

A DECENTRALIZED REINFORCEMENT LEARNING CONTROLLER
FOR COLLABORATIVE DRIVING

Luke Ng1, Chris Clark1, Jan Huissoon1, Gabriele D’Eleuterio2

Department of Mechanical Engineering, Automation & Controls Group
University of Waterloo

Waterloo, Ontario, Canada
l4ng@engmail.uwaterloo.ca

Abstract: Research in the collaborative driving domain strives to create control systems
that coordinate the motion of multiple vehicles in order to navigate traffic both efficiently
and safely. In this paper a novel individual vehicle controller based on reinforcement
learning is introduced. This controller is capable of both lateral and longitudinal control
while driving in a multi-vehicle platoon. The design and development of this controller
is discussed in detail and simulation results showing learning progress and performance
are presented. Copyright © 2006 IFAC

Keywords: autonomous vehicles, co-ordination, decentralized control, machine learning,
robot control.

1. INTRODUCTION

 In major cities throughout the world, urban
expansion is leading to an increase of vehicle traffic
flow. The adverse effects of increased vehicle traffic
flow include traffic congestion, driving stress, vehicle
collisions, pollution, and logistical delays. Once
traffic flow surpasses the capacity of the road system,
it ceases to become a viable transportation option.
One solution is to build more roads; another is to
build a better vehicle - a vehicle that can negotiate
traffic, coordinate with other similar ‘thinking’
vehicles to optimize their speeds so as to arrive at
their destination safely and efficiently. The vehicle
system described is referred to formally as a
collaborative driving system.
 Previous studies have addressed collaborative
driving as a hierarchical decentralized control
problem (Huppe et al 2003), (Halle et al 2004).
These approaches use a layered approach with a
heuristic controller layer choosing among lower-level
behaviours. Alternatively, one could approach
collaborative driving as a multi-agent planning
problem and address it using reinforcement learning
(Laumonier et al 2006).

1 University of Waterloo
2 University of Toronto, Institute for Aerospace Studies
3This research is funded by the Auto21 Network of Centres
of Excellence, an automotive research and development
program focusing on issues relating to the automobile in the
21st century. AUTO21 is a member of the Networks of
Centres of Excellence of Canada program. Web site:
www.auto21.ca.

 Reinforcement Learning (RL) is a machine
learning technique which uses a numerical reward
signal as feedback to modify a control policy (Sutton
& Barto 1998). Its promise is that an agent can learn
using experience alone in a changing environment.
As this technique is a recent development in machine
learning, it has had limited success in scaling to real-
world problems (Stone & Sutton 2001). A current
challenging area of research is to scale reinforcement
learning to solve real-world robot control problems
(Ng et al 2004), (Kohl & Stone 2004).
 In this paper, a novel low-level vehicle controller
is introduced. RL is used to derive this longitudinal
and lateral controller. The advantage of RL is that an
optimal controller can be learned for any vehicle and
deployed on a number of similar vehicles for the
purpose of collaborative driving. The objective of
this paper is to present the design and development of
this low-level vehicle controller. In particular, the
methodology of mapping RL algorithms to this
problem domain is explained. In addition, simulation
results for the initial learning process are presented
along with initial performance data while travelling in
a fixed platoon.

2. COLLABORATIVE DRIVING DOMAIN

 The collaborative driving research domain aims
to coordinate the motion of multiple vehicles in order
to navigate traffic. The group of vehicles being
coordinated forms a single-file formation (platoon) in

which the lead vehicle’s role is to manage and guide
the group as it travels along a road (Varaiya 1993).
 Issues being addressed in collaborative driving
include: longitudinal control (maintaining vehicle
spacing), lateral control (lane changing and turning),
insertion and exit into and out of the platoon, human-
in-the-loop platoon guidance, fully autonomous
platoon guidance, vehicle configurations, road
configurations/conditions, sensor fusion,
communication, and scalability. This paper
represents a first step to approaching the problem of
collaborative driving from the bottom up. Thus, we
begin by focusing on the problem of individual
vehicle control while travelling in a platoon.

