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Abstract— The paper studies the coordinated path following
problem, namely, steering a group of unicycles to a given path
while achieving an inter-vehicle formation pattern. A novel
hybrid control approach is proposed in the paper to solve the
problem despite that the neighbors of each vehicle may change
over time due to limited sensing capabilities. The state space of
each vehicle is partitioned into several regions relative to the
path. Then a control law is synthesized to steer all the vehicles
into a region where another control law is devised to achieve
both path following and motion coordination. Thus, with the
state-dependent switching control law, a group of vehicles are
evenly spaced on the path and move as a whole eventually.

I. INTRODUCTION

A group of agents can be used to carry out tasks that are
too difficult or simply inefficient for a single agent to perform
alone. Moreover, fault tolerance and robustness are additional
advantages of multi-agent systems. All these factors motivate
researchers to work on some specific problems of multi-agent
systems including cooperative formation control, rendezvous,
consensus, cooperative target tracking, coordinated path fol-
lowing, and topology control of distributed sensor networks.
For a complete review, see [3]–[5], [13], [14], [16].

The problem of steering a group of wheeled vehicles along
given spatial paths while achieving a desired inter-vehicle
formation pattern is referred to as the coordinated path
following problem. It has been a topic of interest over the last
few years. Motivated in military applications, the previous
work on the coordinated path following problem has been
restricted to marine robots and spacecrafts [2], [12], [17].
The common strategy for coordinated path following can
be divided into two parts: path following and multi-vehicle
coordination. Although many schemes are available for the
path following problem recently, there is a lack of complete
solutions when coordination among vehicles is required. In
[18], a group of vehicles modeled as Newtonian particles are
steered to generate patterns on close smooth curves, which
has been applied for ocean sampling. In [8], [9], [17], a
parameterized path is generated for each vehicle with respect
to a desired spacial path. Each vehicle then executes a pure
path following along its assigned path with dynamical path
variable synchronization. Ghabcheloo et al. [6], [7] propose
a control methodology for coordinated path following over
a class of pre-specified paths by decoupling path following
(in space) and inter-vehicle coordination (in time).

All the above methods consider both vehicle coordination
and path following no matter how far the vehicles are.
However, due to limited sensing capabilities and commu-
nication budgets, each vehicle may not be possible to have
the information of the path and its neighbors all the time.
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Instead, for vehicles far away from the path, only brief
information of some neighbor’s position is available to it
without knowing any information of the path, and vehicles
already close to the path may obtain more information about
the path and their neighbors so that they can follow the given
path and coordinate their motion with other vehicles also
close to the path to generate a desired formation pattern. As
a result, for vehicles far away from the path, the primary
objective is to get closer to the path rather than coordinate
their motion with others. For vehicles close to the path,
they are able to sense the path and more neighbor vehicles
around the path, so the primary objective is to follow the
path and achieve a desired inter-vehicle formation. This
problem is addressed in the paper and referred to as the
coordinated path following problem. A novel approach based
on reachability specifications and hybrid control is proposed
to solve the problem. The state space of each vehicle is
partitioned into several regions relative to the path. Then
control laws are synthesized to steer all the vehicles into
a region where another control law is devised to achieve
both path following and motion coordination. Thus, with the
state-dependent switching control law, a group of vehicles are
evenly spaced on the path and move as a whole eventually
despite that the neighbors of each vehicle may change over
time due to limited sensing range. In the process of coordi-
nated path following, though each vehicle may sense several
other vehicles, only the local measurement of one neighbor
called pre-neighbor is used in our control strategy for the
coordinated control purpose, which makes the information
measurement at a minimum. As a first contribution, we
propose a new methodology based hybrid control approach
to synthesize distributed control laws for coordinated path
following problems. Second, we take into account limited
sensing capabilities and we show that the coordinated path
following problem can be solved by our control strategy
using only local information and minimum links though
the neighboring relationship may be dynamically changed.
Finally, global results are obtained with rigorous analysis
using reachability and set invariance theory together with
Lyapunov theory and ultimate boundedness results.

Several proofs are omitted in the paper due to space
limitations and can be found in [11].

