Infinite Sequences and Series

Tests for Convergence and Divergence – A Summary

Theorems on Algebraic Operations on Series: Let $\sum a_n$ and $\sum b_n$ be any two series.

- 1. If $\sum a_n$ and $\sum b_n$ both converge, then $\sum (a_n \pm b_n)$ must **converge**.
- 2. If $\sum a_n$ converges, and C is a real number, then $\sum Ca_n$ must **converge**.
 - If $\sum a_n$ diverges, and C is a real number, then $\sum Ca_n$ must **diverge**.
- 3. If one of $\sum a_n$ or $\sum b_n$ converges and the other diverges, then $\sum (a_n \pm b_n)$ must **diverge**.

TESTS FOR CONVERGENCE/DIVERGENCE Geometric Series:

Let *a* and *r* be real numbers. A series of the form $a + ar + ar^2 + ar^3 + ... + ar^n + ... = \sum_{n=0}^{\infty} ar^n$ is called a geometric series. Geometric series **converges** to $\frac{a}{1-r}$ if |r| < 1, and **diverges** if $|r| \ge 1$.

Harmonic Series and *p*-Series:

The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is called the harmonic series and it **diverges**. The *p*-series has the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$ and it **converges** if $p \ge 1$ and **diverges** if $p \le 1$.

The *n*-th Term Test (The Test for Divergence):

Let $\sum a_n$ be any series. If $\lim_{n \to \infty} a_n \neq 0$ then $\sum a_n$ must **diverge**. (*note:* if $\lim_{n \to \infty} a_n = 0$, no conclusion can be made)

The Integral Test:

Let *f* be continuous and decreasing on $[k, \infty)$ such that $f(x) \ge 0$ on $[k, \infty)$. Let $a_n = f(n)$, then:

$$\sum_{n=k}^{\infty} a_n \text{ converges iff } \int_k^{\infty} f(x) dx \text{ converges.}$$
$$\sum_{n=k}^{\infty} a_n \text{ diverges iff } \int_k^{\infty} f(x) dx \text{ diverges.}$$

The Direct Comparison Test:

Let $\sum a_n$ and $\sum b_n$ be any two series such that $a_n \ge 0$ and $b_n \ge 0$ for all (large) n.

If $a_n \le b_n$ for all (large) *n* and if $\sum b_n$ converges, then $\sum a_n$ must **converge**.

If $a_n \ge b_n$ for all (large) *n* and if $\sum b_n$ diverges, then $\sum a_n$ must **diverge**.

Remember it as: if the *smaller series diverges, the larger series must diverge,* and if the *larger series converges, the smaller series must converge.*

(note: no conclusion can be made if the "smaller" series converges or the "larger" series diverges: in this case, try using the Limit Comparison Test)

The Limit Comparison Test:

Let $\sum a_n$ and $\sum b_n$ be any two positive series. If $\lim_{n \to \infty} \frac{a_n}{b_n} = C$, where C is a finite number $\neq 0$, then: $\sum a_n$ converges iff $\sum b_n$ converges.

 $\sum a_n$ diverges iff $\sum b_n$ diverges.

To choose an appropriate $\sum b_n$, look at the behaviour of $\sum a_n$ for large *n*, take the highest power of *n* in the numerator and denominator (ignoring coefficients) and simplify:

For example, if $\sum a_n = \frac{5n^3 - n + 2}{2n^5 - 3n^2 + n - 1}$, then at large *n*, the *n*³ and *n*⁵ terms "dominates", resulting in a $\sum b_n = \frac{n^3}{n^5} = \frac{1}{n^2}$ (note the omission of the coefficients).

(note: it happens that putting b_n in the denominator usually makes the algebra easier – but ultimately it doesn't *matter if you're taking the* $\lim_{n\to\infty} \frac{a_n}{b_n}$ or $\lim_{n\to\infty} \frac{b_n}{a_n}$)

The Alternating Series Test:

Def/ An alternating series is a series whose terms alternate in sign.

Ex. $-1^2 + 2^2 - 3^2 + 4^{2} - \dots$

Let $\sum a_n$ be any alternating series. If $|a_n| \ge |a_{n+1}|$ for all n, and if $\lim_{n \to \infty} |a_n| = 0$, then the series must

converge.

Remember this by: an alternate series only converges if its *n*th term converges to zero, and it's terms are non-increasing (ie. ignoring minus signs, each term is smaller than or same as its predecessor). (note: this test only tells if the alternating series converges – it tells you NOTHING about the positive-term series; also if the series fails the "non-increasing" condition of this test, no conclusion can be made about convergence or divergence of the series)

Tip: ALWAYS check the *n*th term first, because the series *and* its positive term series **diverge** if the *n*th term is not zero. Also, to tell whether a function decreases or increases, you can use the First Derivative Test.

Absolute and Conditional Convergence

Let $\sum a_n$ be any series. $\sum a_n$ converges absolutely if $\sum |a_n|$ converges. If $\sum a_n$ converges absolutely, then the series $\sum a_n$ itself must converge.

Let $\sum a_n$ be any series. $\sum a_n$ converges conditionally if $\sum a_n$ converges but $\sum |a_n|$ diverges.

The Root Test

Let $\sum a_n$ be any series. Suppose $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L$, Let $\sum a_n$ be any series of non-zero terms. then:

If $0 \le L \le 1$, $\sum a_n$ converges absolutely.

If L > 1 (including $L = +\infty$), $\sum a_n$ diverges. If L = 1, no conclusion can be made.

The Ratio Test

Suppose
$$\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = L$$
, then:

If $0 \le L \le 1$, $\sum a_n$ converges absolutely.

If L > 1 (including $L = +\infty$), $\sum a_n$ diverges.

If L = 1, no conclusion can be made.

*This test is very useful if a_n contains a factorial or if you are dealing with power series.

- Prepared by LM