3. REINFORCEMENT LEARNING

3.1 The Markov Decision Process

 Collaborative driving can be considered a
problem of acting or planning in the presence of
uncertainty. The Markov Decision Process (MDP)
provides a formal framework for modelling this type
of control problem and for deriving an optimal
solution (i.e. an optimal controller) (Bellman 1957).
 MDPs are characterized by states s, actions a,
and transitions σ (s,a). For the problem to be
considered Markov, s must be able to describe the
current situation without a dependence on path. That
is, the state does not depend on previous states. The
transition function σ, predicts the next state based on
the current state and the current action being
performed, s’ = σ (s, a), this function can be
probabilistic.

3.2 The Policy

 The action for a given state is governed by the
agent’s current policy π, a mapping from states to
actions. An agent starts at an initial state s0 and
follows π until the goal, referred to as the terminal
state sterm, is reached. The process of going from s0 to
sterm is known as an episode. For every MDP, there
exists at least one policy which maps the best action
for every state this is referred to as the optimal policy
π*, the solution to the MDP.
 In order for the agent following a policy π to
evaluate the effectiveness of its actions, a reward
signal r from the environment associated with each s
is provided to the agent. If an accurate transition
model σ is provided to the agent, the agent can
predict how much future reward will be received for
the remainder of the episode by a summation of the
rewards associated with visiting the remaining states
in an episode following a given policy. The form of
the return R typically used includes a discount rate γ,
which allows future rewards to be discounted,

Rt = rt+1 + γ rt+2 + γ2 rt+3 + … = ∑
∞

=
++

0
1

k
kt

k rγ (1)

where 0≤ γ ≤ 1. The return is the basis for
determining which action is best to take for a given
state.

 The state-value function, Vπ(s) is the
expected accumulation of discounted reward received
at each state leading to the terminal state by following
policy π, where Eπ{} denotes the expected value.

}|{}|{)(
0

1 ssrEssREsV t
k

kt
k

tt ==== ∑
∞

=
++γππ

π (2)

It expresses the desirability of being in a particular
state for a given policy. When following the optimal
policy π*, the state-value function is maximized. If
an accurate transition model σ is available, only the
state s is important since actions a can be mapped
directly to the next state s’. Otherwise, the state and
action must be paired (s,a), to represent a unique
event. Thus a state-action-value function is
introduced, Qπ(s,a), which allows the agent to assess
the desirability of following a given action a while in
a particular state s for a policy π.

},|{},|{),(
0

1 aassrEaassREasQ tt
k

kt
k

ttt ====== ∑
∞

=
++γππ

π

 (3)

3.3 The Algorithms

 The algorithms used to determine the optimal
policy π* for a given MDP are called Reinforcement
Learning (RL) algorithms. These algorithms follow
a common approach. The agent begins with an initial
policy π0 which may be far from optimal, and an
estimate of its state-value function Vπ(s) or state-
action-value function Qπ(s,a) is inaccurate. As the
agent follows π0 it receives rewards r based on its
state s. Using this new information, its estimate of
Vπ(s) or Qπ(s,a) is iteratively improved.
Concurrently, the improved Vπ(s) or Qπ(s,a) can be
used to iteratively improve the policy until the agent
arrives at the optimal policy π*.
 The convergence of this maximization process
requires that all states and actions be visited infinitely
in order for estimates of Vπ(s) or Qπ(s,a) to reach their
actual values. To ensure this convergence criterion,
policies leading to π* are ε-soft, meaning that there is
a ε probability that a random action is selected.
Therefore, all actions and states will be reached as
t→∞.
 In this paper, the RL algorithms considered are
called Temporal-Difference (TD) Learning
Algorithms. TD-Learning algorithms do not require
a model of the environment’s dynamics; they make
use of experience to estimate Qπ(s,a) for each step of
the episode. TD-Learning algorithms can lead to
rapid learning as they do not wait for the outcome of
the episode to update the policy. Since they learn
based on successive estimates issues of convergence
arise. Fortunately TD(0), the most basic TD
algorithm has been proven to converge with
probability 1 (Dayan 1992), albeit slowly in some
cases.
 Two versions of TD-Learning algorithms are
evaluated for implementation in the collaborative
driving domain. The first is the Q-Learning
algorithm (Watkins 1989) shown in Figure 1, which
is considered an off-policy method as it estimates

