

A Distributed Robot Of Intelligent Devices (DROID):
 Conception, Design, and Implementation

 for
Autonomous Multiple Robotic Welding

by

Luke Ng

A thesis
presented to the University of Waterloo

 in fulfilment of the
thesis requirement for the degree of

 Master of Applied Science
 in

Mechanical Engineering

Waterloo, Ontario, Canada, 2001

©Luke Ng 2001

ii

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

iii

The University of Waterloo requires the signature of all persons using or photocopying this

thesis. Please sign below, and give address and date.

iv

Abstract

Sensor-based control of multiple industrial robot systems requires a large number of

sensors and robot manipulators to be integrated. As the demand for agile manufacturing cells

to become more adaptable and reconfigurable in terms of both hardware and software increases,

 data management and coordination of the numerous connected units becomes difficult.

To attain this flexibility or agility, an operating system environment tailored for complex

robot systems, called a Distributed Robot of Intelligent Devices (DROID) has been developed.

Using low-cost/high performance computing hardware made available by the personal computer

market, the DROID system is a distributed control system where sensors or robots can be added

or removed based on the task being performed. The DROID system’s purpose is to act as a

research development platform on which to base future sensor-based multiple robotics research.

This thesis begins with the description of the system architecture which promotes

extensive integration, reconfiguration and expansion. It then proceeds to describe the DROID

system’s implementation of our chosen real-world application, autonomous robotic welding or

dynamic seam-tracking which involves 2 robotic arm manipulator units and a laser profiling

sensor (effectively a 12-degree of freedom system driven by a sensor). We then discuss its

successful tracking performance and the future of the DROID system.

v

Acknowledgements

I would like to thank my supervisor Dr. Jan P. Huissoon for his support, knowledge,

advice, patience, sense of humor and troubleshooting skills during my studies.

I would like to thank my friends and colleagues, Paul Gray, S.J. Park, Micheal Kim,

Derry J. Crymble, Trevor Tsang, Aaron Geiseberger, Peter Routledge, and Alex Parlour for their

comradery, advice, colorful knowledge and also their sense of humor throughout my studies.

I would also like to thank my father for teaching me the value of hard work and

perseverance.

Especially, I would like to thank my wife Sharon for her relentless encouragement,

advice and support. Without her there would be no thesis.

The financial support of this project was provided by I.R.I.S. Without their continued

support, this project would not have been possible

vi

Dedication

This thesis is dedicated to my loving wife Sharon. Thank you for your never-ending patience

and encouraging me to dream beyond my wildest imaginations.

