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STATE AGREEMENT FOR CONTINUOUS-TIME COUPLED
NONLINEAR SYSTEMS∗

ZHIYUN LIN† , BRUCE FRANCIS† , AND MANFREDI MAGGIORE†

Abstract. Two related problems are treated in continuous time. First, the state agreement
problem is studied for coupled nonlinear differential equations. The vector fields can switch within
a finite family. Associated to each vector field is a directed graph based in a natural way on the
interaction structure of the subsystems. Generalizing the work of Moreau, under the assumption
that the vector fields satisfy a certain subtangentiality condition, it is proved that asymptotic state
agreement is achieved if and only if the dynamic interaction digraph has the property of being
sufficiently connected over time. The proof uses nonsmooth analysis. Second, the rendezvous problem
for kinematic point-mass mobile robots is studied when the robots’ fields of view have a fixed radius.
The circumcenter control law of Ando et al. [IEEE Trans. Robotics Automation, 15 (1999), pp. 818–
828] is shown to solve the problem. The rendezvous problem is a kind of state agreement problem,
but the interaction structure is state dependent.
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1. Introduction. This paper studies a dynamical system that is the interconnec-
tion of subsystems. Examples are abundant in biology, physics, engineering, ecology,
and social science: e.g., a biochemical reaction network [14], coupled Kuramoto oscil-
lators [17,39], arrays of chaotic systems [44,45], a swarm of organisms [12,13], and a
group of autonomous agents [16, 22, 23]. We model such systems by coupled nonlin-
ear differential equations in state form. Pioneering work on such coupled dynamical
systems from a structural point of view is that of Siljak, e.g., [35, 36].

State agreement means that the states of the subsystems are all equal. For exam-
ple, [11] studies a group of individuals who must act together as a team; each individ-
ual has its own subjective probability distribution for the unknown value of some pa-
rameter. How the group might reach a consensus and form a common subjective prob-
ability distribution for the parameter is a state agreement problem. In other contexts,
state agreement arises as synchronization in theoretical physics, e.g., [5,30,39,42,43],
and consensus in computer science, particularly in distributed computing, e.g., [25].

Central to the state agreement problem is the graph describing the interaction
structure in the interconnected system—that is, who is coupled to whom. And a
central question is, What properties of the interaction graph lead to state agreement?
Most existing work has dealt with static graphs with a particular topology, such
as rings [6, 30], cyclic digraphs [32], and fully connected graphs [12, 13, 34], or with
static graphs having an unspecified topology but a certain connectedness. Example
frameworks are coupled cell systems [38], coupled oscillators [17, 45], multiagent sys-
tems [4, 31], and formations of unicycles [23]. Of course, a static graph simplifies the
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state agreement problem and allows one to focus on the difficulties caused by the
nonlinear dynamics of the nodes.

The more interesting situation is when the interaction graph is time varying.
From the point of view of control theory, the most suitable mathematical model for
these setups is a switched interconnected system. However, attempts to understand
how the switching affects the collective system behavior had been hampered by the
lack of suitable analysis tools. Recently, however, great strides have been made [16]
by characterizing the convergence of infinite products of certain types of nonnegative
matrices in a linear discrete-time setup with an undirected interaction graph. For
the switched linear continuous-time system model and a directed graph, [22] uses the
graph Laplacian and the properties of some special matrices to prove asymptotic state
agreement under certain graphical conditions. In addition, [29] uses the common Lya-
punov function technique for the switched linear continuous-time system and shows
that balanced digraphs play a key role in addressing the average-consensus problem.
Two other works on state agreement for linear continuous-time systems are [15], which
deals with random networks, and [26], which addresses the deterministic time-varying
case.

However, many real systems are nonlinear in addition to having time-varying
interaction among subsystems. Examples are systems of coupled oscillators. For
nonlinear interconnected systems with time-varying interaction, new tools are re-
quired. A novel approach is taken by Moreau in [27]: The framework is nonlinear and
discrete-time, and the stability analysis is based upon a blend of graph-theoretic and
system-theoretic tools, with the notion of convexity being key. The idea is, roughly
speaking, that if every agent always moves toward the relative interior of the convex
hull of the set of neighbor agents at each step, state agreement will be achieved. The
result in [27] was recently generalized in [2] as follows: The setup is still a discrete-
time system, but each agent moves towards the relative interior of a set which is a
function, not necessarily the convex hull, of the present and past states of neighbor
agents. In this way communication delays can be accommodated.

One concrete instance of the state agreement problem is the rendezvous problem
for autonomous mobile robots. Suppose the robots’ fields of view have a fixed radius.
Then the robots may come into and go out of sensor range of each other, and the
interaction graph is therefore state dependent instead of time dependent. For this
problem, some distributed algorithms were proposed in [1, 41], with the objective
of getting the robots to congregate at a common location (achieving rendezvous).
These algorithms were extended to various synchronous and asynchronous stop-and-
go strategies in [9, 19,20].

This paper makes two main contributions. The first is the continuous-time coun-
terpart to the result of Moreau [27]. We borrow heavily from Moreau’s geometric
concepts and proof structure; we suggest, however, that the continuous-time case
presents some considerable challenges, as one will see from the details of our proof.
Thus our contribution to this problem is primarily technical in nature. As an example
application, we apply our result to make new conclusions about synchronization of
coupled Kuramoto oscillators. The second contribution of this paper is a solution of
the continuous-time rendezvous problem for kinematic point-mass robots; we use the
circumcenter control law of Ando et al. [1] and give the first proof of convergence in
continuous time.

2. Preliminaries. Here we assemble some known and some novel concepts re-
lated to convex sets and tangent cones, directed graphs, and Dini derivatives. In
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addition, we provide some fundamental properties associated with them.

2.1. Convex sets and tangent cones. References for this subsection are [3,37].
The convex hull of S ⊂ R

m is denoted co(S). The convex hull of a finite set of
points x1, . . . , xn ∈ R

m is a polytope, denoted co{x1, . . . , xn}.
Let S ⊂ R

m be convex. If S contains the origin, the smallest subspace containing
S is the carrier subspace, denoted lin(S). The relative interior of S, denoted ri(S), is
the interior of S when it is regarded as a subset of lin(S) and the relative topology
is used, and likewise for the relative boundary, denoted rb(S). If S does not contain
the origin, it must be translated by an arbitrary vector: Let v be any point in S and
let lin(S) denote the smallest subspace containing S − v. Then ri(S) is the interior of
S when it is regarded as a subset of the affine subspace v + lin(S), and similarly for
rb(S).