Qπ(s,a) using the maxa policy. The maxa policy
returns the action with the highest value for the given
state. The second is called SARSA (Rummery &
Niranjan 1994), shown in Figure 2, and is considered
an on-policy method as it estimates Qπ(s,a) using the
current policy with the aid of the next state and next
action. In theory, if the optimal policy of an MDP is
unique, these two approaches should lead to this same
policy what will differ is how quickly they will reach
this policy.

Initialize, Q(s, a)
Repeat (for each episode):

Initialize s
Repeat (for each step in the episode):

Choose a from s using policy derived from Q
(e.g. ε-greedy)

Take action a, observe r, s’
Q(s,a) ← Q(s,a) + α[r + γ max a'Q(s’,a’) -
 Q(s,a)]
s ← s’

until s is terminal

Figure 1. Q-Learning Algorithm

Initialize, Q(s, a)
Repeat (for each episode):

Initialize s
Choose a from s using policy derived from
 Q (e.g. ε-greedy)
Repeat (for each step in the episode):

Take action a, observe r, s’
Choose a’ from s’ using policy derived from Q

(e.g. ε-greedy)
Q(s,a) ← Q(s,a) + α[r + γQ(s’,a’) - Q(s,a)]
s ← s’; a ← a’

until s is terminal

Figure 2. SARSA Algorithm

4. CONTROL

 The collaborative driving problem can be
considered a hierarchy of two control problems. The
lower level problem is the control of the individual
vehicle, while the higher level problem is the
management of the platoon when multiple vehicles
are driving in single file formation. This paper
focuses exclusively on the lower controller. The
design of this controller is described in detail in the
following paragraphs.
 The problem of lateral and longitudinal control at
the individual level is addressed with a decentralized
controller modelled using a Markov Decision Process
(MDP). Table 1 summarizes the states/inputs and
actions/outputs of the MDP while Figure 3 illustrates
the variables used in determining the states and
actions with respect to the vehicles.
 The states and actions exist in the world as
continuous normalized values. The states are
converted into discrete binary strings of varying
precision so they can exist as discrete variables within
the MDP framework. This process of conversion is

analogous to analog-to-digital conversion and digital-
to-analog conversion used in digital signal
processing. The MDP outputs actions in the form of
discrete binary strings that are converted into
continuous normalized values.

Table 1. States and actions of the lower-level MDP

State: Expression: Description:
 s1 θi / θmax Normalized difference in

angle to preceding vehicle.
 s2 (dι - dmin) /

(dmax- dmin)
Normalized distance to
preceding vehicle’s
minimum distance.

 s3 ||vi|| Current vehicle speed
Action:
 a1 kθ Gain for steering angle
 a2 kv Gain for speed

Figure 3. Vehicle relationships and variables

 The collaborative driving problem at the
individual level can be seen as a problem of
maintaining equilibrium for two independent
variables: i) the alignment of the proceeding vehicle
and ii) the distance to the preceding vehicle
Intuitively, the steering command should be
proportional to the error in alignment to the
proceeding vehicle. Likewise the speed command
should be proportional to the error between actual
distance and desired distance to the preceding
vehicle. Therefore, the actions that are required to be
learned are the proportionality gains of the steering
(kθ) and speed (kv) commands for different situations
or states. The steering and speed functions are
expressed below, where i is the rank in the platoon of
n vehicles.

