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Abstract: Research in the collaborative driving domain strives to create control systems 
that coordinate the motion of multiple vehicles in order to navigate traffic both efficiently 
and safely.  In this paper a novel individual vehicle controller based on reinforcement 
learning is introduced.  This controller is capable of both lateral and longitudinal control 
while driving in a multi-vehicle platoon.  The design and development of this controller 
is discussed in detail and simulation results showing learning progress and performance 
are presented.   Copyright © 2006 IFAC 
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1. INTRODUCTION 
 
 In major cities throughout the world, urban 
expansion is leading to an increase of vehicle traffic 
flow.  The adverse effects of increased vehicle traffic 
flow include traffic congestion, driving stress, vehicle 
collisions, pollution, and logistical delays.  Once 
traffic flow surpasses the capacity of the road system, 
it ceases to become a viable transportation option.  
One solution is to build more roads; another is to 
build a better vehicle - a vehicle that can negotiate 
traffic, coordinate with other similar ‘thinking’ 
vehicles to optimize their speeds so as to arrive at 
their destination safely and efficiently.  The vehicle 
system described is referred to formally as a 
collaborative driving system.   
 Previous studies have addressed collaborative 
driving as a hierarchical decentralized control 
problem (Huppe et al 2003), (Halle et al 2004).  
These approaches use a layered approach with a 
heuristic controller layer choosing among lower-level 
behaviours.  Alternatively, one could approach 
collaborative driving as a multi-agent planning 
problem  and address it using reinforcement learning 
(Laumonier et al 2006).   
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 Reinforcement Learning (RL) is a machine 
learning technique which uses a numerical reward 
signal as feedback to modify a control policy (Sutton 
& Barto 1998).  Its promise is that an agent can learn 
using experience alone in a changing environment. 
As this technique is a recent development in machine 
learning, it has had limited success in scaling to real-
world problems (Stone & Sutton 2001).  A current 
challenging area of research is to scale reinforcement 
learning to solve real-world robot control problems 
(Ng et al 2004), (Kohl & Stone 2004).   
 In this paper, a novel low-level vehicle controller 
is introduced.  RL is used to derive this longitudinal 
and lateral controller.  The advantage of RL is that an 
optimal controller can be learned for any vehicle and 
deployed on a number of similar vehicles for the 
purpose of collaborative driving.  The objective of 
this paper is to present the design and development of 
this low-level vehicle controller.  In particular, the 
methodology of mapping RL algorithms to this 
problem domain is explained.  In addition, simulation 
results for the initial learning process are presented 
along with initial performance data while travelling in 
a fixed platoon.   
  

2. COLLABORATIVE DRIVING DOMAIN 
 
 The collaborative driving research domain aims 
to coordinate the motion of multiple vehicles in order 
to navigate traffic.  The group of vehicles being 
coordinated forms a single-file formation (platoon) in 



     

which the lead vehicle’s role is to manage and guide 
the group as it travels along a road (Varaiya 1993).   
 Issues being addressed in collaborative driving 
include: longitudinal control (maintaining vehicle 
spacing), lateral control (lane changing and turning), 
insertion and exit into and out of the platoon, human-
in-the-loop platoon guidance, fully autonomous 
platoon guidance, vehicle configurations, road 
configurations/conditions, sensor fusion, 
communication, and scalability.  This paper 
represents a first step to approaching the problem of 
collaborative driving from the bottom up.  Thus, we 
begin by focusing on the problem of individual 
vehicle control while travelling in a platoon.  
 

3. REINFORCEMENT LEARNING 
 
3.1 The Markov Decision Process 
 
 Collaborative driving can be considered a 
problem of acting or planning in the presence of 
uncertainty.  The Markov Decision Process (MDP) 
provides a formal framework for modelling this type 
of control problem and for deriving an optimal 
solution (i.e. an optimal controller) (Bellman 1957). 
 MDPs are characterized by states s, actions a, 
and transitions σ (s,a).   For the problem to be 
considered Markov, s must be able to describe the 
current situation without a dependence on path.  That 
is, the state does not depend on previous states.  The 
transition function σ, predicts the next state based on 
the current state and the current action being 
performed, s’ = σ (s, a), this function can be 
probabilistic.   
 
