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any nonsingular matrix. Since 	 = [�1 0], the pair f	;�g is observ-
able. Thus, the generator is linearly observable.
So far, we have verified the satisfaction of assumptions A1)–A4). To

obtain an internal model that makes the satisfaction of assumption A5,
chooseM = diagf�1;�2g and N = [0:2 0:4]T , which are control-

lable, then there exists T =
�0:1 0:1

�0:16 0:08
satisfying the Sylvester

equation T� �MT = N	. Under this T

�1(�) = � 10�1 + 12:5�2 + 0:1 sin2(10�1 � 12:5�2)

�2(�) = � 20�1 + 12:5�2 + 0:2 sin(10�1 � 12:5�2)

� cos(10�1 � 12:5�2)(20�1 � 12:5�2)

� 10�1 + 12:5�2 + 0:1 sin2(10�1 � 12:5�2):

Now, solving the Lyapunov (30) gives P =
0:5 0

0 0:25
. Thus,

inequality (31) becomes

�2~�T
0:5 0

0 0:25

1

2
�
[2]
1 (~�+d)��

[2]
1 (d) �(1�R)~�T ~�:

It can be easily verified that the previous inequality holds for 0 <

R < 0:72. Thus by Remark 3.3, assumption A5) is satisfied. There-
fore, by Theorem 3.1, the global robust output regulation problem for
this system is solvable.
As a matter of fact, a controller that solves the global robust output

regulation problem for this system can be given as follows:

u =�2(�)� 1190~x2

~x2 = �1 � �1(�) + 17:3~x1

~x1 = e

_� =M� +N �1 � �1(�) + 	T�1
� :

The details of the synthesis are omitted due to the space limit.

IV. CONCLUDING REMARKS

In this note, we have studied the solvability of the global robust
output regulation problem for the class of the nonlinear systems in
output feedback form without the polynomial assumption on the so-
lution of the regulator equations. In our formulation, we have assumed
that the bound of the compact sets V andW are known as is the case in
[17]. This assumption can be removed by using the universal adaptive
control technique as described in [4].
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Necessary and Sufficient Graphical Conditions for
Formation Control of Unicycles

Zhiyun Lin, Bruce Francis, and Manfredi Maggiore

Abstract—The feasibility problem is studied of achieving a specified for-
mation among a group of autonomous unicycles by local distributed con-
trol. The directed graph defined by the information flow plays a key role.
It is proved that formation stabilization to a point is feasible if and only if
the sensor digraph has a globally reachable node. A similar result is given
for formation stabilization to a line and tomore general geometric arrange-
ments.

Index Terms—Distributed control, multiagent system, nonholonomic
mobile robots.

I. INTRODUCTION

The problem of coordinated control of a group of autonomous
wheeled vehicles is of recent interest in control and robotics. Over
the past decade, many researchers have worked on formation control
problems with differences regarding the types of agent dynamics, the
varieties of the control strategies, and the types of tasks demanded.
In 1990, Sugihara and Suzuki [1] proposed a simple algorithm for a
group of point-mass type robots to form approximations to circles
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and simple polygons. In the years following, distributed algorithms
were presented in [2]–[4] with the objective of getting a group of such
robots to congregate at a common location: This is termed an agree-
ment problem [3] or rendezvous problem [4]. In [5], Jadbabaie et al.
studied a different agreement problem: getting autonomous agents in
the plane to move in a common direction. In addition to the references
mentioned so far, mathematical analysis and control synthesis for
formation control of point-mass type robots were developed in [6]–[8]
by different approaches. With regard to a group of wheeled vehicles
with nonholonomic constraints, the formation control problem with
different objectives was investigated in [9]–[13]. Other relevant recent
references are [14]–[21].
As a natural extension of our previous work [7], [11] and moti-

vated by the proposed strategy in [12], [13], in this note the feasibility
problem is studied of achieving a specified formation among a group
of unicycles by distributed control. Each unicycle relies only on lo-
cally available information, namely, the relative displacements to cer-
tain neighbors; in particular, we do not assume that the unicycles pos-
sess a common reference frame.
Central to a discussion of formation control is the nature of the in-