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Vehicle Kinematic Model

Consider a group of unicycles labeled 1 through n in the
plane. The posture of each unicycle is described by qi =
(xi, yi, θi)T ∈ R2 × [−π, π), called the state of unicycle i,
where (xi, yi) denotes the position of its representing point
defined in an inertia coordinate frame W , θi is its orientation
with respect to the x-axis of W . The kinematic model for
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unicycle i with pure rolling and non-slipping is given as:

q̇i =





ẋi

ẏi

θ̇i



 =

(

vi cos θi

vi sin θi

ωi

)

. (1)

The control inputs vi and ωi stand for its linear speed and
angular speed, respectively. In the paper, we denote Z :=
{

q
∣

∣q ∈ R2 × [−π, π)
}

the state space of each vehicle.

B. Local Sensing Information

Let Γ be a spatial smooth path on the plane, which is
assumed to have a direction (see Fig. 1). The curvature at a
point p ∈ Γ is denoted by χ(p). We assume that the smooth
path Γ satisfies |χ(p)| < χ0 for all p ∈ Γ, where χ0 is a
constant. Define R0 = 1

χ0
.

When the distance from vehicle i to the path Γ is less
than R0, the nearest point on Γ to vehicle i is unique and
is denoted by pi. Then we define φi = (ρi, ψi) the path
following error to Γ, where ρi ∈ R called the location
difference is the distance from vehicle i to the nearest point
pi on Γ but has a sign (that is, ρi > 0 when vehicle i is
on the left side of Γ in the direction of the path and ρi < 0
when it is on the other side), ψi ∈ [−π, π) is the orientation
difference defined as the difference between the heading of
vehicle i and the tangent direction of Γ at pi. For two vehicles
i and j, we let lij be the arc length between pi and pj and
we call it arc distance between vehicle i and vehicle j. An
illustration is given in Fig. 1.

*

*

i

lij

j

pi

ρi

pj

Γ

ψi

Fig. 1. A path Γ with a direction, path following errors (ρi, ψi), and arc
distance lij .

Define Z1 = {q = (x, y, θ)| ‖(x, y)‖Γ ≤ R0, θ ∈ [−π, π)} ,
where ‖ · ‖Γ is the distance from a point to the set Γ. we
may say, a vehicle i is in Z1 or outside of Z1 (by slightly
misusing the notion), meaning that its state in Z1 or not
in Z1, or equivalently that the distance from vehicle i to
the path Γ is less than R0 or greater than R0. Suppose that
the sensing radius of each vehicle is R (R > R0). Then,
for vehicle i in Z1, it can sense the path in the sense that
current location difference ρi and orientation difference ψi

are available to vehicle i as well as the curvature χ(pi).
Moreover, if there is another vehicle j in its sensing region,
then the arc distance lij is available to vehicle i, too.

For vehicles outside of Z1, we assume that they can obtain
the position information (distance and bearing angle) of at
least one vehicle that is in Z1 or a landmark on the path Γ
through other manners. A schematic representation is given
in Fig. 2, where i represents a vehicle outside of Z1, and j
represents a vehicle in Z1 or a landmark on the path Γ. In
the example, the distance dij and the bearing angle αij ∈
[−π, π) are available to the vehicle i.

C. Problem Statement

The coordinated path following problem consists of find-
ing distributed control laws for a group of vehicles using only

i

j

x

y

dij

αij

Fig. 2. Distance dij and bearing angle αij .

local available information such that the group of vehicles
eventually converge to follow a given path and in addition,
the vehicles that are connected through sensing information
are evenly spaced on the path.

In our setup, though each vehicle may sense several
neighbor vehicles, we use only the information of one
neighbor (called pre-neighbor) to synthesize control so that
coordinated path following can be achieved with minimum
information. For vehicle i in Z1, another vehicle j is called
vehicle i’s pre-neighbor if (1) it is in the sensing range of
vehicle i; (2) it is also in Z1; (3) its nearest point (say pj) on
Γ is in front of vehicle i’s nearest point pi in the direction
of the path; (4) no other vehicle’s nearest point lies between
them on the path Γ. Next, for notation simplicity, we use ζi

to denote the arc distance between its pre-neighbor and itself,
i.e., ζi = lij where vehicle j is vehicle i’s pre-neighbor.