A nonempty set K ⊂ R
m is a cone if λy ∈ K when y ∈ K and λ > 0. Let S ⊂ R

m

be a closed convex set and y ∈ S. The tangent cone (often referred to as contingent
cone) to S at y is the set

T (y,S) =

{
z ∈ R

m : lim inf
λ→0

‖y + λz‖S
λ

= 0

}
,

where ‖y+λz‖S denotes the distance from y+λz to S. The normal cone to S at y is

N (y,S) = {z∗ : 〈z, z∗〉 ≤ 0 ∀z ∈ T (y,S)}.

Note that if y is in the interior of S, then T (y,S) = R
m. Thus the set T (y,S)

is nontrivial only on ∂S, the boundary of S. In particular, if S contains only one
point, y, then T (y,S) = {0}. In geometric terms the tangent cone for y ∈ ∂S is a
cone centered at the origin which contains all vectors whose directions point from y
“inside” (or they are “tangent to”) the set S.

Lemma 2.1 (see [3]). Let Si, i = 1, . . . , n be convex sets in R
m.

(i) If y ∈ S1 ⊂ S2, then

T (y,S1) ⊂ T (y,S2) and N (y,S2) ⊂ N (y,S1).

(ii) If xi ∈ Si (i = 1, . . . , n), then

T ((x1, . . . , xn),S1 × · · · × Sn) = T (x1,S1) × · · · × T (xn,Sn),
N ((x1, . . . , xn),S1 × · · · × Sn) = N (x1,S1) × · · · × N (xn,Sn).

2.2. Directed graphs. For a directed graph (digraph for short) G = (V, E),
where V = {1, . . . , n} is the set of nodes and E is the set of arcs, we write i → j if
there is a path from node i to node j. By definition, i → i for every node i. A center
is a node i such that i → j for every node j, and G is quasi-strongly connected (QSC)
if it has a center [7]. Finally, G is fully connected if for every two nodes i and j there
is an arc from i to j.

2.3. Dini derivatives. Consider the nonautonomous system

ẏ = f(t, y),(2.1)

where D ⊂ R
m is a domain and f : R × D → R

m. Let V (t, y) : R × D → R be a
continuous function satisfying a local Lipschitz condition for y, uniformly with respect
to t. Then we define

D+
f V (t, y) = lim sup

τ→0+

V (t + τ, y + τf(t, y)) − V (t, y)

τ
.
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The function D+
f V is called the upper Dini derivative of V along the trajectory of

(2.1). Suppose that for an initial condition y(0) = y0, (2.1) has a solution y(t) defined
on an interval [0, ε) and let D+V (t, y(t)) be the upper Dini derivative of V (t, y(t))
with respect to t, i.e.,

D+V (t, y(t)) = lim sup
τ→0+

V (t + τ, y(t + τ)) − V (t, y(t))

τ
.

Let t∗ ∈ [0, ε) and put y(t∗) = y∗. Then one has that (see [33])

D+V (t∗, y(t∗)) = D+
f V (t∗, y∗).

Lemma 2.2. Let I0 = {1, 2, . . . , n} and suppose for each i ∈ I0, Vi : R ×
D → R is of class C1; let V (t, y) = maxi∈I0 Vi(t, y); and let I(t) = {i ∈ I0 :
Vi(t, y(t)) = V (t, y(t))} be the set of indices where the maximum is reached at time t.
Then D+V (t, y(t)) satisfies

D+V (t, y(t)) = max
i∈I(t)

V̇i(t, y(t)).

The proof can be obtained from Danskin’s theorem [8,10].

3. The state agreement problem: Main results. Our setup is a general
interconnection of nonlinear subsystems, where the vector fields can switch within a
finite family. We associate to each vector field a directed graph based in a natural way
on the interaction structure of the subsystems; this is called an interaction digraph in
the present paper. Assuming that the vector fields satisfy a certain subtangentiality
condition, we show that asymptotic state agreement is achieved if and only if the
dynamic interaction digraph has the property of being sufficiently connected over
time, in a certain technical sense. Most of the proofs are deferred to section 5.

To formalize the notion of a switched interconnected system, first consider a family
of systems

ẋ1 = f1
p (x1, . . . , xn)

...
ẋn = fn

p (x1, . . . , xn),

where xi ∈ R
m is the state of subsystem i and where the index p belongs to a finite

set P. Notice that the subsystems share a common state space, R
m. Introducing the

aggregate state x ∈ R
mn, we have the concise form

ẋ = fp(x), p ∈ P,(3.1)

where for each p ∈ P, fp : R
mn → R

mn.
We now associate to each vector field fp an interaction digraph Gp capturing the

interaction structure of the n subsystems (agents).
Definition 3.1 (interaction digraph). The interaction digraph Gp = (V, Ep)

consists of
• a finite set V of n nodes, each node i modeling agent i;
• an arc set Ep representing the links between agents. An arc from node j to

node i indicates that agent j is a neighbor of agent i in the sense that f i
p

depends on xj; i.e., there exist x1
j , x

2
j ∈ R

m such that

f i
p(x1, . . . , x

1
j , . . . , xn) 
= f i

p(x1, . . . , x
2
j , . . . , xn).

The set of neighbors of agent i is denoted Ni(p).
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Fig. 3.1. Some examples of vector fields f i
p satisfying assumption A2.

Let Ci
p(x) = co{xi, xj : j ∈ Ni(p)} denote the polytope in R

m formed by the states
of agent i and its neighbors. Also, it is convenient to introduce a subset S ⊂ R

m of the
common state space that plays the role of a region of focus. In our state agreement
problem, initial states of the agents will be in S and agreement will occur in S. Let
I0 denote the index set {1, . . . , n} and assume that, for each i ∈ I0 and each p ∈ P,
the vector fields f i

p : R
mn → R

m satisfy the following two assumptions:

A1. f i
p is locally Lipschitz on Sn.

A2. For all x ∈ Sn, f i
p(x) ∈ ri

(
T (xi, Ci

p(x))
)
.