formation flow throughout the formation. This information flow can be
modeled by a directed graph (digraph for short), where a link from node
i to node j indicates that vehicle i has access in some way to the posi-
tion of vehicle j—but only with respect to the local coordinate frame
of vehicle i. Such a digraph is assumed in this note to be static—the
dynamic case, where ad-hoc links can be established or dropped, is a
future topic. We emphasize that modeling the information flow with
a static digraph may not accurately model realistic situations whereby
sensors have a limited field of view. At the same time, investigating
feasibility of formations with static digraphs is a necessary step toward
the more realistic dynamic setting. With this in mind, in this note we
use the term sensor digraph to denote the digraph defined above. Our
analysis relies on several tools from algebraic graph theory, nonnega-
tive matrix theory, and averaging theory. We introduce a new concept
for our analysis:H(�;m) stability of the Laplacian of the digraph.
Our first main result is that formation stabilization to a common point

is feasible if and only if the sensor digraph has a globally reachable
node (a node to which there is a directed path from every other node).
That is, there exists at least one unicycle that is viewable, perhaps indi-
rectly by hopping from one unicycle to another, by all other unicycles.
This is precisely the degree of connectedness required and is much
weaker than strong connectedness of the sensor digraph (as in cyclic
pursuit [11], for example). Our proof of sufficiency is constructive: We
present an explicit smooth periodic feedback controller, and prove con-
vergence using averaging theory.
Our second main result concerns formation stabilization to a line.

This turns out to be feasible if and only if there are at most two disjoint
closed sets of nodes in the sensor digraph. In addition, we introduce a
special sensor digraph which guarantees that all vehicles converge to
a line segment, equally spaced. This is an extension to unicycles of a
line-formation scheme of Wagner and Bruckstein [22].
Finally, we show how formation stabilization to a common point

can be adapted to any geometric pattern if a group of unicycles have a
common sense of direction.

II. PROBLEM STATEMENT AND MAIN RESULTS

Before treating unicycles, it is perhaps illuminating to give a result
for the much simpler case of point masses. Consider n “point-mass
robots” whose positions are modeled by complex numbers, z1; . . . ; zn,
in the plane. Assume a kinematic model of velocity control: _zi = ui.
Assume each robot obtains the relative positions of a subgroup,Ni, of
the other robots. Let yi denote the vector whose components are the

Fig. 1. Wheeled vehicle.

Fig. 2. Frenet–Serret frame.

relative positions zm � zi, as m ranges over Ni. Thus yi, a vector of
dimension the cardinality of Ni, represents the information available
to ui. We allow controllers of the form ui = Fiyi, or ui = 0 if Ni is
empty. Thus, yi = 0 =) ui = 0 =) _zi = 0; that is, robot i does
not move if all robots it senses are collocated with it (or if there is no
information available to it). The problem of convergence to a common
point is this.

Problem 0: Find, if possible, F1; . . . ; Fn such that

(8 zi(0); i = 1; . . . ; n) (9 zss) (8 i) lim
t!1

zi(t) = zss:

Now define the sensor digraph G for this setup: There is a directed edge
from node i to nodem if and only ifm 2 Ni.
Before giving our results, we review some notions in graph theory.

For a digraph G = (V; E), V = f1; . . . ; ng, if there is a path in G from
one node i to another node j, then j is said to be reachable from i,
written i! j. If not, then j is said to be not reachable from i, written
i j. If a node i is reachable from every other node in G, then we say
it is globally reachable. If U is a nonempty subset of V and i j for
all i 2 U and j 2 V�U , then U is said to be closed. More information
can be found in [23] and [24].

Theorem 0: Problem 0 is solvable if and only if G has a globally
reachable node. Moreover, when Problem 0 is solvable, one solution is
Fi = [1 � � � 1].
The easy proof is omitted.
Now, we turn to the main topic of unicycles. We can identify the real

plane, 2, and the complex plane, , by identifying a column vector,
zi, and a complex number, zi. Now consider a wheeled vehicle with
coordinates (xi; yi; �i) with respect to a global frame g� (see Fig. 1).
The location of the vehicle in the plane is zi = [xi yi]

T or zi =
xi + jyi. The vehicle has the nonholonomic constraint of pure rolling
and nonslipping and is described kinematically as

_xi = vi cos(�i)

_yi = vi sin(�i)
_�i = !i

or _zi = vie
j�

_�i = !i:

Following [10], we construct a moving frame i�, the Frenet–Serret
frame, that is fixed on the vehicle (see Fig. 2). Let ri be the unit vector
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Fig. 3. Local information.