Thus, for the coordinated path following problem, in final
steady configuration, the path following error φk = 0 for
all k and the arc distance ζi between any vehicle i and its
pre-neighbor is L (a desired value) when its pre-neighbor
is still in its sensing range. In the paper, it is assumed that
R > L + 2R0 for technical reasons. Fig. 3 is a schematic
illustration for coordinated path following.

Γ

Fig. 3. Coordinated path following.

III. USING REACHABILITY TO SPECIFY COORDINATED

PATH FOLLOWING

In this section, we focus on constructing reachability
specifications for the coordinated path following problem.

Intuitively, when a vehicle is far away from the path, there
is no need for the vehicle to coordinate with other vehicles
right away so that they can achieve spontaneously ordered
motion to follow the path. Instead, its primary objective
should be getting close to the path. On the other hand, for
vehicles that are already close to the path (e.g., in Z1), they
can sense the path, so their primary objective is to follow
the path and coordinate their motion with other vehicles
that are also in Z1 in order to attain a desired inter-vehicle
formation. Moreover, it is expected that no vehicle will leave
Z1 as otherwise it may lose the vision of the path and
can not achieve path following thereafter. In terms of this
natural observation, we partition the state space Z into two
disjoint parts: Z1 and the remaining part (that is denoted
by Z2 := Z \ Z1). For vehicles in Z2, it means that the
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distances from them to the path are greater than R0. Thus,
in order to solve the coordinated path following problem,
we propose the following specifications: (1) navigate each
vehicle that is originally in Z2 into Z1 in finite time; (2)
ensure the vehicles remain in Z1 and achieve coordinated
path following. In the paper, we use reachability to describe
the specifications. The notation X → Y will be used to
represent the reachability specification from one state set X
to its adjacent state set Y , which means, for all initial states
x(0) ∈ X , there exists T > 0 satisfying (a) x(t) ∈ X for all
0 ≤ t < T ; (b) x(t) ∈ Y when t = T . Using this rigorous
formula, specification (1) becomes Z2 → Z1. In addition,
a part of specification (2) can be interpreted as making Z1
positively invariant.

However, even though the vehicles are already in Z1, it
may still not be easy to have a unified control law for each
vehicle such that it not only solves the coordinated path
following problem but also keeps them in Z1. As a result,
we propose to partition Z1 again into two disjoint sets: Z11

and Z12. It is expected that Z11 is as large as possible so that
for vehicles in Z11, they retain in it and are able to solve the
coordinated path following problem. Then for the set Z12, it
is expected that Z12 → Z11 for any vehicle,i.e., vehicles in
Z12 can be steered into Z11 in finite time so that eventually
the coordinated path following problem can be solved.

Based on the aforementioned ideas, the state space Z of
each vehicle is partitioned into three disjoints sets Z11, Z12,
and Z2. Then find control strategies for each vehicle such
that (1) Z2 → Z1 = Z11 ∪ Z12, (2) Z12 → Z11, and
(3) Z11 is positively invariant. A schematic state transition
graph is depicted in Fig. 4. When a group of n vehicles
are considered, the transition graph is the Cartisian product
of n copies of such graph. Therefore, the following three

Z11Z12Z2

Fig. 4. Reachability specification for every vehicle.

subproblems should be addressed.
Problem 3.1: Find a set Z11 ⊂ Z1 as large as possible

and devise a control law for each vehicle so that

(i) qi(0) ∈ Z11 =⇒ qi(t) ∈ Z11 for all t ≥ 0;
(ii) if qi(0) ∈ Z11 for all i, then

a) φi(t) → 0 as t → ∞;
b) limt→∞ ζi(t) = L if its pre-neighbor is still in

its sensing range.
Problem 3.2: Devise a control law for each vehicle such

that Z12 → Z11.
Problem 3.3: Devise a control law for each vehicle such

that Z2 → Z11 ∪ Z12.

IV. SYNTHESIS OF HYBRID CONTROL

In this section, we synthesize control laws for each sub-
problem. Then, a hybrid control is constructed to solve the
coordinated path following problem.