Assumption A2 is sometimes referred to as a strict subtangentiality condition.
Figure 3.1 illustrates two example situations of A2. In the left-hand example, agent 1
has only one neighbor, agent 2; the convex hull C1

p(x) is the line segment joining x1

and x2; the tangent cone T (x1, C1
p(x)) is the closed ray {λ(x2 − x1) : λ ≥ 0} (in the

figure it is shown translated to x1); the relative interior ri
(
T (x1, C1

p(x))
)

is the open
ray {λ(x2−x1) : λ > 0}; and A2 means that f1

p is nonzero and points in the direction
of x2 −x1. In the right-hand example, agent 1 has two neighbors, agents 2 and 3; the
convex hull C1

p(x) is the triangle with vertices x1, x2, x3; the tangent cone T (x1, C1
p(x))

is

{λ1(x2 − x1) + λ2(x3 − x1) : λ1, λ2 ≥ 0}

(again, it is shown translated to x1); the relative interior ri
(
T (x1, C1

p(x))
)

is

{λ1(x2 − x1) + λ2(x3 − x1) : λ1, λ2 > 0};

and A2 means that f1
p points into this open cone. In general, A2 requires that f i

p(x)
have the form ∑

j∈Ni(p)

αj(x)(xj − xi),

where αj(x) are nonnegative scalar functions, and that f i
p(x), now viewed as a vector

applied at the vertex xi, not be tangent to the relative boundary of the convex set
Ci
p(x).

When the index p in (3.1) is replaced by a piecewise constant function σ :
[0, ∞) → P, we obtain a switched interconnected system

ẋ(t) = fσ(t) (x(t)) .(3.2)
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The function σ is called a switching signal. The case of infinitely fast switching (chat-
tering), which would call for a concept of generalized solution, is not considered here.
As a matter of fact, it can be shown that even piecewise constant switching signals σ(t)
do not have sufficient regularity for asymptotic agreement of the switched intercon-
nected system (3.2) [21]. Let Sdwell denote the class of piecewise constant switching
signals such that any consecutive discontinuities are separated by no less than some
fixed positive constant τD, the dwell time. We make the following assumption:

A3. σ(t) ∈ Sdwell.
Having replaced p by a switching signal σ(t), we similarly replace the interaction

digraph Gp by a dynamic interaction digraph Gσ(t).
Definition 3.2 (dynamic interaction digraph and union digraph). Given a

switching signal σ(t), the dynamic interaction digraph Gσ(t) is the pair
(
V, Eσ(t)

)
.

Given two real numbers t1 ≤ t2, the union digraph G ([t1, t2]) is the digraph whose
arcs are obtained from the union of the arcs in Gσ(t) over the time interval [t1, t2].

Definition 3.3. A dynamic interaction digraph Gσ(t) is uniformly quasi-strongly
connected (UQSC) if there exists T > 0 such that for all t ≥ 0, the union digraph
G([t, t + T ]) is QSC.

Our main result, Theorem 3.8, is that the switched interconnected system achieves
asymptotic state agreement on S if and only if the dynamic interaction digraph Gσ(t)

is UQSC.
But first, the precise meaning of state agreement is given in the following defini-

tion.
Definition 3.4. The switched interconnected system (3.2) has the property of

(i) state agreement on S if ∀ζ ∈ S, ∀ε > 0, ∃δ > 0 such that ∀t0 ≥ 0,

(∀i) (‖xi(t0) − ζ‖ ≤ δ) ∧ (xi(t0) ∈ S) =⇒ (∀t ≥ t0)(∀i) ‖xi(t) − ζ‖ ≤ ε;

(ii) asymptotic state agreement on S if it has the property of state agreement
on S and in addition ∀ε > 0, ∀c > 0, ∃T > 0 such that ∀t0 ≥ 0,

(∀i) (‖xi(t0)‖ ≤ c) ∧ (xi(t0) ∈ S) =⇒ (∃ζ ∈ S)(∀t ≥ t0 + T )(∀i) ‖xi(t) − ζ‖ ≤ ε;

(iii) global asymptotic state agreement if it has the property of asymptotic state
agreement on R

m.

S S

Fig. 3.2. Asymptotic state agreement on S.

These definitions are illustrated in Figure 3.2 and can be stated, roughly speaking,
as follows. State agreement (the left-hand figure) means that, for every point ζ in S,
the agents stay arbitrarily close to ζ if they start sufficiently close to ζ, uniformly with
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respect to the starting time. Asymptotic state agreement (the two figures together)
means, in addition, that the agents converge to a common location in S.

These state agreement definitions are related to stability with respect to a set.
Let Ω denote the set of aggregate states such that the subsystem states are all equal
and in S, i.e.,

Ω = {x ∈ R
nm : x1 = · · · = xn ∈ S}.

Then state agreement is equivalent to uniform stability with respect to Ω.
Finally, we give the following new definition of positive invariance specially for

interconnected systems.
Definition 3.5. A set A ⊂ R

m is said to be positively invariant for the switched
interconnected system (3.2) if

(∀t0 ≥ 0)(∀i) xi(t0) ∈ A =⇒ (∀t ≥ t0)(∀i) xi(t) ∈ A.

Our first result establishes the positive invariance property of any compact convex
set in S without needing any property of the interaction digraph. This result can
perhaps be understood intuitively as follows. For m = 2, all agents move in the
plane. Let A be a compact convex set in S and assume all agents start in A. Let C(t)
denote the convex hull of the agents’ locations at time t. Because A is convex, clearly
C(0) ⊂ A. Now invoke assumption A2. An agent that is initially in the interior of C(0)
can head off in any direction at t = 0, but an agent that is initially on the boundary
of C(0) is constrained to head into its interior. In this way, C(t) is nonincreasing (if
t2 > t1, then C(t2) ⊂ C(t1)), and A is therefore positively invariant for the switched
interconnected system (3.2).

Theorem 3.6. Let A ⊂ S be a compact convex set. Then A is positively invariant
for the switched interconnected system (3.2).

The second result establishes state agreement of the system, again without need-
ing any property of the interaction digraph.

Theorem 3.7. Suppose S is closed and convex. The switched interconnected
system (3.2) has the property of state agreement on S.

Proof. Let ζ ∈ S and ε > 0 be arbitrary, and let

Aε(ζ) = {y ∈ S : ‖y − ζ‖ ≤ ε}.(3.3)

By Theorem 3.6, it follows that Aε(ζ) is positively invariant since it is a compact
convex set in S. We have thus proved that ∀ζ ∈ S, ∀ε > 0, ∃δ = ε such that ∀t0 ≥ 0,

(∀i) (‖xi(t0) − ζ‖ ≤ δ) ∧ (xi(t0) ∈ S) =⇒ (∀t ≥ t0)(∀i) ‖xi(t) − ζ‖ ≤ ε.