tangent to the trajectory at the current location of the vehicle (ri is
the normalized velocity vector) and let si be ri rotated by �=2. Thus,
_zi = viri since the vehicle is moving at speed vi.
Now consider n wheeled vehicles, indexed by i. We refer to the indi-

vidual vehicles as nodes and the information flows as links. Although
the vehicles in the group are dynamically decoupled, meaning the mo-
tion of one vehicle does not directly affect any of the other vehicles,
they are coupled through the information flow. Let Ni denote the set
of labels of those vehicles accessible by vehicle i and define the sensor
digraph G = (V ; E): There is a directed edge from node i to nodem if
and only ifm 2 Ni. We refer to this as the sensor digraph.
In this note, we assumeNi is time invariant, meaning the information

flow topology is static. In the control law that we study, no vehicle can
access the absolute positions of other vehicles or its own. Specifically,
vehicle i can only get the relative positions of a subgroup of vehicles
with respect to its own Frenet–Serret frame (see Fig. 3)

xim =(zm � zi) � ri

yim =(zm � zi) � si
; m 2 Ni

where � denotes dot product. This leads to the following definition.
Definition 1: A controller (vi; wi); i = 1; . . .n, is said to be a local

information controller if

vi = gi(t; xim; yim)jm2N

!i =hi(t; xim; yim)jm2N
; i = 1; . . . ; n

where gi is such that f(8m 2 Ni) zm = zig ) fvi = 0g.
Notice that in our definition a vehicle does not translate (but it can

rotate) when either it cannot obtain local information from any other
vehicle or its neighbors have all converged to its position.
In what follows, we present the two main problems investigated in

this note, together with necessary and sufficient conditions for their
solutions.

Problem 1: (Formation Stabilization to a Point): Find, if possible, a
local information controller such that for all (xi(t0); yi(t0); �i(t0)) 2
3, i = 1; . . .n, and all t0 2

(9 zss 2
2) (8 i) lim

t!1
zi(t) = zss:

Theorem 1: (Section III) Problem 1 is solvable if and only if the
sensor digraph has a globally reachable node.

Problem 2: (Formation Stabilization to a Line): Find, if possible, a
local information controller such that for all (xi(t0); yi(t0); �i(t0)) 2
3, i = 1; . . .n, and all t0 2 , all vehicles converge to form a line.
Theorem 2: (Section IV) Problem 2 is solvable if and only if there

are at most two disjoint closed sets of nodes in the sensor digraph.
In Section IV, we also introduce a special sensor digraph which guar-

antees that all vehicles converge to a line segment, equally spaced. In

Section V, we show how our solution to Problem 1 can be employed to
achieve formation stabilization to any geometric pattern.

III. FORMATION STABILIZATION TO A POINT

In this section, we prove Theorem 1. The proof requires the following
lemmas.

Lemma 1: 1 A digraph G = (V; E) with jVj � 2 has no globally
reachable node if and only if it has at least two disjoint closed subsets
of V .

Proof: (Sufficiency) Sufficiency follows directly.
(Necessity)We prove necessity bymeans of a constructive algorithm.

First, select any node, say vi , in V and partition V as V = fvi g [
V1 [ V

0
1, where every node in V1 can reach vi and no node in V

0
1 can

reach vi . Then, V 01 is closed. Also, V
0
1 6= �, since vi is not globally

reachable.
Second, select any node, say vi in V 01. Since V

0
1 is not empty, we

can always find one. Check if the node vi is globally reachable in the
induced subgraph G(V 01).
If so, then partition V as V = W1 [ W

0
1 [ V

0
1, where every node

inW1 can reach (some node in) V 01 and no node inW
0
1 can reach V

0
1.

Then,W 0
1 is closed. Also,W

0
1 6= �, since vi is not globally reachable.

Thus, V 01 andW
0
1 are two disjoint closed subsets for the digraph G.

If instead the previous condition is false, partition V 01 as
V 01 = fvi g [ V2 [ V 02, where every node in V2 can reach vi
and no node in V 02 can reach vi . Then, V

0
2 is closed and nonempty.

Next, select any node, say vi , in V 02 and check if vi is globally
reachable in the induced subgraph G(V 02). If so, then the conclusion
follows by the same argument as before. If it does not, repeat this
procedure again until this condition holds. Since the digraph has a
finite number of nodes and V 0k is getting smaller each step, eventually
the condition must hold and two disjoint closed subsets will have been
constructed.
The following is a useful algebraic characterization of the property

that a digraph G = (V; E) has a globally reachable node, expressed in
terms of the Laplacian L. The proof is omitted (see [26]).