A. Coordinate Transformation

First, we introduce a coordinate transformation that is orig-
inally developed for single vehicle path following [1], [15].
For each vehicle i = 1, . . . , n, we define the corresponding
virtual vehicle i on the path Γ, whose position (xr

i , y
r
i ) is the

orthogonal projection of the moving vehicle i’s position onto
Γ at each time and whose orientation θr

i is tangent to Γ at the
current location (xr

i , y
r
i ) and in the direction of motion (see

Fig. 5). In other words, the position of the virtual vehicle

W

Γ

Σi

xr
i

yr
i

θr
i

xi

yi
θi

θe
i

ye
i

Fig. 5. Virtual vehicle and new coordinate variables.

i is the nearest point pi on Γ to vehicle i. Recall that it is
unique when vehicle i is in Z1. Denote qr

i = (xr
i , y

r
i , θ

r
i ) the

posture of the virtual vehicle i in W . Its kinematic model
has the same form as (1) with control inputs vr

i and ωr
i .

We now construct the Frenet-Serret frame Σi that is fixed
on the virtual vehicle i with the origin at (xr

i , y
r
i ) and x-axis

tangent to the path in the direction of motion. Then we are
able to define the posture of vehicle i in Σi as

qe
i :=

(

cos θr
i sin θr

i 0
− sin θr

i cos θr
i 0

0 0 1

)

(qi − qr
i ).

Thus, the dynamics for qe
i is

q̇e
i =





ẋe
i

ẏe
i

θ̇e
i



 =

(

ωr
i ye

i − vr
i + vi cos θe

i
−ωr

i x
e
i + vi sin θe

i
ωi − ωr

i

)

. (2)

By the definitions of virtual vehicle i and its corresponding
Frenet-Serret frame Σi, one obtains that xe

i and ẋe
i remain

equal to zero. Moreover, note that χ(pi) = −ωr
i

vr
i

. From the

first equation of (2), for any vehicle i in Z1, it follows that

vr
i =

vi cos θe
i

1 + χ(pi)ye
i

,

ωr
i = −χ(pi)v

r
i = −

χ(pi)vi cos θe
i

1 + χ(pi)ye
i

,

where 1 + χ(pi)ye
i > 0 enures that Σi is uniquely defined.

On the other hand, notice that φi = (ρi, ψi) is exactly the
vector (ye

i , θ
e
i ). Hence, it is obtained from (2) that

{

ρ̇i = vi sinψi,

ψ̇i = ωi + χ(pi)vi cos ψi

1+χ(pi)ρi
,

i = 1, . . . , n, (3)

which describes the evolution of the path following error.
Define S1 := {(ρ, ψ)| ρ ∈ [−R0, R0], ψ ∈ [−π, π)} . It is

clear that for any state q ∈ Z1, there is a correspondent
φ ∈ S1 and for any φ ∈ S1 all the correspondent states are
in Z1. We denote this correspondence by h : Z1 → S1.

B. Solving Problem 3.1

In this subsection, we focus on Problem 3.1. First, we are
going to find Z11 ⊂ Z1 as large as possible. Observe that
when a vehicle is oriented to the same direction as the path
(i.e. |ψi| < π

2 ) and in addition it is heading towards the path,
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then the trajectory may remain in Z1, but if it is heading
away from the path, with no backward motion, it may leave
Z1 depending on how close to the boundary. Hence, this
intuition can be used to partition S1 as in Fig. 6, where

ρ

ψ

S12

S11

π

−π

−R0 R0

−a

a

Fig. 6. A partition of S1.

S11 = {(ρ, ψ) ∈ S1| |ρ| ≤ R0, |ψ| ≤ a, |aρ + R0ψ| ≤ aR0}
and S12 = S1 \ S11. The parameter a satisfies 0 < a <
min

{

π
2 , R0

}

. The reason to partition it into polytopes is
for the convenience of analysis. Then, we define Z11 :=
{q | h(q) ∈ S11 } and Z12 := {q | h(q) ∈ S12 } . Clearly,
Z11 ∪ Z12 = Z1.

We now construct a distributed control law for each
vehicle when its state is currently in Z11. That is, for vehicle
i, as long as φi ∈ S11, we let










vi = [c + s (ζi − L)]
(

1+χ(pi)ρi

cos ψi

)

,

ωi = vi

[

− 1
k
(ρi + kψi + 2 sinψi) − χ(pi) cos ψi

1+χ(pi)ρi

]

,
(4)

where c > 1, k ≥ R0

a
are control parameters, s(·) is the sign

function (with s(0) = 0). In the above control law, ζi is the
arc distance between its pre-neighbor and itself. In a special
case when the vehicle has no pre-neighbor, we artificially let
ζi = L in order for the control law to have a unified form.