The conclusion follows by Definition 3.4.
Now comes our main result.
Theorem 3.8. Suppose S is closed and convex. The switched interconnected

system (3.2) has the property of asymptotic state agreement on S if and only if the
dynamic interaction digraph Gσ(t) is UQSC.

This section concludes with a few remarks.
If S = R

m in assumptions A1 and A2, then the switched interconnected system
(3.2) has the global asymptotic state agreement property if and only if Gσ(t) is UQSC.

When the vector fields in the family (3.1) are nonautonomous, suppose assump-
tions A1 and A2 are replaced by the following (keeping assumption A3 the same):
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A1′. f i
p(t, x) is locally Lipschitz with respect to x on Sn and piecewise continuous

with respect to t.
A2′. For all x ∈ Sn and all t ∈ R, f i

p(t, x) ∈ ri
(
T (xi, Ci

p(x))
)
.

It can be shown [21] that Theorem 3.8 no longer holds in general.
In the special case that the interaction graph is fixed (σ(t) is a constant signal),

then the property of UQSC is equivalent to QSC. Thus, we arrive at the following
special result.

Corollary 3.9. Suppose σ(t) = p and S = R
m. Then, the interconnected

system (3.2) has the globally asymptotic state agreement property if and only if Gp is
QSC.

For this special case we can actually relax the assumptions on the vector fields
f i
p : R

mn → R
m as follows:

A1′′. f i
p is continuous on R

mn.

A2′′. For all x ∈ R
mn, f i

p(x) ∈ T
(
xi, Ci

p(x)
)
. Moreover, f i

p(x) 
= 0 if Ci
p(x) is not

a singleton and xi is its vertex.
A sketch of the proof can be found in [24]. Unlike the proof of Theorem 3.8 here (see
section 5), the proof in [24] relies on LaSalle’s invariance principle. Finally, it is worth
pointing out that assumption A1′′ is too weak for sufficiency in Theorem 3.8 when
the interaction digraph is dynamic [21].

Application: Synchronization of coupled oscillators. The Kuramoto model
[17, 39] describes the dynamics of a set of n oscillators with angles θi with natural
frequencies ωi. The time evolution of the ith oscillator is given by

θ̇i = ωi + ki
∑

j∈Ni(t)

sin(θj − θi),

where ki > 0 is the coupling strength and Ni(t) is the set of neighbors of oscillator i
at time t. The interaction structure can be general up to this point in the paper; that
is, Ni(t) can be an arbitrary set of other nodes and can be dynamic.

The neighbor sets Ni(t) define Gσ(t) and the switched interconnected system

θ̇(t) = fσ(t) (θ(t)) ,

where θ = (θ1, . . . , θn) and σ(t) is a suitable switching signal. For identical frequencies
(i.e., ωi = ω ∀i), the transformation xi = θi − ωt yields

ẋi = ki
∑

j∈Ni(t)

sin(xj − xi), i = 1, . . . , n.(3.4)

Let a, b be any real numbers such that 0 ≤ b − a < π, and define S = [a, b]. It
can be checked that A1 and A2 are satisfied. Suppose σ(t) here is regular enough to
satisfy A3. Then from Theorem 3.8 it follows that, if and only if Gσ(t) is UQSC, the
switched interconnected system (3.4) has the property of asymptotic state agreement
on S. This implies that there exists x̄ ∈ R such that the oscillators asymptotically
synchronize:

θi(t) → x̄ + ωt, θ̇i(t) → ω.

This extends Theorem 1 in [17], which assumes the interaction graph is undirected
and static and the initial state θi(0) ∈

(
−π

2 ,
π
2

)
for all i.
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111 222

33 3

G1 G2 G3

Fig. 3.3. Three interaction digraphs Gp, p = 1, 2, 3.

As an example, three Kuramoto oscillators with time-varying interaction are sim-
ulated. The initial conditions are θ1 = 0, θ2 = 1, θ3 = −1. The natural frequency ωi

equals 1, and the coupling strength ki is set to 1 for all i. The interaction structure
switches among three possible interaction structures periodically, as shown in Fig-
ure 3.3. It can be checked that Gσ(t) is UQSC. Thus these three oscillators achieve
asymptotical synchronization by the main theorem. Figure 3.4 shows the plots of
sin(θi), i = 1, 2, 3, and of the switching signal σ(t). Synchronization is evident.
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Fig. 3.4. Synchronization of three oscillators with a dynamic interaction structure.

4. The rendezvous problem. Now we turn to the second main topic: the
rendezvous problem for autonomous mobile robots moving in continuous time. The
problem here is different because connectivity is state dependent instead of time de-
pendent a priori.

Suppose there are n robots, each having the simple kinematic model of velocity
control: ẋi = ui, where xi ∈ R

m is the position of robot i. Assume that, due to the
limited field of view of its sensor, each robot can sense only the relative positions of its
neighbor robots within radius r. Letting Ni(x) denote the set of neighbors of robot
i, where x is the aggregate state of n robots, we thus have that {yij = xj − xi : j ∈



STATE AGREEMENT FOR COUPLED NONLINEAR SYSTEMS 297

Ni(x)} is the information available to robot i. The rendezvous problem is to design
local distributed control laws ui, functions of {yij : j ∈ Ni(x)}, such that all states
{xi : i = 1, . . . , n} converge to a common value x̄ ∈ R

m.
The interaction digraph is state dependent, Gσ(x), because of the proximity sen-

sors, and the switched interconnected system takes the form

ẋ = fσ(x)(x),(4.1)

where σ : R
mn → P. Let us fix an initial state x0 ∈ R

mn and assume that (4.1) has
a solution x(t) defined for all t ≥ 0. Then the state-dependent switching rule can be
viewed as a time-dependent switching rule σ(x(t)), and the interaction graph becomes
time dependent too, Gσ(x(t)).

If some robots are initialized so far away from the rest that they never acquire
information from them, then the rendezvous problem obviously cannot be solved.
This corresponds to the situation where Gσ(x(0)) is not QSC. Thus it is natural to
assume that Gσ(x(0)) is QSC. Moreover, we wish the control laws ui to be devised
such that Gσ(x(t)) does not lose this property in the future, even though the controller
may cause changes in Gσ(x(t)). Intuitively, ui should make the maximum distance
between robot i and its neighbors nonincreasing.