Lemma 2: The digraph has a globally reachable node if and only if
0 is a simple eigenvalue of L.
The information flow produces a kind of symmetry in the system

equations with respect to the x and y coordinates. For this reason, the
Laplacian L leads to the matrix L(2) = L 
 I2 (Kronecker product),
which we now study. A definition from [25] will be modified in order to
better suit our application. Let � = f�1; �2; . . . ; �pg be a partition of
f1; 2; . . . ; ng. A block diagonal matrix with diagonal blocks indexed
by �1; �2; . . . ; �p is said to be �-diagonal.

Definition 2: Let � = f�1; �2; . . . ; �pg be a partition of
f1; 2; . . . ; ng andm � 0 an integer. An n � n matrix A is said to be
H(�;m)-stable if

a) 0 is an eigenvalue of A of algebraic and geometric multiplicity
m, while all other eigenvalues have negative real part;

b) for every �-diagonal positive definite symmetric matrix R, 0 is
an eigenvalue ofRA of algebraic and geometric multiplicitym,
while all other eigenvalues have negative real part.

Lemma 3: Let � = ff1; 2g; f3; 4g; . . . ; f2n � 1; 2ngg. If the di-
graph G is strongly connected, then �L(2) is H(�; 2) stable.
The proof is omitted due to space limitations (see [26]).
Lemma 4: Let� = ff1; 2g; f3; 4g; . . . ; f2n�1; 2ngg. The matrix

�L(2) is H(�; 2) stable if and only if the digraph G has a globally
reachable node.

Proof: (Sufficiency) Let V 0 be the set of all the globally reachable
nodes. It is not empty but contains either all n nodes or r (1 � r < n)

1This lemma is logically equivalent to [16, Th. 5]; we became aware of this
reference after the first submission of this note.
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nodes. In the former case, the digraph G is strongly connected and,
therefore, �L(2) is H(�; 2) stable by Lemma 3. In the latter case, we

can express L, without loss of generality, by L =
L1 0

L2 L3
, where

the associated digraph G(L1) is strongly connected and L3 is nonsin-
gular. Hence, by Lemma 3,�L1 isH(�; 2) stable. Furthermore, one
can easily verify thatL3 is a nonsingularM -matrix. Then it follows that
there exists a positive diagonal matrix P = diag(p1; p2; . . . ; p(n�r))
such that Q = LT3 P + PL3 is positive definite. Thus, for every �-di-
agonal positive–definite symmetric matrix R2, let �P = P(2)R

�1
2 =

R�1
2 P(2), which is positive definite. Applying properties of the Kro-
necker product yields (�R2L3 )T �P + �P (�R2L3 ) = �Q(2),
which is negative definite. Hence,�L3 isH(�; 0) stable and there-
fore �L(2) is H(�; 2) stable.
(Necessity) Since �L(2) = �L 
 I2 is H(�; 2) stable, it follows

that �L(2) has a 0 eigenvalue of algebraic multiplicity 2 and then, by
a property of the Kronecker product, �L has a simple eigenvalue at 0.
Using Lemma 2, the digraph has a globally reachable node.

Proof of theorem 1: (Sufficiency) Define the time-varying feed-
back controller for each vehicle i, (i = 1; . . . ; n)

vi(t) = k

m2N

xim(t); k > 0

!i(t) = cos(t):

(1)

We begin by noticing that f(8 m 2 Ni) zm = zig ) fvi(t) =
k

m2N
xim(t)= k

m2N
(zm(t)� zi(t)) � ri(t) = 0g. Further,

for any t0 2 , �i(t) = �i(t0)+sin(t), i = 1; . . . ; n, which is periodic
with period 2�. Next, using the identity (z �r)r = (rrT )z, we get _zi =
viri = k

m2N
[(zm�zi)�ri]ri= k rir

T
i m2N

(zm�zi). Define
M(�i(t)) := rir

T
i and H(�(t)) := diag(M(�1(t)) � � �M(�n(t))).