3.2 The Policy 
 
 The action for a given state is governed by the 
agent’s current policy π, a mapping from states to 
actions.  An agent starts at an initial state s0 and 
follows π until the goal, referred to as the terminal 
state sterm, is reached.  The process of going from s0 to 
sterm is known as an episode.  For every MDP, there 
exists at least one policy which maps the best action 
for every state this is referred to as the optimal policy 
π*, the solution to the MDP.   
 In order for the agent following a policy π to 
evaluate the effectiveness of its actions, a reward 
signal r from the environment associated with each s 
is provided to the agent.  If an accurate transition 
model σ is provided to the agent, the agent can 
predict how much future reward will be received for 
the remainder of the episode by a summation of the 
rewards associated with visiting the remaining states 
in an episode following a given policy.  The form of 
the return R typically used includes a discount rate γ, 
which allows future rewards to be discounted, 

Rt = rt+1 + γ rt+2 + γ2 rt+3 + …  =  ∑
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where 0≤ γ ≤ 1.  The return is the basis for 
determining which action is best to take for a given 
state.   

 The state-value function, Vπ(s) is the 
expected accumulation of discounted reward received 
at each state leading to the terminal state by following 
policy π, where Eπ{} denotes the expected value. 
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It expresses the desirability of being in a particular 
state for a given policy.   When following the optimal 
policy π*, the state-value function is maximized.  If 
an accurate transition model σ is available, only the 
state s is important since actions a can be mapped 
directly to the next state s’. Otherwise, the state and 
action must be paired (s,a), to represent a unique 
event.  Thus a state-action-value function is 
introduced, Qπ(s,a), which allows the agent to assess 
the desirability of following a given action a while in 
a particular state s for a policy π.  
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3.3 The Algorithms 
 
 The algorithms used to determine the optimal 
policy π* for a given MDP are called Reinforcement 
Learning (RL) algorithms.    These algorithms follow 
a common approach.  The agent begins with an initial 
policy π0 which may be far from optimal, and an 
estimate of its state-value function Vπ(s) or state-
action-value function Qπ(s,a) is inaccurate.    As the 
agent follows π0 it receives rewards r based on its 
state s.  Using this new information, its estimate of 
Vπ(s) or Qπ(s,a) is iteratively improved.  
Concurrently, the improved Vπ(s) or Qπ(s,a) can be 
used  to iteratively improve the policy until the agent 
arrives at the optimal policy π*.   
 The convergence of this maximization process 
requires that all states and actions be visited infinitely 
in order for estimates of Vπ(s) or Qπ(s,a) to reach their 
actual values.  To ensure this convergence criterion, 
policies leading to π* are ε-soft, meaning that there is 
a ε probability that a random action is selected.  
Therefore, all actions and states will be reached as 
t→∞. 
 In this paper, the RL algorithms considered are 
called Temporal-Difference (TD) Learning 
Algorithms.   TD-Learning algorithms do not require 
a model of the environment’s dynamics; they make 
use of experience to estimate Qπ(s,a) for each step of 
the episode.  TD-Learning algorithms can lead to 
rapid learning as they do not wait for the outcome of 
the episode to update the policy.  Since they learn 
based on successive estimates issues of convergence 
arise.  Fortunately TD(0), the most basic TD 
algorithm has been proven to converge with 
probability 1 (Dayan 1992), albeit slowly in some 
cases. 
 Two versions of TD-Learning algorithms are 
evaluated for implementation in the collaborative 
driving domain.  The first is the Q-Learning 
algorithm (Watkins 1989) shown in Figure 1, which 
is considered an off-policy method as it estimates 



     

Qπ(s,a) using the maxa policy.   The maxa policy 
returns the action with the highest value for the given 
state.  The second is called SARSA (Rummery & 
Niranjan 1994), shown in Figure 2, and is considered 
an on-policy method as it estimates Qπ(s,a) using the 
current policy with the aid of the next state and next 
action.  In theory, if the optimal policy of an MDP is 
unique, these two approaches should lead to this same 
policy what will differ is how quickly they will reach 
this policy.  
 