Let Ii(x) denote the set of neighbor robots j ∈ Ni(x) that have maximum distance
from robot i (generically Ii(x) is a singleton).

Proposition 4.1. Assume that for each i the control law ui satisfies

(∀x) max
j∈Ii(x)

(xi − xj)
Tui ≤ 0.(4.2)

If Gσ(x0) is QSC and a solution x(t) to (4.1) exists for all t ≥ 0, then Gσ(x(t)) is QSC
for all t ≥ 0.

Proof. Define

V (x) = max
i

max
j∈Ni(x)

‖xi − xj‖2.

Notice that V (x) ≤ r, where r is the radius of the field of view of each robot. Also,
define

I(x) =
{
(i, j) : V (x) = ‖xi − xj‖2, j ∈ Ni(x)

}
,

the set of pairs of indices where the maximum is reached. By Lemma 2.2

D+V (x(t)) = 2 max
(i,j)∈I(x)

[
(xi − xj)

Tui + (xj − xi)
Tuj

]
≤ 2 max

(i,j)∈I(x)
(xi − xj)

Tui + 2 max
(i,j)∈I(x)

(xj − xi)
Tuj .

It follows from (4.2) that

max
(i,j)∈I(x)

(xi − xj)
Tui ≤ 0 and max

(i,j)∈I(x)
(xj − xi)

Tuj ≤ 0.

Hence D+V (x(t)) ≤ 0 for all t ≥ 0, which means the already linked arcs will never be
disconnected and therefore the conclusion follows.

Next, we show that if the distributed control law ui satisfies (4.2) as well as
assumptions A1′′ and A2′′, then a solution x(t) to (4.1) exists for all t ≥ 0, and the
robots rendezvous.
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Proposition 4.2. Suppose Gσ(x0) is QSC. If ui satisfies (4.2) as well as A1′′

and A2′′, then the robots rendezvous.
Proof. If Gσ(x0) is fully connected, then Gσ(x(t)) is fixed for all time t ≥ 0 since

no link will be dropped, by Proposition 4.1, and no link can be added. Then the
conclusion follows from Corollary 3.9.

If instead Gσ(x0) is not fully connected, then Gσ(x(t)) is dynamic and switches
for a finite number of times. To prove this, suppose by contradiction that for all
t ≥ 0, Gσ(x(t)) = Gσ(x0). Then by Corollary 3.9, all the robots converge to a common
location. So Gσ(x(t)) will become fully connected at some time t, which contradicts
the assumption that Gσ(x(t)) = Gσ(x0) is not fully connected. Hence, there is a t1 ≥ 0
such that Gσ(x(t1)) has more links than Gσ(x0) because no link will be dropped by
Proposition 4.1. Repeating this argument a finite number of times eventually leads
to the existence of ti such that Gσ(x(ti)) is fully connected, and thus, it is fixed after
ti. Then the conclusion follows from Corollary 3.9 by treating (ti, x(ti)) as the initial
condition.

The control law given next is based on the algorithm first proposed in [1].
Proposition 4.3. A possible choice of ui satisfying condition (4.2) as well as

assumptions A1′′ and A2′′ is ui = e(0, yij : j ∈ Ni(x)), the Euclidean center of the
set Z = {0, yij , j ∈ Ni(x)}.

Proof. The Euclidean center of the set Z is the unique point w that minimizes the
function g(w) := maxz∈Z ‖w − z‖. Interpreted geometrically, e(·) is the center of the
smallest m-sphere that contains the set of points {0, yij , j ∈ Ni(x)}. Furthermore, it

can be easily shown that it lies in the polytope C̃i
p = co{0, yij , j ∈ Ni(x)} but not at

its vertices if the polytope is not a singleton. Thus,

e (0, yij : j ∈ Ni(x)) = arg min
w∈C̃i

p

(
max
z∈Z

‖w − z‖
)
.

Then, by the maximum theorem [40], the function e(·) is continuous (but not locally
Lipschitz by some other arguments), and hence ui satisfies assumption A1′′.

Next, e(·) ∈ C̃i
p implies e(·) ∈ T (0, C̃i

p). Also, notice that Ci
p(x) = co{xi, xj : j ∈

Ni(x)} is the translation of C̃i
p to the point xi. Hence, e(·) ∈ T (xi, Ci

p(x)). In addition,

if Ci
p(x) is not a singleton and xi is its vertex, this means that C̃i

p is not a singleton

and 0 is its vertex. Then by the fact that e(·) lies in C̃i
p but not at its vertices, it

follows that ui = e(·) 
= 0. Thus ui satisfies assumption A2′′.
Finally, ui satisfies (4.2). This can be seen from geometry. We show the case

m = 2 for illustration. If ui = 0, then it trivially satisfies (4.2). If ui 
= 0, then the
picture is as in Figure 4.1. The solid circle C1 is the smallest circle enclosing the
points 0 and yij , j ∈ Ni(x). The dotted circle C2 is centered at the origin and goes
through the intersection points between C1 and its diameter, which is perpendicular
to ui. We know that if there are some yij in the closed shaded area, then one of them
achieves the maximal distance from the origin among all yij , j ∈ Ni(x). On the other
hand, there is at least one j ∈ Ni(x) such that yij is in the closed semicircle of C1,
since otherwise it is not the smallest circle. Hence, yij lies in the closed shaded area if
j ∈ Ii(x). Moreover, the angle between ui and such yij is less than π/2. This implies
that maxj∈Ii(x)(xi − xj)

Tui ≤ 0.

5. Proofs of the main results in section 3. Our proofs rely heavily on non-
smooth analysis involving the Dini derivative. They are partly inspired by a re-
sult of Narendra and Annaswamy [28], who show that with V̇ (x, t) ≤ 0 uniform
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yij1

yij2 yij3

yij4

ui

C1

C2

Fig. 4.1. The smallest enclosing circle.

asymptotic stability can be proved if there exists a positive T such that for all t,
V (x(t + T ), t + T ) − V (x(t), t) ≤ −γ(‖x(t)‖) < 0, where γ is a class K function.
The difference here is that we deal with stability with respect to a set—the set of
aggregate states where the subsystem states are all equal—rather than stability of
an equilibrium point; an additional complication is that the natural V -functions are
nondifferentiable.