θcmd = a1 s1= kθθi / θmax (4)
 vcmd = a2 s2= kv(dι- dmin)/(dmax- dmin) (5)

 The reward function conveyed to the MDP is a
function of the observed states. It is expressed as a
superposition of two separate piecewise continuous
functions as shown in equations 5, 6, and 7.

Rtot = R1(s1)+ R2(s2) (6)

=−
<−

=
1||1
1||||1

)(
1

11
11 sif

sifs
sR (7)

≤
=−

<<−
=

)0(
)1(1

)10(1
)(

22

2

22

22

sifs
sif

sifs
sR (8)

The reward function is a key factor in determining the
optimal policy, that is, it communicates to the MDP

the task to be performed. In this MDP, continuous
rewards are used to favour the elimination of both the
angle error and the distance error. The resulting
reward function produces the surface in Figure 4.

Fig. 4. Reward surface for MDP

 In general the process of learning begins with a
ε-soft policy, a(s) = ε-greedy. This policy is initially
set to random, that is every action a, has equal
probability of being selected and ε is the exploration
factor, where 0≤ ε ≤1. Prior to selecting an action
using ε-greedy, a random number n is generated
where 0 ≤ n ≤ 1 if n > ε, ε-greedy should return the
action with the maximum Q for the state s provided if
there is no prior visit to state s or if n ≤ ε, an
exploration start occurs and a random action a is
selected. As all states and actions are visited the ε-
greedy policy becomes the optimal policy π* with the
exploration starts disabled.
 The manner in which the optimal policy is
learned is dependent on the learning algorithm. In
designing this controller, two TD-Learning
algorithms are studied, since there are no rules to
indicate which algorithms work best for which
situations. TD-Learning methods are chosen since
this type of solution method utilizes experience
immediately. SARSA and Q-Learning (see Figure 1
and 2) are the two of the most common TD-Learning
algorithms, with many variations in existence. In this
paper the basic implementation of each is evaluated.

5. MODELLING

 In order to derive an optimal control policy
through reinforcement learning, an environment is
required. This environment is provided in simulation
its purpose is to provide the learning algorithm with
simulated state information, a transition model to go
from action to subsequent state, and reward data with
which to improve its policy with. The benefit of
simulation is twofold, as it also allows one to evaluate
the performance of the controller in situations which
may not be feasible to achieve in reality.
 In this study a commercial rapid prototyping tool
for mobile robots is used called Webotstm, by
Cyberbotics Ltd. (Michel 2004). Using Webotstm, a
vehicle model was created along with two different
training environments. Webotstm contains a library of
sensors and robot models with which to build robot
experiments with. It integrates with the Open
Dynamics Engine (ODE), an open-source rigid body

simulation library which models dynamics using
lagrange multipliers (Baraff 1996).

Fig. 5. Amigobottm modelled using Webotstm.

4.1 Vehicle Model

 The vehicle used in this study is a small
holonomic differentially driven two-wheeled mobile
robot called the Amigobottm, manufactured by
MobileRobots Inc. Our laboratory has access to up
to five of these research robots, on which the
controller will ultimately be deployed on. Table 2 list
key parameters used in modelling the Amigobottm.

Table 2. Webotstm/ODE Model Parameters

Object Parameters:
Body Mass m = 3.5 kg
Bounding
Cylinder

h = 0.132m r = 0.14m

Wheels: m = 0.05kg r = 0.05m W = 0.025m
Sonar: 6 front 2 rear R = 0.4m
Camera: Color 320x240 θmax = ±20°

As the application for the controller is collaborative
driving, commands such as steering angle θsteer and
speed V are used to mimic an automobile. However,
the Amigobottm is driven with differential wheel
speeds. Therefore steering and speed commands are
mapped to the left and right wheel speeds via
equations 8 and 9.