  
Initialize, Q(s, a)  
Repeat (for each episode): 

Initialize s 
Repeat (for each step in the episode): 

Choose a from s using policy derived from Q  
(e.g. ε-greedy) 

Take action a, observe r, s’ 
Q(s,a) ← Q(s,a) + α[ r + γ max a'Q(s’,a’) -   
                                   Q(s,a)] 
s ← s’ 

until s is terminal 
 

Figure 1. Q-Learning Algorithm 
 

 
Initialize, Q(s, a)  
Repeat (for each episode): 

Initialize s 
Choose a from s using policy derived from  
  Q (e.g. ε-greedy) 
Repeat (for each step in the episode): 

Take action a, observe r, s’ 
Choose a’ from s’ using policy derived from Q  

(e.g. ε-greedy) 
Q(s,a) ← Q(s,a) + α[r + γQ(s’,a’) - Q(s,a)] 
s ← s’; a ← a’ 

until s is terminal 
 

Figure 2. SARSA Algorithm 
  

4. CONTROL 
 
 The collaborative driving problem can be 
considered a hierarchy of two control problems.  The 
lower level problem is the control of the individual 
vehicle, while the higher level problem is the 
management of the platoon when multiple vehicles 
are driving in single file formation.  This paper 
focuses exclusively on the lower controller.  The 
design of this controller is described in detail in the 
following paragraphs.   
 The problem of lateral and longitudinal control at 
the individual level is addressed with a decentralized 
controller modelled using a Markov Decision Process 
(MDP).  Table 1 summarizes the states/inputs and 
actions/outputs of the MDP while Figure 3 illustrates 
the variables used in determining the states and 
actions with respect to the vehicles. 
 The states and actions exist in the world as 
continuous normalized values.  The states are 
converted into discrete binary strings of varying 
precision so they can exist as discrete variables within 
the MDP framework.  This process of conversion is 

analogous to analog-to-digital conversion and digital-
to-analog conversion used in digital signal 
processing.   The MDP outputs actions in the form of 
discrete binary strings that are converted into 
continuous normalized values.   
 
Table 1. States and actions of the lower-level MDP 

State:  Expression: Description: 
  s1 θi / θmax Normalized difference in 

angle to preceding vehicle. 
  s2 (dι - dmin) / 

(dmax- dmin) 
Normalized distance to 
preceding vehicle’s 
minimum distance. 

  s3 ||vi|| Current vehicle speed 
Action:    
  a1 kθ Gain for steering angle 
  a2 kv Gain for speed 

 

 
Figure 3. Vehicle relationships and variables 
 
 The collaborative driving problem at the 
individual level can be seen as a problem of 
maintaining equilibrium for two independent 
variables: i)  the alignment of the proceeding vehicle 
and ii) the distance to the preceding vehicle  
Intuitively, the steering command should be 
proportional to the error in alignment to the 
proceeding vehicle.  Likewise the speed command 
should be proportional to the error between actual 
distance and desired distance to the preceding 
vehicle.  Therefore, the actions that are required to be 
learned are the proportionality gains of the steering 
(kθ) and speed (kv) commands for different situations 
or states.  The steering and speed functions are 
expressed below, where i is the rank in the platoon of 
n vehicles.   
 

θcmd = a1 s1= kθθi / θmax   (4) 
 vcmd = a2 s2= kv(dι- dmin)/(dmax- dmin)  (5) 

 
 The reward function conveyed to the MDP is a 
function of the observed states.  It is expressed as a 
superposition of two separate piecewise continuous 
functions as shown in equations 5, 6, and 7.   

 
Rtot = R1(s1)+ R2(s2)   (6) 
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The reward function is a key factor in determining the 
optimal policy, that is, it communicates to the MDP 



     

the task to be performed.  In this MDP, continuous 
rewards are used to favour the elimination of both the 
angle error and the distance error.  The resulting 
reward function produces the surface in Figure 4. 
 