Nagumo’s theorem concerning set invariance is stated first, for later reference.
Theorem 5.1 (see [3]). Consider the system ẏ = F (y), with F : R

l → R
l, and let

Y ⊂ R
l be a closed convex set. Assume that, for each y0 in Y, there exists ε(y0) > 0

such that the system admits a unique solution y(t, y0) defined for all t ∈
[
0, ε(y0)

)
.

Then,

y0 ∈ Y =⇒
(
∀t ∈

[
0, ε(y0)

))
y(t, y0) ∈ Y

if and only if F (y) ∈ T (y,Y) for all y ∈ Y.
Proof of Theorem 3.6. Let A be any compact convex set in S and consider any

initial state x0 ∈ An and any initial time t0. For any piecewise constant switching
signal σ(t), let x(t, t0, x

0) be the solution of the switched interconnected system (3.2)
with x(t0) = x0, and let [t0, t0 + ε(t0, x

0)) be its maximal interval of existence.
For any point x ∈ An, it is obvious that Ci

p(x) ⊂ A for all i ∈ I0 and p ∈ P, by
convexity of A. Thus, by property (i) in Lemma 2.1,

f i
p(x) ∈ ri

(
T (xi, Ci

p(x))
)
⊂ T (xi,A) ∀i ∈ I0, ∀p ∈ P,

and by property (ii) in the same lemma,

g(t, x) := fσ(t)(x) ∈ T (x,An) ∀t ∈ R, ∀x ∈ An.

Set y = (t, x) and construct the augmented system

ẏ = F (y) :=

[
1

g(y)

]
.(5.1)

Since g(t, x) admits a unique solution x(t, t0, x
0) defined for all t ∈ [t0, t0 + ε(t0, x

0)),
it follows that for all y0 = (t0, x

0) ∈ R×An, the augmented system (5.1) has a unique
solution y(t, y0) defined on [0, ε(y0)). Moreover,

F (y) ∈ T (t,R) × T (x,An) = T (y,R ×An) ∀y ∈ R ×An.
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Since R ×An is closed and convex, by Theorem 5.1 it follows that

y0 = (t0, x
0) ∈ R ×An =⇒ (∀τ ∈ [0, ε(y0))) y(τ) ∈ R ×An.(5.2)

The solution y(τ) to (5.1) with initial condition y0 = (t0, x
0) is related to the solution

x(t) to ẋ = g(t, x) with initial condition x(t0) = x0 as follows:

(∀t ∈ [t0, t0 + ε(t0, x
0))) (t, x(t)) = y(t− t0).

We thus rewrite condition (5.2) as

t0 ∈ R and x0 ∈ An =⇒ (∀t ∈ [t0, t0 + ε(t0, x
0))) x(t) ∈ An.

Since the set An is compact, it follows by Theorem 2.4 in [18] that, for all x0 ∈
An and all t0, ε(t0, x

0) = ∞ and the set A is positively invariant for the switched
interconnected system (3.2) by definition 3.5.

Now we need some additional notation. First, a hypercube in R
m:

Ar(z) = {y ∈ R
m : ‖y − z‖∞ ≤ r} .

Let c > 0 be large enough that Sc := S ∩ Ac(0) is not empty. Now consider any
x = (x1, . . . , xn), xi ∈ Sc. Each xi lives in R

m. Let C(x) denote the convex hull of
the points x1, . . . , xn; C(x) is a polytope in R

m.
To simplify notation, we focus on the first axis in R

m. Along this axis, let a1(x)
and b1(x) denote the upper and lower ordinates of C(x), as in Figure 5.1. The set
{y ∈ C(x) : y1 = a1(x)} is the first upper boundary of C(x). Finally, for small enough
r > 0, define

Hr(x) = {y ∈ C(x) : y1 ≤ a1(x) − r}.

The setup is summarized in Figure 5.1.

a1(x)

b1(x)

x1

x2
r

Sc

C(x)

Hr(x)

x = (x1, x2, . . . , xn)

Fig. 5.1. Illustration to define notation: C(x) is the convex hull of the points x1, . . . , xn;
a1(x), b1(x) are its upper and lower ordinates; Hr(x) is the part of the convex hull below the line
with ordinate a1(x) − r.

Now we need two technical lemmas for which we assume that the hypotheses of
Theorem 3.8 hold. Due to space limitation, we have to omit the proofs and refer the
reader to [21].
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Sc

i

a1(x(t′))

b1(x(t′))

ε

δ

Hε(x(t′))

Fig. 5.2. Illustration for Lemma 5.2: Agent i is in Hε(x(t′)) at time t1, and it cannot get into
the upper layer of width δ in the near future.

The first lemma is illustrated in Figure 5.2.

Lemma 5.2. For every sufficiently large c > 0, there exists a class KL function
γ : [0, 2c] × [0,∞) → [0,∞) such that γ(�, 0) =� and such that the following is true:
For every (t′, x(t′)) ∈ R × Sn

c , every ε > 0 sufficiently small, and every T > 0, if
xi(t1) ∈ Hε(x(t′)) at t1 ≥ t′, then xi(t) ∈ Hδ(x(t′)) for all t ∈ [t1, t1 + T ], where
δ = γ(ε, T ).

The second lemma is illustrated in Figure 5.3.

Sc

i
a1(x(t′))

b1(x(t′))

ε

δ

Hδ(x(t′))

j

Fig. 5.3. Illustration for Lemma 5.3: Agent i has the neighbor j in Hδ(x(t′)) and will conse-
quently be pulled into Hε(x(t′)).

Lemma 5.3. For every sufficiently large c > 0, there exists a class K function
ϕ : [0, 2c] → [0,∞) such that ϕ(�) <� for � 
= 0 and such that the following is true:
For every (t′, x(t′)) ∈ R × Sn

c and every δ > 0 sufficiently small, if there exist a pair
(i, j) and a t1 ≥ t′ such that j ∈ Ni(t) and xj(t) ∈ Hδ(x(t′)) for all t ∈ [t1, t1 + τD],
then there exists a t2 ∈ [t′, t1 + τD] such that xi(t2) ∈ Hε(x(t′)), where ε = ϕ(δ).