Thus, the overall position dynamics become

_z = �kH (�(t))L(2)z; (2)

where z 2 2n is the position vector z = [zT1 � � � zTn ]
T
and L(2) =

L 
 I2 (L is the Laplacian of the sensor digraph). And the corre-
sponding averaged system of (2) is

_z = �kHavL(2)z; (3)

where Hav = diag( �M1; . . . ; �Mn), �Mi :=
m1
i m2

i

m2
i m3

i

, and

m
1
i =

1

2�

2�

0

cos2 (�i(� ))d�

m
2
i =

1

2�

2�

0

cos (�i(�)) sin (�i(�))d�

m
3
i =

1

2�

2�

0

sin2 (�i(�))d�:

By the Cauchy–Schwarz inequality, m1
im

3
i � (m2

i )
2
. Since �i(t) is

not constant, the inequality holds strictly. So �Mi is positive definite
and, therefore, Hav is positive definite. More exactly, Hav is �-diag-
onal positive definite with� = ff1;2g; f3; 4g; . . . ; f2n�1; 2ngg. By
the condition that the sensor digraph has a globally reachable node, it
follows from Lemma 4 that�L(2) isH(�; 2) stable. So there is a sim-
ilarity transformation F such that�F�1L(2)F = diag(�L11;02�2),
where�L11 is Hurwitz and the last two column vectors of F are in the
null space of L(2). Without loss of generality, we can choose the last
two column vectors of F to be 1
 I2�2. Applying the transformation

e = [eT1 eT2 ]
T

= F�1z to the system (2), where e1 2 2n�2 and
e2 2

2, we have

_e = �kF�1
H (�(t))L(2)Fe = k

A11(t) 0

A12(t) 0

e1

e2
:

Correspondingly, for the averaged system (3), we have

_e = �kF�1
HavL(2)Fe = k

�A11 0
�A12 0

e1

e2
:

Now, the reduced averaged system _e1 = k �A11e1 is exponentially
stable since�L(2) isH(�; 2) stable. Then, by [27, Th. 8.3], there exists
a positive constant k� such that, for all 0 < k < k�, global exponential
stability of the reduced original system _e1 = kA11(t)e1 is established.
Also, since _e2 = kA12(t)e1 and A12(t) is uniformly bounded, it fol-
lows that _e2 ! 0 exponentially when t ! 1. This implies that e2
tends to some finite constant vector, say zss = [xss yss]

T . In conclu-
sion, lim

t!1
z(t) = lim

t!1
Fe(t) = 1 
 zss.

(Necessity) Assume formation stabilization to a point by local in-
formation controller is feasible. By way of contradiction, suppose the
sensor digraph has no globally reachable node. Then, it follows from
Lemma 1 that there are two disjoint closed sets of nodes in the sensor
digraph G = (V; E), say V1 and V2. Given the initial conditions satis-
fying zi(0) = zss , i 2 V1 and zj(0) = zss , j 2 V2, then for each
vehicle i in V1, (8m 2 Ni) zm = zi and so _zi = 0. Meanwhile, for
each vehicle j in V2, (8m 2 Nj) zm = zj and so _zj = 0. Hence, if
zss 6= zss , they cannot gather at the same point, a contradiction.

IV. FORMATION STABILIZATION TO A LINE

We begin this section with a proof of Theorem 2.
Proof of Theorem 2: (Sufficiency) By the condition that there are

at most two disjoint closed sets of nodes in the sensor digraph, by
Lemma 1, either the sensor digraph has a globally reachable node, or
there are exactly two disjoint closed sets of nodes in it. In the first case,
by Theorem 1, formation stabilization to a point is feasible, which is
a special instance of line formation. In the second case, we let V1, V2
be the two disjoint closed sets of nodes in the sensor digraph G =
(V; E), and let V3 = V � V1 � V2. Thus, the induced subgraphs
G1 = (V1; E \ (V1 � V1)), G2 = (V2; E \ (V2 � V2)) both have
a globally reachable node. (To see this point, suppose one of these two
induced subgraphs has no globally reachable node. Then, by Lemma
1, there are two disjoint closed sets in it and therefore there are three
disjoint closed sets in G, a contradiction.) If V3 is empty, then by The-
orem 1 each group of vehicles whose indexes are in Vi, i = 1; 2, can
converge to a point and therefore the whole group of wheeled vehicles
form a line. On the other hand, if V3 is not empty, then every node in
V3 can reach either V1 or V2. Without loss of generality, we assume
the graph Laplacian has the form

L =

L11 0 0

0 L22 0

L31 L32 L33

where L11 and L22 are the Laplacian matrices corresponding to the
induced subgraph G1 and G2. One can easily verify that L33 is a non-
singularM -matrix.
By using (1), the overall position dynamics are given by