 
Fig. 4. Reward surface for MDP 
 
 In general the process of learning begins with a 
ε-soft policy, a(s) = ε-greedy.  This policy is initially 
set to random, that is every action a, has equal 
probability of being selected and ε is the exploration 
factor, where 0≤ ε ≤1. Prior to selecting an action 
using ε-greedy, a random number n is generated 
where 0 ≤ n ≤ 1 if n > ε, ε-greedy should return the 
action with the maximum Q for the state s provided if 
there is no prior visit to state s or if n ≤ ε, an 
exploration start occurs and a random action a is 
selected.  As all states and actions are visited the ε-
greedy policy becomes the optimal policy π* with the 
exploration starts disabled. 
 The manner in which the optimal policy is 
learned is dependent on the learning algorithm.  In 
designing this controller, two TD-Learning 
algorithms are studied, since there are no rules to 
indicate which algorithms work best for which 
situations.  TD-Learning methods are chosen since 
this type of solution method utilizes experience 
immediately.  SARSA and Q-Learning (see Figure 1 
and 2) are the two of the most common TD-Learning 
algorithms, with many variations in existence.  In this 
paper the basic implementation of each is evaluated. 
 

5. MODELLING 
 

 In order to derive an optimal control policy 
through reinforcement learning, an environment is 
required.  This environment is provided in simulation 
its purpose is to provide the learning algorithm with 
simulated state information, a transition model to go 
from action to subsequent state, and reward data with 
which to improve its policy with.  The benefit of 
simulation is twofold, as it also allows one to evaluate 
the performance of the controller in situations which 
may not be feasible to achieve in reality. 
 In this study a commercial rapid prototyping tool 
for mobile robots is used called Webotstm, by 
Cyberbotics Ltd. (Michel 2004).  Using Webotstm, a 
vehicle model was created along with two different 
training environments.  Webotstm contains a library of 
sensors and robot models with which to build robot 
experiments with.  It integrates with the Open 
Dynamics Engine (ODE), an open-source rigid body 

simulation library which models dynamics using 
lagrange multipliers (Baraff 1996). 
 

 
Fig. 5. Amigobottm modelled using Webotstm. 
 
4.1 Vehicle Model 
 
 The vehicle used in this study is a small 
holonomic differentially driven two-wheeled mobile 
robot called the Amigobottm, manufactured by 
MobileRobots Inc.   Our laboratory has access to up 
to five of these research robots, on which the 
controller will ultimately be deployed on.  Table 2 list 
key parameters used in modelling the Amigobottm. 
 
Table 2. Webotstm/ODE Model Parameters 

Object Parameters:   
Body Mass m = 3.5 kg   
Bounding 
Cylinder 

h = 0.132m r = 0.14m  

Wheels: m = 0.05kg r = 0.05m W = 0.025m 
Sonar: 6 front 2 rear R = 0.4m 
Camera: Color 320x240 θmax = ±20° 

 
As the application for the controller is collaborative 
driving, commands such as steering angle θsteer and 
speed V are used to mimic an automobile.  However, 
the Amigobottm is driven with differential wheel 
speeds.  Therefore steering and speed commands are 
mapped to the left and right wheel speeds via 
equations 8 and 9. 
 

Vleft   = ( V / Vmax -  θsteer / θmax) kwheel      (9) 
Vright = ( V / Vmax +  θsteer / θmax) kwheel        (10) 

 
4.2 Environment 
 
 Two distinct environment models are created in 
this study: one for initial learning (called Arena), the 
other for performance testing (called Track).    The 
Arena is a large open 10m x10m flat floor with a 
barrier to prevent the vehicles from escaping.  This 
environment contains two vehicles, a lead vehicle and 
a learning vehicle which follows it.  Both static and 
dynamic target training are conducted in this 
environment.  The custom MDP software allows 
policies to be saved and reloaded, to facilitate 
learning. 
 The Track is a simulated two lane road with 
barriers on either side to prevent escape.  Five 
vehicles are modelled in this world and placed at the 
start position.  The end of the road contains a “Warp 
Gate” which when reached sends the vehicles back to 
the starting position.  Therefore, a repeating road can 



     

be simulated using only a straight 50m section of 
track.     
 