vii

Table of Contents

Abstract . iii

Table of Contents . vii

List of Tables . xi

List of Figures . xii

Chapter 1. Introduction . 1

1.1. Background . 2

1.2. Rationale and Objectives . 7

Chapter 2. Hardware and Software Technologies . 10

2.1. Current Computer and Robot Technology . 10

2.1.1. Computer Technology . 10

2.1.2. Robot Technology . 13

2.2. Operating Systems . 15

2.3. The Reis RobotStar V15 . 17

2.4. The GM Fanuc S400 . 20

viii

2.5. The MVS Line Laser Sensor . 23

2.6. The Brain Computer . 24

Chapter 3. System Architecture . 27

3.1. Overview . 27

3.2. Network Architecture and Communications Protocol . 29

3.3. Subunit Interfaces . 31

3.4. Task Programs . 36

Chapter 4. Generic Motion Control . 38

4.1. Prototype Implementation, the Reis Robotstar V15 . 38

4.1.1. Robot Mechanics and Kinematics . 38

4.1.1.1. Robot Forward Kinematics . 39

4.1.1.2. The Inverse Kinematic Solution . 42

4.1.1.3. Encoder Gearing and Interconnectivity 44

4.1.1.4. Optical Calibration Procedure . 44

4.1.2. Robot Hardware Interfacing . 46

4.1.3 Software Design . 47

4.1.4 Functionality . 51

4.1.5. The Servo Program . 54

4.1.5.1. The Servo Routine . 55

4.1.5.2. The Servo Planner . 58

4.1.5.3. The Homing Routine . 60

ix

4.1.6. The Servo Agent . 62

4.1.7. The Planner . 64

4.1.8. The Reis Agent and the Remote Reis Programs 70

4.2. GM Fanuc S400 Motion Controller . 71

4.2.1. Overview . 71

4.2.2. Shared Memory . 73

4.2.3. GMF1 Agent and Remote GMF1 programs 73

4.2.4. The Serial Program . 74

4.2.5. The Encoder Program . 75

Chapter 5. Seam Tracking Implementation . 76

5.1. Kinematics of Seam Tracking . 77

5.2. Coordinated Motion Control . 80

5.3. MVS System Software . 83

5.4. Application Software . 84

5.5. Dynamic Seam Tracking Task Program . 88

5.5.1. Overview . 88

5.5.2. Software Implementation of Dynamic Seam Tracking 89

Chapter 6. Experimentation and Performance . 98

6.1. Experimental Methodology . 98

6.1.1. Experimental Workpieces . 100

6.1.2. Variable Description and Ranges . 102

x

6.2. Experimental Results & Data Analysis . 107

6.2.1. Experiment 1: Position, Orientation and Seam Travel Speed 107

6.2.2. Experiment 1: Observations . 110

6.2.3. Experiment 2: Stability with Respect to the Radial Distance 125

6.2.4. Experiment 2 Observations . 126

6.2.5. Experiment 3: Gains and Transport Delays . 134

6.2.6. Experiment 3 Observations . 137

6.2.7. Experiment 4: Repeatability . 151

6.2.8. Experiment 5: Alternate Wrist Setup . 154

6.2.9. Experiment 5: Observations . 155

Chapter 7. Discussion and Recommendations . 157

7.1. Discussion . 158

7.2. Limitations of Design . 160

7.3. Recommendations . 161

References . 163

xi

List of Tables

Table 3.1. The Status shared memory interface . 34

Table 3.2. The Command shared memory interface . 34

Table 3.3. The Sensor Status shared memory interface . 35

Table 4.1. Link table for D-H convention . 40

Table 4.2. The Status shared memory interface of the motion controller 50

Table 4.3. The Command shared memory interface of the motion controller 50

Table 6.1. Initial Exploration: Travel Speed and Position/Orientation 108

Table 6.2. Stability with respect to Radial Distance and Travel Speed 126

Table 6.3. Stability with respect to Gains and Transport Delays . 135

xii

List of Figures

Figure 1.1. Photograph of Mobile Autonomous Robot Stanford (MARS).[3] 3

Figure 1.2. Photograph of the Dynamic Welding System courtesy Huissoon and Strauss. . . 4

Figure 1.3. Photograph of Sojourner on Martian surface (NASA JPL 1996). 5

Figure 2.1. ABB S4C Industrial Robot Controller . 14

Figure 2.2. A screen capture of Workspace in an arc welding application 15

Figure 2.3. The Reis Robotstar V15 in a seam tracking application 18

Figure 2.4.. The VMEbus chassis for the Reis Robotstar V15 . 18

Figure 2.5. Schematic of control system for one axis of the Reis Robotstar V15 19

Figure 2.6. The GM Fanuc S-400 robot arm manipulator . 21

Figure 2.7. Computer Boards Quadrature Encoder 4 Channel Card (CIO-QUAD04) 22

Figure 2.8. The Laser/Camera assembly . 23

Figure 2.9. The ISA processor board . 24

Figure 2.10. Thrustmaster analog joystick . 26

Figure 3.1. Overview of DROID . 28

Figure 3.2. The three elements of a subunit . 30

Figure 3.3. Message Passing for a robotic subunit . 31

Figure 3.4. Comparison of Reis Robotstar V15 to GM Fanuc S400 32

Figure 4.1. Reis Robotstar V15 geometry . 39

Figure 4.2. Reference frame assignment based on D-H convention 40

Figure 4.3. Geometric solution for angles 1,2,3 based on position only 42

Figure 4.4. Optical Calibration . 46

xiii

Figure 4.5. Datagram of the Reis motion controller . 49

Figure 4.6. Flowchart of motion controller operation . 53

Figure 4.7. Flowchart of the Servo program . 55

Figure 4.8. Flowchart of the Servo function . 57

Figure 4.9. Flowchart of the Servo planner . 59

Figure 4.10. Flowchart of the Homing function . 61

Figure 4.11. Flowchart of the Servo Agent program . 63

Figure 4.12. Planner program . 65

Figure 4.13. Anatomy of the GM Fanuc S400 motion control software 72

Figure 5.1. Reference frames used in Seam Tracking software . 78

Figure 5.2. Kinematic diagram . 79

Figure 5.3. The Dynamic Seam Patch . 81

Figure 5.4. Interpolation scheme for determining target seam position and orientation 82