_z1 = �kH �1(t) L11 z1

_z2 = �kH �2(t) L22 z2

_z3 = �kH �3(t) L33 z3 + L31 z1 + L32 z2

where zi , �i, i = 1; 2; 3 are the corresponding position vector and
orientation vector respectively. From the proof of Theorem 1, we have
that there exist positive constants k�1 and k

�
2 such that, for all 0 < k <
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k�1 , lim
t!1

z1(t) = 1 
 zss , where zss = [xss yss ]T , and for all

0 < k < k�2 , lim
t!1

z2(t) = 1
 zss , where zss = [xss yss ]T . The

change of variables & = L33 z3 + L31 z1 + L32 z2 yields

_& = �kL33 H �3(t) & � kL31 H �1(t) L11 z1

�kL32 H �2(t) L22 z2: (4)

Since L33 is a nonsingularM -matrix, by the same argument as in the
proof of Lemma 4, �L33 and �LT33 are bothH(�; 0) stable. By
[27, Th. 8.3], there exists a positive constant k�3 such that, for all 0 <
k < k�3 , the origin of the nominal system _& = �kL33 H(�3(t))&
is globally exponentially stable. Furthermore, notice that the other two
terms in (4) both exponentially converge to zero. Hence, (4) can be
viewed as an exponentially stable system with an exponentially van-
ishing input and, thus, its origin is exponentially stable. Let k� =
minfk�1 ; k

�
2 ; k

�
3g. Hence, for all 0 < k < k�

lim
t!1

z3(t) = � L33

�1

L31 lim
t!1

z1(t)

� L33

�1

L32 lim
t!1

z2(t)

= � L�1
33 � L31 � 1 
 zss

� L�1
33 � L32 � 1 
 zss :

Notice that [L31 L32 L33] � 1 = 0 and so �(L�1
33 � L31 � 1)� (L�1

33 �
L32 � 1) = 1. Hence, all (zi(t))i2V approach a convex combination
of zss and zss , which means the wheeled vehicles with indexes in V3

eventually move to the line formed by two points zss and zss in the
plane.
(Necessity) Suppose by way of contradiction that there are three dis-

joint closed sets of nodes in the sensor digraph, say V1, V2 and V3.
Then let the initial conditions of the vehicles in Vj , j = 1, 2, 3 be
chosen such that zi(0) = zss , i 2 Vj . Hence, for each vehicle i in
Vj , (8 m 2 Ni)zm = zi and so _zi = 0. Then, three groups of vehi-
cles form a geometric pattern specified by three points zss , zss and
zss . These three points can be arbitrarily set that may not form a line,
a contradiction.
Theorem 2 has an interesting special case when the two disjoint

closed sets of nodes in the sensor digraph both have only one member,
say nodes 1 and n. Vehicles 1 and n are called edge leaders. The edge
leaders here are not necessarily wheeled vehicles—they can be virtual
beacons or landmarks. However, the vehicles respond to these edge
leaders much like they respond to real neighbor vehicles. The purpose
of the edge leaders is to introduce the mission: to direct the vehicle
group behavior. We emphasize that the edge leaders are not central co-
ordinators. They do not broadcast instructions. They only play the role
of individual vehicles, but cannot sense other vehicles or communicate
with them. As for the remaining vehicles, i, i = 2; . . . ; n � 1, we as-
sume that each agent can sense or communicate with agents i� 1 and
i + 1. This gives the sensor digraph in Fig. 4. It is readily seen that
the digraph in Fig. 4 has exactly two disjoint closed sets of nodes. We
now show that in this special case all vehicles converge to a uniform
distribution on the line segment specified by the two edge leaders.

Theorem 3: Consider a group of n wheeled vehicles with two sta-
tionary edge leaders labeled 1 and n. Then, there exists a positive con-
stant k� such that for all 0 < k < k�, the following smooth time-
varying feedback control law for each vehicle i, (i = 2; . . . ; n� 1)

vi(t) = k
m2N

xim(t) Ni = fi� 1; i+ 1g

!i(t) = cos(t)

guarantees that all the vehicles converge to a uniform distribution on
the line segment specified by the two edge leaders.

Fig. 4. Sensor digraph for n agents with two edge leaders.

Fig. 5. Group of vehicles with a common sense of direction.