With this distributed control law, we first show that if
a vehicle initially has its state in Z11, then its trajectory
remains in Z11 no matter where its pre-neighbor is. In other
words, the set Z11 is robust positively invariant for the
dynamics of vehicle i.

Theorem 4.1: For any vehicle i under the control law (4),
if qi(0) ∈ Z11, then qi(t) ∈ Z11 for all t ≥ 0.

Suppose now that all the vehicles are initially in Z11. From
the above theorem, we know that they remain in Z11 forever
under distributed control law (4). Next, we will show that
if the arc distance of any two neighbor vehicles is nonzero,
then the arc distance can never be zero as the system evolves
under control law (4). Moreover, if the arc distance of any
two neighbor vehicles is less than R − 2R0, then these two
neighbor vehicles are kept with a distance less than R all the
time (i.e, they will never become disconnected in the sense
of visibility.). Thus, it implies that the pre-neighbor of each
vehicle will never change.

Theorem 4.2: Suppose that qi(0) ∈ Z11 for all i =
1, . . . , n. Then for any i the following holds: 1) If ζi(0) > 0,
then ζi(t) > 0 for all t ≥ 0; 2) If ζi(0) ≤ R − 2R0, then
dij(t) ≤ R for all t ≥ 0, where j is its pre-neighbor and dij

is the distance between them.
Finally, we show that distributed control law (4) solves

the coordinated path following problem for initial states in

Z11. That is, φi(t) → 0 as t → ∞ (each vehicle converges
to the path Γ) and limt→∞ ζ1(t) = · · · = limt→∞ ζn(t) = L
(they are evenly spaced with the same arc distance) if they
are still connected in the sense of pre-neighbor relationship.

Theorem 4.3: Suppose for all i, qi(0) ∈ Z11 and 0 <
ζi(0) ≤ R− 2R0. Then under distributed control law (4), 1)
limt→∞ φi(t) = 0 for all i; 2) limt→∞ ζi(t) = L for all i.

Remark 4.1: If initially not all ζi(0) is less than R−2R0,
the group of vehicles may lose connectivity, and in the final
steady state they may be separated into several subgroups
(namely, the distance between any two robots from different
subgroups is larger than R). However, for each subgroup, the
members are evenly spaced along the path with desired arc
distance L. This can be inferred from Theorem 4.3 easily.

C. Solving Problem 3.2

In this subsection, we consider to devise a control law
for each vehicle such that Z12 → Z11. This is equivalent to
S12 → S11. Based on feedback-linearization technique, we
are going to construct a continuous feedback such that the
resulting closed-loop system is a linear system with its phase
portrait like the one depicted in Fig. 7 and its equilibrium is
at the origin.

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

π

−π

a

−a

−R0 R0

ψ

ρ

Fig. 7. Phase portrait of the resulting linear closed-loop system.

Thus, we consider the following control law
{

vi = −k1
ρi

Satδ(sin ψi)

ωi = −k2Satε(ψi) − χ(pi)vi cos ψi

1+χ(pi)ρi

(5)

where k1 > k2 > 0, ε > 0 is a small number, δ = sin(ε),
and Sata(·) is a saturation function defined as

Satδ(x) =

{

x, |x| ≥ a,
a, 0 ≤ x < a,
−a, −a < x < 0.

The presence of the saturation function is to avoid singularity.
Theorem 4.4: For any vehicle i under control law (5),

Z12 → Z11.

D. Solving Problem 3.3

In this subsection, we study the problem of Z2 → Z1.
Consider now a vehicle i in Z2. By our assumption, it can
obtain the position information (distance and bearing angle)
of at least one vehicle that is in Z1 or a landmark on the path
Γ. If there are more than one, arbitrarily select a vehicle or a
landmark (saying j) as its tracking target using the following
control law

{

vi = k3dij cosαij ,
ωi = k3 (sinαij cosαij + αij) ,

(6)
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where k3 is a constant. Notice that for any vehicle in Z1,
control law (4) or (5) is used so that it remains in Z1 forever.
So from (4) and (5), we know that its linear speed is upper
bounded. Let v̄ denote its upper bound. In the paper, we set
k3 > 3v̄

R0
. If the tracking target is a moving vehicle in Z1,

the dynamics of distance dij and bearing angle αij can be
{

ḋij = −vi cosαij − vj cosαji

α̇ij = −ωi + vi

dij
sinαij + vj

dij
sinαji

where vj is the linear speed of vehicle j and αji is the
bearing angle of vehicle i in the local frame of vehicle j.
Instead, if the tracking target is a landmark on Γ, we can still
use the above equation to describe its dynamics by treating
the landmark as a virtual vehicle with vj = 0 and αji = 0.