Vleft = (V / Vmax - θsteer / θmax) kwheel (9)
Vright = (V / Vmax + θsteer / θmax) kwheel (10)

4.2 Environment

 Two distinct environment models are created in
this study: one for initial learning (called Arena), the
other for performance testing (called Track). The
Arena is a large open 10m x10m flat floor with a
barrier to prevent the vehicles from escaping. This
environment contains two vehicles, a lead vehicle and
a learning vehicle which follows it. Both static and
dynamic target training are conducted in this
environment. The custom MDP software allows
policies to be saved and reloaded, to facilitate
learning.
 The Track is a simulated two lane road with
barriers on either side to prevent escape. Five
vehicles are modelled in this world and placed at the
start position. The end of the road contains a “Warp
Gate” which when reached sends the vehicles back to
the starting position. Therefore, a repeating road can

be simulated using only a straight 50m section of
track.

6. RESULTS

6.1. Learning

 Two control policies are obtained through static
target training through two different reinforcement
learning algorithms. Q-Learning with ε = 0.1, γ = 0.1
and α = 0.1 (learning rate) is used to learn a control
policy π1 which can approach a static target to within
1m.
 To allow the possibility of all states to be visited
infinite times, thus guaranteeing convergence, the
location of the target is randomized. This makes it
difficult to monitor the progress of learning through
typical means such as the reward accumulated per
episode or the number of steps per episode since the
optimal number of steps to reach the target changes
with location. Therefore, the exploration ratio which
represents the ratio of exploration starts to total steps
for a given episode is used as an indirect means of
evaluating the learning progress. The exploration
ratio begins high as the policy is unknown and as
t→∞, it should approach ε, showing the policy has
been learned.
 Learning was conducted for 100 episodes. The
process is repeated for the SARSA algorithm under
the identical conditions to arrive at π2. From Figure 6
and 7, both algorithms appear to learn at more or less
the same speed, and we cannot say one is faster than
the other for this application.

Fig. 6. Q-Learning performance (π1).

Fig. 7. SARSA: Learning performance (π2).

6.2. Longitudinal Performance

 The longitudinal control is evaluated by
deploying four copies of a policy on four vehicles.
The vehicles are initially arranged in single file
separated by 0.4m and all at rest. The lead vehicle is
set to reach a constant speed of 0.3m/s while each

vehicle attempts to follow the preceding vehicle. The
vehicle separations are recorded throughout the
evaluation. At t = 100 sec, the lead vehicle is stopped
to observe the behaviour of the platoon as the
vehicles come to rest. This evaluation is executed for
both policy π1 and π2 and shown in Figure 8 and 9
respectively.

Fig. 8. Q-Learning: Longitudinal control (π1).

Fig. 9. SARSA: Longitudinal control (π2).

For this application, the minimal vehicle spacing is
considered 1m while the maximum distance is 5m. It
is interesting that all vehicles try to adjust their
distance to 2m while travelling at about 0.3m/s. After
braking, the vehicles attempt to keep a distance of 1m
as it results in more reward.

Fig. 10. Q-Learning: Lateral control (π1).

6.3. Lateral Performance

 The lateral control is evaluated by deploying four
copies of a policy on four vehicles. The vehicles are
initially arranged in single file separated by 2m and
all moving at a constant speed 0.3m/s in one lane. A
lead vehicle is placed on the adjacent lane, this is

equivalent to a unit step input; each vehicle then
tracks the preceding vehicle so as to accomplish a
lane change. The vehicles’ lateral positions are
recorded throughout the evaluation. This evaluation
is executed for both policy π1 and π2. Figure 10
shows the left and right lane change for π1 while
Figure 11 shows the left and right lane change for π2.
The data show a very smooth transition to the other
lane with no overshoot. The response is identical for
both policies and symmetrical.

Fig. 11. SARSA: Lateral control (π2).