Proof: Let L be the Laplacian of the sensor digraph in
Fig. 4 and let z = [zT1 � � � zTn ]

T
. It follows from Theorem 2 that

L(2)z(1) = 0. Consider the following partition of f1; 2; . . . ; ng,
fm1;m2; . . . ;m2ng = f1; 3; . . . ; 2n � 1; 2; 4; . . . ; 2ng. Then the
associated permutation matrix P has the unit coordinate vectors
em ; em ; . . . ; em for its columns. Now observe that the ma-
trix P performs the transformation P T (L 
 I2)P = I2 
 L =
diag(L;L) and P T z = [x y]T , where x = [x1 � � � xn]

T and
y = [y1 � � � yn]

T . Thus, Lx(1) = 0 and Ly(1) = 0. Also
note that Ker(L) = spanf�1; �2g, where �1 = [0 1 � � � n � 1]T ,
�2 = [n � 1 n � 2 � � � 0]T , so x(1) = �1�1 + �2�2 and
y(1) = �1�1 + �2�2. Since x1(1) = x1(0), xn(1) = xn(0)
and y1(1) = y1(0), yn(1) = yn(0), so we solve for
�1 = xn(0)=(n� 1), �2 = x1(0)=(n� 1) and �1 = yn(0)=(n� 1),
�2 = y1(0)=(n � 1). This shows that all vehicles asymptotically
approach a uniform distribution on the line.

V. FORMATION STABILIZATION TO ANY GEOMETRIC PATTERN

In this section, we turn our attention to the problem of formation sta-
bilization to any geometric pattern. Following [3], we let � be a predi-
cate describing a geometric pattern, such as a point, a regular polygon,
a line segment, etc. Such a predicate specifies a formation up to trans-
lation and rotation. By formation stabilization of a group of n vehicles
to �, we mean that the vehicles (globally exponentially) converge to a
distribution satisfying �.
We suppose that a group of wheeled vehicles have a common sense

of direction, represented by the angle  in Fig. 5. For instance, each
vehicle carries a navigation device such as a compass. Alternatively, all
vehicles initially agree on their orientation and use it as the common
direction. The common direction may not coincide with the positive
x-axis of the global frame. Let �i = �i �  (see Fig. 5). We assume
that vehicle i can measure its own �i.
There are two ways to describe a geometric pattern in the plane. One

way is by internode distances, dij , as in the rigid formation framework
of [8]. The other way is by specifying the position vector, ci, of each
node with respect to a common coordinate frame. As an example, a
square formation described by ci, i = 1; 2; 3; 4, is given in Fig. 6. It is
worth noting that, for all (R; b) 2 SE(2), the vectors ĉi = Rci+b de-
scribe the same geometric formation as the one specified by ci. So given
a desired geometric formation pictured by ci, i = 1; . . . ; n, our objec-
tive is to stabilize the position state zi of each vehicle to ĉi = Rci+ b,
i = 1; . . . ; n, for some R and b. To achieve a desired geometric for-
mation characterized by c = [cT1 . . . cTn ]

T
, we can simply translate

the formation vector c into a control offset d = L(2)c so that the for-
ward control velocity is 0 when the group of vehicles has achieved a
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Fig. 6. Example for a square formation.

Fig. 7. Ten wheeled vehicles form a circle formation.

formation. We denote the offset for each vehicle by di = [dx dy ]T or
di = dx + jdy .
Next, we show that the time-varying control law for each vehicle i,

(i = 1; . . . ; n)

vi(t) = k [1 0]R (��i(t))di +
m2N

xim(t)

!i(t) = cos(t)

(5)

achieves formation stabilization to �, where R is a rotation matrix de-

fined by R(�) =
cos(�) � sin(�)

sin(�) cos(�)
.

Theorem 4: Let � be a desired geometric formation described by
c = [c1 . . . cn]

T . Suppose a group of n wheeled vehicles have a
common sense of direction and formation stabilization to a point is
feasible. Then, there exists a positive constant k� such that for all 0 <
k < k�, the smooth time-varying feedback control law (5) with d =
L(2)c guarantees global exponential formation stabilization to �.