Thus, considering control law (6), it is obtained that
{

ḋij = −k3dij cos2 αij − vj cosαji,
α̇ij = −k3αij + vj

dij
sinαji.

(7)

Hence, we know that |vj | ≤ v̄. Next, we show that vehicle
i will be steered into Z1 in finite time with control law (6).

Theorem 4.5: Suppose vehicle i in Z2 has local knowl-
edge of relative distance and bearing angle to a vehicle in Z1

or a landmark on Γ. Then under control law (6), Z2 → Z1.

Proof: Let j denote the vehicle in Z1 (or the landmark on
Γ) whose position information is available to vehicle i. Then
for control law (6), its closed-loop dynamics is (7). We first
show that for the dynamic system (7) there exists a T >
0 such that dij(T ) ≤ 2

3R0. Suppose by contradiction that
dij(t) > 2

3R0 for all t ≥ 0. Consider now a nonnegative
function V = 1

2α
2
ij , and then we obtain

V̇ = −k3α
2
ij + vjαij

dij
sinαji

≤ −k3α
2
ij + v̄

dij
|αij |

= −k3(1 −
√

3
2 )α2

ij − k3

√
3

2 α2
ij + v̄

dij
|αij | .

So it follows that

V̇ ≤ −k3(1 −
√

3

2
)α2

ij < 0 for all |αij | ≥
2v̄√

3k3dij

.

Thus, we know αij is uniformly ultimately bounded ( [10])
and its ultimate bound is 2v̄

√
3k3dij

. In other words, there exists

a T1 > 0 such that |αij(t)| ≤ 2v̄
√

3k3dij
for all t ≥ T1. Recall

that by our assumption k3 > 3v̄
R0

and dij(t) > 2
3R0 for all

t ≥ 0. So |αij(t)| ≤ 2v̄√
3k3dij

≤ 1√
3

for all t ≥ T1. Due to

the above assumptions, for t ≥ T1

ḋij(t) = −k3dij cos2 αij − vj cosαji

< −
(

3v̄
R0

)

(

2
3R0

)

cos2
(

1√
3

)

+ v̄

= −v̄
[

2 cos2
(

1
√

3

)

− 1
]

< 0,

which contradicts to the assumption that dij(t) > 2
3R0 for

all t. Thus, there exists a T > 0 satisfying dij(T ) ≤ 2
3R0.

If j is a vehicle in Z1, we know that it will eventually
converge to the path Γ. Instead, if j is a landmark, it is on
the path Γ. So for both cases dij(T ) ≤ 2

3R0 implies that
vehicle i will be in Z1 from the definition of Z1. !

Remark 4.2: In the paper, we assume that each vehicle in
Z2 can have the position information of at least one vehicle
in Z1 or a landmark on the path. Actually, if a vehicle i in

Z2 can only see a vehicle j that is also in Z2 and moreover
vehicle j can see a vehicle in Z1 or a landmark on the path,
then we let vehicle i track j using control law (6) and let
vehicle j track the vehicle (or the landmark) in Z1, which
will drive both vehicles to Z1 in finite time. In general, if the
group of vehicles has a tree-like topology connection with a
root moving in Z1, they can all be steered into Z1 in finite
time using the tracking control law (6).

E. Hybrid Control Synthesis

Combining the results above, we are now able to construct
a distributed hybrid control to solve the coordinated path
following problem globally. Select a control law for each
vehicle depending on its state according the following table.