7. CONCLUSION

 From these initial simulation results, we can
draw a few conclusions. The difference in learning
performance between the Q-Learning and SARSA
algorithms is indiscernible, although, if learning
continued for 100s of more episodes we might
observe some differences. For now we conclude that
they give similar learning performance for this
application.
 From the very preliminary performance
evaluations of the two obtained policies, one from Q-
Learning, the other from SARSA, very similar
performance is observed. One could conclude that
they are in fact the same policy for this MDP. This
follows in theory that if the optimal policy for an
MDP is unique then different RL algorithms will lead
to the same optimal policy. Only more evaluations
about different operating points would prove that the
same optimal policy has been reached.

8. FUTURE WORK

 This paper has presented some preliminary
results in our study of collaborative driving control.
While it appears that reasonable vehicle behaviour
can be achieved via machine learning, our future
objectives include looking at longer learning periods
for better policies, more detailed evaluation of the
obtained policies, stability analysis and the control of
higher-level platoon management.

REFERENCES

Baraff, D. (1996). Linear-Time Dynamics using

Lagrange Multipliers. In: Computer Graphics
Proceedings, Annual Conference Series
(SIGGRAPH ’96). pp 137-146. New Orleans,
LA, USA, Aug 1996.

Bellman, R. E. (1957). Dynamic Programming.
Princeton University Press, Princeton, NJ.

Dayans, P. (1992). The convergence of TD(λ).
Machine Learning. Vol 8, pp 341-362, 1992.

Halle, S., J. Laumonier and B. Chaib-draa. (2004). A
Decentralized Approach to Collaborative Drive
Coordination. In: Proceedings of 7th IEEE
International Conference on Intelligent
Transportation Systems (ITSC’2004).
Washington, DC, USA, Oct 2004.

Huppe, X., J. de Lafontaine, M. Beauregard and F.
Michaud. (2003). Guidance and Control of a
Platoon of Vehicles Adapted to Changing
Environment Conditions. In: Proceedings IEEE
Conference on Systems, Man, and Cybernetics.
pp 3091-3096.

Kohl, N. and P. Stone. (2004). Policy Gradient
Reinforcement Learning for Fast Quadrupedal
Locomotion. In: Proceedings of the IEEE
International Conference on Robotics and
Automation. pp 2619-2624. May 2004.

Laumonier, J., C. Desjardins and B. Chaib-draa.
(2006). Cooperative Adaptive Cruise Control: a
Reinforcement Learning Approach. In:
Proceedings of 4th Workshop in Traffic and
Transportation, AAMAS’06. Hakodate,
Hokkaido, Japan, May 2006.

Michel, O. (2004). Cyberbotics Ltd. Webotstm:
Professional Mobile Robot Simulation. In:
International Journal of Advanced Robotic
Systems. Vol 1 Number 1 pp 39-42.

Ng, A.Y., A. Coates, M. Diel, V. Ganapathi, J.
Schulte, B. Tse, E. Berger, and E. Liang. (2004).
Autonomous inverted helicopter flight via
reinforcement learning. In: Proceedings of
International Symposium on Experimental
Robotics.

Rummery, G.A. and M. Niranjan (1994). On-Line Q-
Learning using connectionist systems. In:
Technical Report CUED/F-INFENG/TR 166.
Engineering Department, Cambridge University.

Stone, P. and R.S. Sutton. (2001). Scaling
Reinforcement Learning toward RoboCup
Soccer. In: Proceedings of The Eighteenth
International Conference on Machine Learning
(ICML 2001). pp 537-544. Willianstown, MA,
USA, June 2001.

Sutton, R.S. and A.G. Barto. (1998). Reinforcement
Learning: An Introduction. A Bradford Book.
The MIT Press. Cambridge, MA, USA.1998.

Varaiya, P. (1993). Smart cars on smart roads:
problems of control. In: IEEE Transactions on
Automatic Control. Vol 32, Mar 1993.

Watkins, C.J.C.H. (1989). Learning from Delayed
Rewards. Ph.D. thesis. Cambridge University.