Proof: Using the control law (5), one obtains the following
closed-loop system:

_zi = kM (�i(t)) R( )di +
m2N

(zm � zi)

or in vector form, _z = kH(�(t))f�L(2)z + (In 
 R( ))dg. By a
property of the Kronecker product, (In 
 R( ))(L 
 I2) = L 

R( ) = (L 
 I2)(In 
 R( )). Furthermore, since d = L(2)c, we
obtain _z = �kH(�(t))L(2)fz�(In
R( ))cg. Under the coordinate

Fig. 8. Sensor digraph of a group of ten wheeled vehicles.

transformation & = z � (In 
R( ))c, we get _& = �kH(�(t))L(2)&.
By the proof of Theorem 1, lim

t!1
&(t) = 1 
 zss for some constant

position zss = [xss yss]
T . Hence, lim

t!1
zi(t) = R( )ci + zss, i =

1; . . . ; n, which means that the group of vehicles form a geometric
formation specified by c.

Remark 1: Notice that �i(t) = �i(t0) + sin(t), so if a group of
n wheeled vehicles achieve an agreement on their initial orientation
�i(t0) and choose it as their common direction, the control law (5)
becomes

vi(t) = k Re e
�j sin(t)

di +
m2N

xim(t)

!i(t) = cos(t):

The agreement on their orientation can be implemented by an align-
ment strategy as shown in [5].
Fig. 7 shows the simulation for a circle formation of ten wheeled

vehicles with the sensor digraph in Fig. 8. The circle formation is de-
scribed by ci = 75e(j((2(i�1)�)=10)), i = 1; . . . ; 10.

VI. CONCLUSION

In this note, the feasibility problem of achieving a specified geo-
metric formation of a group of unicycles was investigated. Necessary
and sufficient graphical conditions for the existence of local infor-
mation controller to assure the asymptotic convergence of the closed
system were derived. The sufficiency proof also presented a construc-
tive method for control law synthesis.
Further research issues include: developing a better behaved con-

troller to solve this problemwhich does not keep the unicycles wiggling
and developing more general results for the dynamic sensor graph case,
where ad-hoc links can be established and dropped.
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Local Motion Feature Aided Ground Moving Target
Tracking With GMTI and HRR Measurements

Lang Hong, Ningzhou Cui, Mark Pronobis, and Stephen Scott

Abstract—Tracking ground moving targets with ground moving target
indicator (GMTI) measurements only could face a potential problem of
losing tracks or track mingling, if the targets move together within the
range of GMTI sensing uncertainty for an extended period of time.We pro-
pose a remedy for this problem by using local motion features extracted
from high resolution range (HRR) profiles to assist data association. Un-
like other HRR features, the new local motion features carry both spa-
tial and temporal information and are ideal for feature aided tracking. A
probabilistic logic based tracker is developed for local motion feature aided
tracking.

Index Terms—Data association, feature aided target tracking, ground
moving target indicator (GMTI)/high resolution range (HRR) measure-
ments, local motion features.

I. INTRODUCTION

The task of traditional target tracking is to establish target kinematic
trajectories from sequences of noisy kinematic measurements in the
presence of false alarms and countermeasures [1], [2]. Ground moving
target indicator (GMTI) radar has been amajor sensor for air-to-ground
target tracking. However, difficulty arises in traditional GMTI tracking
when target density becomes high and targets move together, which
could result in merged tracks and switched track identities (IDs). The
reason for this is that traditional tracking uses only the “normalized dis-
tance” between a measurement and the predicted target location to de-
cide if the measurement was potentially originated from the target (this
is sometimes called data association), which could quickly lose its ca-
pability if targets stay together within the sensor uncertainty range for
an extended period of time. With the advance in sensor devices such
as synthetic aperture radar (SAR) and HRR [13], additional informa-
tion regarding target identification becomes available, which could be
very valuable in helping data association. Feature aided tracking (FAT)
is a new research area and has been gaining a great deal of attention
in recent years due to its significant advantage over traditional target
tracking, especially for stressing and complicated scenarios. Besides
the research done by the authors [3], [6], [7], references [5] and [12]
addressed mainly the aspect of feature extraction for tracking and [11]
dealt with mostly moving target classification. So far, the features used
in feature aided tracking are based purely on target spatial information
and no temporal correlation information is explored. However, since
features are extracted from a continuous string of signature signals from
the same targets moving over time, how a feature changes over time is a
“feature” itself which is called motion feature in this note. However, it
is very difficult, if not impossible, to characterize a motion feature with
respect to the free time variable in the kinematics space; some kind of
“normalization” approach is needed to bound the space of motion fea-
ture in order for it to be useful. To handle this difficulty, we introduce
a concept of local motion and define a local motion feature which is
well behaved in a “normalized” relative motion space. Instead of a time
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