Proof of Theorem 3.8. (Necessity.) To prove the contrapositive form, assume that
Gσ(t) is not UQSC. That is, for every T > 0 there exists t∗ ≥ 0 such that G([t∗, t∗+T ])
is not QSC; i.e., it does not have a center. Then, in G([t∗, t∗ +T ]) there are two nodes
i∗ and j∗ such that for every node k either k 
→ i∗ or k 
→ j∗. Let V1 be the set of
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nodes l such that l → i∗ and let V2 be the set of nodes l such that l → j∗. Obviously,
V1 and V2 are disjoint. Moreover, for each node i ∈ V1 (resp., V2), the set of neighbors
of agent i in G([t∗, t∗ + T ]) is a subset of V1 (resp., V2). This implies that, for all
t ∈ [t∗, t∗ + T ] and for all (i, j) ∈ V1 × V2,

Ni(σ(t)) ⊆ V1 and Nj(σ(t)) ⊆ V2.

Choose any z1, z2 ∈ S such that z1 
= z2. Let t0 = t∗ and pick any initial condition
x(t0) such that

xi(t0) =

{
z1 if i ∈ V1,
z2 if i ∈ V2.

Then, by assumption A2, for all t ∈ [t0, t0 + T ],

xi(t) =

{
z1 ∀i ∈ V1,
z2 ∀i ∈ V2.

Let c = maxi ‖xi(t0)‖ and let ε be a positive scalar smaller than ‖z1−z2‖/2. We have
thus found ε > 0 and c > 0 such that, for all T > 0, there exists t0 = t∗ such that

(∀i) (‖xi(t0)‖ ≤ c) ∧ (xi(t0) ∈ S), but (∀ζ ∈ S)(∃t = t0 + T )(∃i) ‖xi(t) − ζ‖ > ε.

Thus system (3.2) does not have the property of asymptotic state agreement on S.
(Sufficiency.) Assume Gσ(t) is UQSC. By Theorem 3.7 the switched interconnected

system (3.2) has the property of state agreement on S, so it remains to show that
∀ε > 0, ∀c > 0, ∃T ∗ > 0 such that ∀t0 ≥ 0

(∀i) xi(t0) ∈ Sc =⇒ (∃ζ ∈ S)(∀t ≥ t0 + T ∗)(∀i) xi(t) ∈ Aε(ζ).(5.3)

Let ε > 0, c > 0 be arbitrary. There exist a class KL function γ and a class
K function ϕ satisfying the properties in Lemmas 5.2 and 5.3, respectively. For any
given t0 ≥ 0 and x0 ∈ Sn

c , consider the solution x(t) of (3.2) with x(t0) = x0 and the
nonnegative function Vj(x) := aj(x) − bj(x), j = 1, . . . ,m. Thus Vj(x(t)) equals the
width in the jth direction of the convex hull of the agents at time t. By Theorem
3.6, for every t ≥ t′ ≥ t0, xi(t) ∈ C(x(t′)) ⊂ Sc for all i. It follows that Vj(x(t)) is
nonincreasing along the trajectory x(t).

Since Gσ(t) is UQSC, there is a T ′ > 0 such that for each t the union digraph
G([t, t + T ′]) is QSC. Let T = T ′ + 2τD, where τD is the dwell time.

Claim. There exists a class K function η such that for every t′ ≥ t0

V1(x(t′ + T̄ )) − V1(x(t′)) ≤ −η (V1(x(t′))) ,(5.4)

where T̄ = 2nT .
Let us postpone the proof of this claim and see how the theorem follows from the

claim. From (5.4) we have

V1

(
x(t0 + kT̄ )

)
≤ V1 (x(t0)) − η (V1(x(t0))) − · · · − η

(
V1(x(t0 + (k − 1)T̄ ))

)
.

Notice that x0 ∈ Sn
c (0) implies V1(x

0) ≤ 2c. In addition, considering the facts that η
is a class K function and that V1(x(t)) is nonincreasing, one obtains

V1(x(t0 + kT̄ )) ≤ 2c− kη(V1(x(t0 + kT̄ ))).
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This means there is a T ∗
1 = kT̄ > 0 (k large enough) such that V1(x(t)) < 2ε for all

t ≥ t0 + T ∗
1 . For each j = 2, . . . ,m, by the same argument, there is a T ∗

j > 0 such
that Vj(x(t)) < 2ε for all t ≥ t0 + T ∗

j . Let T ∗ = maxj T
∗
j . Thus Vj(x(t)) < 2ε for all

t ≥ t0 + T ∗ and all j = 1, . . . ,m. This in turn implies that there exists a ζ ∈ S such
that xi(t) ∈ Aε(ζ) for all i and all t ≥ t0 + T ∗. This proves (5.3).

Now we prove the claim. Inequality (5.4) says that the width, along the first axis,
of the convex hull of the agents reduces measurably from time t′ to time t′ + T̄ . The
proof is intricate and involves applying Lemmas 5.2 and 5.3 alternately.

We begin by constructing a family of parameters, ε1, δ1, ε2, . . . , εn−1, δn−1, εn.
First, ε1 is taken to be half the width at time t′: ε1 = V1(x(t′))/2. Then δ1 is
produced by applying Lemma 5.2: δ1 = γ(ε1, T̄ ). Then ε2 comes from Lemma 5.3,
ε2 = ϕ(δ1), and δ2 comes from Lemma 5.2, δ2 = γ(ε2, T̄ ). Continuing, we set

ε3 = ϕ(δ2),

δ3 = γ(ε3, T̄ )

...

εn−1 = ϕ(δn−2),

δn−1 = γ(εn−1, T̄ ),

εn = ϕ(δn−1).

Define γ̄(·) := γ(·, T̄ ). Then εn can be written as

εn = η (V1(x(t′))) ,

where η(·) := ϕ ◦ γ̄ ◦ · · · ◦ ϕ ◦ γ̄(·/2). It is a class K function since γ̄ and ϕ both are.
Since γ is class KL with the property γ(�, 0) =� and T̄ > 0, it follows that δk < εk.
In addition, εk+1 < δk because ϕ(�) <� for � 
= 0. Thus,

0 < εn < δn−1 < · · · < δ1 < ε1.

These parameters are used as in Figure 5.4.

ε1

ε2

δ1

Fig. 5.4. The parameters ε1, δ1, ε2, . . . , εn−1, δn−1, εn with respect to the convex hull and the
first axis.
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t′ t′ + T t′ + 2T t′ + 2nT

T ′T ′T ′ · · · · · ·

· · · · · ·

τ1 τ2 τ2n

Fig. 5.5. The time interval [t′, t′ + T̄ ].

