

COMBINED LATERAL AND LONGITUDINAL VEHICLE CONTROL USING REINFORCEMENT LEARNING FOR DYNAMIC COLLABORATIVE DRIVING

Luke Ng, Chris Clark, Jan P.Huissoon

by

Department of Mechanical & Mechatronics Engineering

May 1, 2007

ITS Canada 2007

Auto 21

- Canada-wide research initiative
- Membership:
 - 37 Universities, 110 companies
- Objectives:
 - Improve safety
 - Promote R&D in automotive sector
- Research:
 - Intelligent Systems & Sensors Group
 - Dynamic Collaborative Driving
 - University of Waterloo (Dr. Jan Huissoon) and University of Sherbrooke (Dr. Francois Michaud)

Driving Innovation Through Research Excellence

Motivation

- Problem:
 - Increase of traffic flow due to urban development
- Adverse effects:
 - Traffic congestion
 - Driving Stress
 - Vehicle Collisions
 - Pollution
 - Logistical delays
- Solutions:
 - 1. Build more roads
 - Expensive and Difficult
 - 2. Improve usage on existing roadways
 - Drive closer and faster
 - Automate the driving

May 1, 2007

Rush Hour (Los Angeles USA)

Automated Highway System

Rationale

- Idea dates back to 1939 (Norman Geddes)
- Various prototype demonstrations (1994-2000)
- Automated driving remains a concept
- General public does not trust the reliability of automated driving

GM Futurama 1939 (New York, USA)

Promote Chauffeur (E.U.1994)

Caltrans-Path: Demo 97 (San Diego, USA)

AIST: Demo 2000 (Tsukuba, Japan)

Rationale

- From concept to reality, issues must be resolved
 - Safety
 - Fault-Tolerance, Reliability
 - Coexistence of automated vehicles with human driven vehicles
- Previous prototypes:
 - Identical vehicles
 - Few vehicles
 - Centralized Control
- New Approaches should use:
 - Decentralized Control
 - Use Artificial Intelligence Methods
 - Sensor fusion
 - Inter-Vehicle Communication and
 - Shared Data Representation

Dynamic Collaborative Driving

- Multiple vehicles forming dynamic networks
- Sharing of sensory information to build up a larger shared dynamic data representation of the environment
- Benefits:
 - Multi-vehicle collaboration
 - Improved traffic flow
 - Improved safety
- This research addresses the issue of multi-vehicle collaboration

Research Question

- How does one control the motion of a vehicle within a group of vehicles to share a common roadway?
- What to control?
 - 1. One vehicle following another (laterally and longitudinally)
 - 2. The longitudinal inter-vehicle spacing within a lane (formation)
 - 3. The entrance and exit of a vehicle from lane to another (formation)
- Desired Solution:
 - General (any kind of vehicle)
 - Robust (under any condition)
 - Scalable (for any number of vehicles)

Proposed Solution

- Solution:
 - Have the machine determine its own controller
 - Assuring a certain level of performance for any situation
- Idea:
 - Applying Reinforcement Learning to achieve dynamic collaborative driving control

Decentralized Dynamic Collaborative Driving

Experimental

Objective:

Show that Decentralized Dynamic Collaborative Driving can be addressed as a collection of reinforcement learning problems, resulting in an adaptive solution that is robust

Methodology:

- 1. Obtain each optimal control policy using the *training environment* (simulated)
- 2. Evaluate the quality of the optimal policy learned in the *road environment* (simulated)

Phases:

- 1. Feasibility studies using small mobile robot models
- 2. Studies using detailed full-scale vehicle models

Training of Combined Lateral and Longitudinal Vehicle Control

Preliminary Results Longitudinal

May 1, 2007

Preliminary Results Lateral

May 1, 2007

Future Work

- Full-Scale Vehicle
 Simulation Studies
 - Vehicle Dynamics Modeling
 - Environment Modeling

- Feasibility studies for Formation Controllers
 - Longitudinal Inter-vehicle spacing (platooning)
 - Entry/Exit control into and from platoons (lane changing)

Acknowledgements

Questions?