6. RESULTS 
 
6.1. Learning 
 
 Two control policies are obtained through static 
target training through two different reinforcement 
learning algorithms.  Q-Learning with ε = 0.1, γ = 0.1 
and α = 0.1 (learning rate) is used to learn a control 
policy π1 which can approach a static target to within 
1m.   
 To allow the possibility of all states to be visited 
infinite times, thus guaranteeing convergence, the 
location of the target is randomized.  This makes it 
difficult to monitor the progress of learning through 
typical means such as the reward accumulated per 
episode or the number of steps per episode since the 
optimal number of steps to reach the target changes 
with location.  Therefore, the exploration ratio which 
represents the ratio of exploration starts to total steps 
for a given episode is used as an indirect means of 
evaluating the learning progress. The exploration 
ratio begins high as the policy is unknown and as 
t→∞, it should approach ε, showing the policy has 
been learned.   
 Learning was conducted for 100 episodes.  The 
process is repeated for the SARSA algorithm under 
the identical conditions to arrive at π2.  From Figure 6 
and 7, both algorithms appear to learn at more or less 
the same speed, and we cannot say one is faster than 
the other for this application. 
 

 
Fig. 6. Q-Learning performance (π1). 

 
Fig. 7. SARSA: Learning performance (π2). 
 
6.2. Longitudinal Performance 
 
 The longitudinal control is evaluated by 
deploying four copies of a policy on four vehicles.  
The vehicles are initially arranged in single file 
separated by 0.4m and all at rest.   The lead vehicle is 
set to reach a constant speed of 0.3m/s while each 

vehicle attempts to follow the preceding vehicle.  The 
vehicle separations are recorded throughout the 
evaluation.  At t = 100 sec, the lead vehicle is stopped 
to observe the behaviour of the platoon as the 
vehicles come to rest.  This evaluation is executed for 
both policy π1 and π2 and shown in Figure 8 and 9 
respectively.  

 
Fig. 8. Q-Learning: Longitudinal control (π1). 

 
Fig. 9. SARSA: Longitudinal control (π2). 
 
For this application, the minimal vehicle spacing is 
considered 1m while the maximum distance is 5m.  It 
is interesting that all vehicles try to adjust their 
distance to 2m while travelling at about 0.3m/s.  After 
braking, the vehicles attempt to keep a distance of 1m 
as it results in more reward. 

 

 
Fig. 10. Q-Learning: Lateral control (π1).  
 
6.3. Lateral Performance 
 
 The lateral control is evaluated by deploying four 
copies of a policy on four vehicles.  The vehicles are 
initially arranged in single file separated by 2m and 
all moving at a constant speed 0.3m/s in one lane.   A 
lead vehicle is placed on the adjacent lane, this is 



     

equivalent to a unit step input; each vehicle then 
tracks the preceding vehicle so as to accomplish a 
lane change.  The vehicles’ lateral positions are 
recorded throughout the evaluation.  This evaluation 
is executed for both policy π1 and π2.  Figure 10 
shows the left and right lane change for  π1 while 
Figure 11 shows the left and right lane change for  π2. 
The data show a very smooth transition to the other 
lane with no overshoot.  The response is identical for 
both policies and symmetrical.  
 

 

 
Fig. 11. SARSA: Lateral control (π2). 
  

7. CONCLUSION 
 

 From these initial simulation results, we can 
draw a few conclusions.  The difference in learning 
performance between the Q-Learning and SARSA 
algorithms is indiscernible, although, if learning 
continued for 100s of more episodes we might 
observe some differences.  For now we conclude that 
they give similar learning performance for this 
application. 
 From the very preliminary performance 
evaluations of the two obtained policies, one from Q-
Learning, the other from SARSA, very similar 
performance is observed.  One could conclude that 
they are in fact the same policy for this MDP.  This 
follows in theory that if the optimal policy for an 
MDP is unique then different RL algorithms will lead 
to the same optimal policy.  Only more evaluations 
about different operating points would prove that the 
same optimal policy has been reached. 
 

8. FUTURE WORK 
  
 This paper has presented some preliminary 
results in our study of collaborative driving control. 
While it appears that reasonable vehicle behaviour 
can be achieved via machine learning, our future 
objectives include looking at longer learning periods 
for better policies, more detailed evaluation of the 
obtained policies, stability analysis and the control of 
higher-level platoon management. 
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