Let V1 and V∗
1 be a partition of the node set V such that i ∈ V1 if xi(t

′) ∈ Hε1

and i ∈ V∗
1 otherwise. Thus V1 is the set of agents located in the lower half of the

convex hull in Figure 5.4 at time t′.
Next, we apply the two lemmas to construct a sequence of times at which certain

events are known to occur. In what follows, hopefully without causing confusion, we
use Hr to denote Hr(x(t′)) for simplicity. As shown in Figure 5.5, let

τ1 = t′ + τD,

τ2 = t′ + T + τD
...

τ2n = t′ + (2n− 1)T + τD.

For each k = 1, . . . , 2n, the digraph G([τk, τk + T ′]) is QSC, and therefore it has a
center, say ck. Now ck is either in V1 or in V∗

1 ; thus at least n elements in {c1, . . . , c2n}
lie in either V1 or V∗

1 . Assume without loss of generality that they lie in V1; thus there
exist indices 1 ≤ k1 < · · · < kn ≤ 2n such that cki

∈ V1.
At time t′, by definition, Hε1 has at least one agent (see Figure 5.4). Moreover,

by Lemma 5.2, for all i

xi(t
′) ∈ Hε1 =⇒ xi(t) ∈ Hδ1 ∀t ∈ [t′, t′ + T̄ ].(5.5)

Since G([τk1 , τk1 + T ′]) has a center ck1 in V1, there exists a pair (i, j) ∈ V∗
1 × V1

such that j is a neighbor of i in this digraph; otherwise there is no link from j
to i for any i ∈ V∗

1 and j ∈ V1, which contradicts the fact that the digraph has
a center in V1. This further implies that there is a τ ∈ [τk1

, τk1
+ T ′] such that

j ∈ Ni(τ). Since τ ∈ [τk1 , τk1 + T ′] = [t′ + (k1 − 1)T + τD, t′ + k1T − τD], it follows
that [τ − τD, τ + τD] ⊂ [t′ + (k1 − 1)T, t′ + k1T ]. Since σ(t) ∈ Sdwell(τD), there is
an interval [τ̄ , τ̄ + τD], which contains τ and is a subinterval of [t′, t′ + k1T ], such
that j ∈ Ni(t) for all t ∈ [τ̄ , τ̄ + τD]. In addition, since j ∈ V1 or, what is the same,
xj(t

′) ∈ Hε1 , from (5.5) we know that xj(t) ∈ Hδ1 for all t ∈ [t′, t′ + T̄ ] (and of course
for all t ∈ [τ̄ , τ̄ +τD]). Thus, by Lemma 5.3, there exists t1 ∈ [t′, τ̄ +τD] ⊆ [t′, t′+k1T ]
such that xi(t1) ∈ Hε2 .

So we have shown on the one hand that the agents not in Hε1 at t′ are in Hε2 at
t1. On the other hand, the agents in Hε1 at t′ remain in Hδ1 at t1 from (5.5), and
therefore remain in Hε2 at t1 because Hδ1 ⊂ Hε2 . Hence, at time t1, Hε2(x(t′)) has
at least two agents.

Let V2 and V∗
2 be a partition of the node set V such that i ∈ V2 if xi(t1) ∈ Hε2

and i ∈ V∗
2 otherwise. Note that by (5.5)

k ∈ V1 =⇒ xk(t
′) ∈ Hε1 =⇒

(5.5)
xk(t1) ∈ Hδ1 ⊂ Hε2 =⇒ k ∈ V2,

so V1 ⊂ V2. In particular ck2 , the center node of G([τk2 , τk2 + T ′]), is in V2 because
it is in V1. Then we can apply the same argument to conclude that there are a
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t2 ∈ [t1, t
′ + k2T ] and an i in V∗

2 such that xi(t2) ∈ Hε3 and therefore, Hε3 has at
least three agents at t2.

Repeating this argument n − 1 times leads to the result that there is a tn−1 ∈
[t′, t′ + kn−1T ] ⊂ [t′, t′ + T̄ ] such that Hεn has n agents at tn−1. Hence,

V1(x(tn−1)) ≤ V1(x(t′)) − εn = V1(x(t′)) − η(V1(x(t′))),

and (5.4) follows.

6. Conclusions. In this paper we first studied the state agreement problem for a
class of switched interconnected large-scale systems with a family of admissible vector
fields. The interconnection structure is time varying and independent of the state.
The key assumption about the vector fields, A2, generalizes Moreau’s assumption
in discrete time. Necessary and sufficient conditions, in terms of the interaction
graph, are obtained to assure that the system achieves asymptotic state agreement.
These results can be understood as connective stability, as in the framework of [36].
Achieving asymptotic state agreement of a large-scale interconnected system is robust
with respect to either the coupling structure or parameter values. In addition, our
results and analysis may be of independent interest in the field of switched systems.

Second, we studied the rendezvous problem in continuous time. The intercon-
nection structure is defined in terms of the distances between agents and hence is
state independent. We proved that the circumcenter control law is a solution to the
problem.

The notion of state agreement in this paper is that the states of the subsystems
are all equal and constant. This notion can potentially be generalized in the following
two directions. First, state agreement could mean equality of all the trajectories of the
subsystems. In other words, the trajectories of a collection of subsystems will follow,
after some transient, the same path in time. This would be of interest in formation
control of multiagent systems. Second, state agreement could mean equality of all
the states after suitable state transformations. An example is a biochemical reaction
network studied in [21].

In many state-agreement problems, the interaction graphs are bidirectional. For
such cases, it is reasonable to conjecture that interconnected systems enjoy several
special properties. For instance, results similar to those in Theorem 3.8 may be
obtained with weaker assumptions on the smoothness of the vector fields.

Finally, we conjecture in the spirit of [2] that our result could be generalized by
replacing Ci

p(x) in assumption A2 by a set-valued map satisfying suitable properties.

REFERENCES

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, Distributed memoryless point convergence
algorithm for mobile robots with limited visibility, IEEE Trans. Robotics Automation, 15
(1999), pp. 818–828.

[2] D. Angeli and P. A. Bliman, Stability of leaderless discrete-time multi-agent systems, Math.
Control Signals Systems, 18 (2006), pp. 293–322.

[3] J.-P. Aubin, Viability Theory, Birkhäuser Boston, Boston, 1991.
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