}$ and $\sum b_{n}$ be any two series such that $a_{n} \geq 0$ and $b_{n} \geq 0$ for all (large) n.
If $a_{n} \leq b_{n}$ for all (large) n and if $\sum b_{n}$ converges, then $\sum a_{n}$ must converge.
If $a_{n} \geq b_{n}$ for all (large) n and if $\sum b_{n}$ diverges, then $\sum a_{n}$ must diverge.
Remember it as: if the smaller series diverges, the larger series must diverge, and if the larger series converges, the smaller series must converge.
(note: no conclusion can be made if the "smaller" series converges or the "larger" series diverges: in this case, try using the Limit Comparison Test)

The Limit Comparison Test:

Let $\sum a_{n}$ and $\sum b_{n}$ be any two positive series. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=C$, where C is a finite number $\neq 0$, then:
$\sum a_{n}$ converges iff $\sum b_{n}$ converges.
$\sum a_{n}$ diverges iff $\sum b_{n}$ diverges.
To choose an appropriate $\sum b_{n}$, look at the behaviour of $\sum a_{n}$ for large n, take the highest power of n in the numerator and denominator (ignoring coefficients) and simplify:

For example, if $\sum a_{n}=\frac{5 n^{3}-n+2}{2 n^{5}-3 n^{2}+n-1}$, then at large n, the n^{3} and n^{5} terms "dominates", resulting in a $\sum b_{n}=\frac{n^{3}}{n^{5}}=\frac{1}{n^{2}}$ (note the omission of the coefficients).
(note: i t happens that putting b_{n} in the denominator usually makes the algebra easier - but ultimately it doesn't matter if you're taking the $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ or $\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}$)

The Alternating Series Test:

Def/ An alternating series is a series whose terms alternate in sign.

$$
\text { Ex. }-1^{2}+2^{2}-3^{2}+4^{2}-\ldots
$$

Let $\sum a_{n}$ be any alternating series. If $\left|a_{n}\right| \geq\left|a_{n+1}\right|$ for all n, and if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then the series must converge.
Remember this by: an alternate series only converges if its nth term converges to zero, and it's terms are non-increasing (ie. ignoring minus signs, each term is smaller than or same as its predecessor).
(note: this test only tells if the alternating series converges - it tells you NOTHING about the positive-term series; also if the series fails the "non-increasing" condition of this test, no conclusion can be made about convergence or divergence of the series)
Tip: ALWAYS check the nth term first, because the series and its positive term series diverge if the nth term is not zero. Also, to tell whether a function decreases or increases, you can use the First Derivative Test.

Absolute and Conditional Convergence

Let $\sum a_{n}$ be any series. $\sum a_{n}$ converges absolutely if $\sum\left|a_{n}\right|$ converges. If $\sum a_{n}$ converges absolutely, then the series $\sum a_{n}$ itself must converge.
Let $\sum a_{n}$ be any series. $\sum a_{n}$ converges conditionally if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges.

The Root Test

Let $\sum a_{n}$ be any series. Suppose $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$, then:

$$
\text { If } 0 \leq L<1, \sum a_{n} \text { converges absolutely. }
$$

If $L>1$ (including $L=+\infty$), $\sum a_{n}$ diverges.
If $L=1$, no conclusion can be made.

The Ratio Test

Let $\sum a_{n}$ be any series of non-zero terms.
Suppose $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$, then:
If $0 \leq L<1, \sum a_{n}$ converges absolutely.
If $L>1$ (including $L=+\infty$), $\sum a_{n}$ diverges.
If $L=1$, no conclusion can be made.
*This test is very useful if a_{n} contains a factorial or if you are dealing with power series.

- Prepared by LM