Controller (4) Controller (5) Controller (6)
Z11 Z12 Z2

Thus, a state-dependent switching controller is obtained.
From the analysis in previous subsections, the states of

all the vehicles will get into Z11 in finite time under the
hybrid control, and moreover, the vehicles eventually achieve
coordinated path following. It is worth pointing out that for
our coordinated path following control strategy in Z11, the
arc distance between any two vehicles is assumed to be
nonzero initially as otherwise the vehicles are not able to
determine autonomously which of them is going to move
in front of the other. However, the set of states such that
two vehicles have zero arc distance is of low dimension.
In practice, due to the presence of measurement error and/or
other perturbations, it is quite reasonable that no two vehicles
can be in that configuration.

V. SIMULATION RESULTS

In this section, we present simulation results of five
unicycles using the hybrid control to solve the coordinated
path following problem. We consider five unicycles
(labeled 1 through 5) with initial states (−5, 1, 0.15π),
(−10, 5,−0.15π), (−15, 15, 0.65π), (5,−4, 0.1π) and
(−10,−10, 0.75π), respectively. The maximal curvature of
Γ is χ0 = 0.2 (i.e., R0 = 5). The sensing radius of each
vehicle is R = 15.5 and the desired arc distance L is set
to be 5. The parameter a used to partition S1 in Fig. 6 is
selected to be 1.3. With respect to the condition of each
theorem, the control parameters are chosen as follows:
c = 1.5, k = 4, ε = 0.1, k1 = 5, k2 = 3, k3 = 15.45.
The simulated trajectories of five unicycles under the hybrid
control are shown in Fig. 8 - Fig. 10.

In the figures, the dashed curve is the desired path to
be followed, and two real lines are the boundary of the
zonal region corresponding to Z1, in which the distance
from a location to the path is less than R0. From Fig. 8,
we can see that vehicles 1, 4, 5 are in Z1 and vehicles 2,
3 are in Z2 initially. As a result, before vehicle 2 and 3
enter the zonal region Z1, vehicle 4 is the pre-neighbor of
vehicle 1, and vehicle 1 is the pre-neighbor of vehicle 5.
These three vehicles coordinate their motion first without
getting far away from the path. For vehicles 2 and 3 that are
outside of Z1 initially, it is assumed that vehicle 3 has the
relative position information of vehicle 2 and vehicle 2 has
the relative position information of vehicle 1, so vehicle 3
tracks vehicle 2 and vehicle 2 tracks vehicle 1 using control
law (6). As soon as vehicle 2 enters Z1, it switches the
control law depending on its current state. Moreover, the
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Fig. 8. Trajectories of five unicycles in the plane at t = 5s.
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Fig. 9. Trajectories of five unicycles in the plane at t = 10s.
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Fig. 10. Trajectories of five unicycles in the plane at t = 20s.

pre-neighbor of vehicle 5 changes to vehicle 2, too. Vehicle
3 keeps tracking vehicle 2 until it gets into Z1, and then
switches the control law where its pre-neighbor is vehicle
5. In the simulation, the five vehicles are kept within the
sensing range when they are Z1. So finally they are evenly
spaced along the path with the desired arc distance L = 5
and move as a whole.

VI. CONCLUSION

In this paper, we focus on coordinated path following
problems, namely, steering a fleet of unicycles along a given
path while achieving a desired inter-vehicle formation pat-
tern. A novel approach based on reachability specifications
and hybrid control is proposed to solve the problem. First,
coordinated path following problems are specified using
reachability specifications and the state space is partitioned
into several regions. Second, control laws are synthesized on
each region to meet the reachability specifications so that all
the vehicles are steered into a region close to the path with
certain orientation conditions satisfied in finite time. Then,

starting in this region, all the vehicles are able to achieve
coordinated path following. That is, the path following error
for each vehicle is reduced to zero eventually and the arc dis-
tance used to describe the inter-vehicle formation converges
to a desired constant. When vehicles are far away from the
path, only brief information (such as relative distance and
bearing angle) of a fixed neighbor is necessary to navigate
them close to the path. When vehicles are already close to the
path, more information about the path and their neighbors is
assumed to be measured by onboard sensors with a limited
sensing range. As a result, the neighboring relationship may
be dynamically changed. In our control strategy, only the
local measurement of one neighbor called pre-neighbor is
used for the coordinated control purpose, which makes the
information measurement at a minimum. The pre-neighbor
relationship may also be dynamically changed as more and
more vehicles are getting close to the path.
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