Figure 5.5. The P1C30 Control program . 84

Figure 5.6. Screen capture of the sensor.exe . 85

Figure 5.7. Flowchart of the application software operation . 87

Figure 5.8. Hardware setup for a Autonomous Multiple Robotic Welding system 89

Figure 5.9. Anatomy of the “Seamtrack” Task program . 91

Figure 5.10. Flowchart of the Seam Tracking software operation . 93

Figure 6.1. Seam reference frame . 99

Figure 6.2. Step Input Experimental Workpiece . 100

Figure 6.3. Ramp Input Experimental Workpiece . 101

Figure 6.4. (i) Position within positive workspace and 0 degree Roll and Pitch 103

Figure 6.4. (ii) 300mm lateral offset of the track to position (i) . 103

Figure 6.4.(iii) Same as position (i) but with a 30 degree Roll of the track 104

xiv

Figure 6.4. (iv) Same as position (i) but 45 degree Roll of the track 104

Figure 6.4. (v) Same as position (i) but 30 degree incline . 105

Figure 6.4. (vi) Position and orientation along radial . 105

Figure 6.4. (vi) Same as position (i) but vertical. 106

Figure 6.5: Step input response for all axis’ with 30 degree Roll at 8mm/s 111

Figure 6.6: Step input response for all axis’ with 30 degree Roll angle 112

Figure 6.7. Step input response for all axis’ with changing position/orientation 115

Figure 6.8: Typical Seam Tracking system response to ramp input 118

Figure 6.9: Lateral Seam Tracking System response to Ramp Input Radius of 500mm . . . 119

Figure 6.10: Lateral Seam Tracking System response to Ramp Input Radius of 400mm . . 120

Figure 6.11: Lateral Seam Tracking System response to Ramp Input Radius of 300mm . . 121

Figure 6.12: Lateral Seam Tracking System response to Ramp Input Radius of 200mm . . 122

Figure 6.13: Selected X axis/Depth response to ramp input . 123

Figure 6.14: Determining the Yaw and Pitch angles . 125

Figure 6.15: Lateral stability along a radial line as speed increases 127

Figure 6.16: Lateral stability along a radial line as speed increases 129

Figure 6.17: Lateral/Yaw axis stability on a radial line at 16mm/s 131

Figure 6.18: Lateral/Yaw axis stability on a radial line at 8 mm/s 132

Figure 6.19: Depth/Pitch axis stability on a radial line at 16 mm/s 133

Figure 6.20: Pitch Gain Experiment, Depth stability with a step input 138

Figure 6.21: Yaw Gain Experiment, Lateral stability with a step input 141

Figure 6.22: Stability data for 1 cycle Transport Delay . 144

Figure 6.23: Stability data for 2 cycle Transport Delay . 145

Figure 6.24: Stability data for 4 cycle Transport Delay . 146

Figure 6.25: Stability data for 5 cycle Transport Delay . 148

xv

Figure 6.26: Stability data for 6 cycle Transport Delay . 148

Figure 6.27: Stability data for 8 cycle Transport Delay . 149

Figure 6.28: Stability data for 16 cycle Transport Delay . 150

Figure 6.29: Lateral/Yaw Axis data for Repeatability Experiment 151

Figure 6.30: Depth/Pitch Axis data for Repeatability Experiment 152

Figure 6.31: Standard deviation for Lateral data . 153

Figure 6.32: Standard deviation for Depth data . 153

Figure 6.33: Repeatability Experiment . 154

Figure 6.34: Alternate Wrist Configuration . 155

Figure 6.35. Alternate Wrist Setup Experiment . 156

1

Chapter 1

Introduction

Sensor-based control of multiple robot systems requires a large number of sensors and

robotic motor units to be integrated. In the past, these types of robot systems were limited to the

mobile robotics research area or to the space and military industry. As for industrial

applications, the use of multiple robotic work cells has been limited to robot units with

programmed paths. Collision avoidance techniques for industrial robots which work in close

proximity to one another usually comprises running the programmed paths through an offline

simulation. Hence, coordination is not a real-time phenomenon in the industrial setting. Recent

demands for agile manufacturing systems used primarily for low-volume, high accuracy

manufacturing require that the cell be flexible in terms of both hardware and software. Hence,

the ideal agile manufacturing cell should be able to add or remove sensors or robot manipulator

units easily depending on the multiple tasks it can perform.

In the past, sensor-based multi-robot systems used distributed control to manage the

multiple sensors and robotic units connected. These early distributed control systems used a

single processor running a multi-tasking operating system to interpret the sensor data and then

send higher-level move commands to each motion micro-controller. To make the most of the

large array of sensors and to cooperate effectively, division of labor is needed in order to

alleviate the computational load required to interpret all this incoming data and to coordinate

the robotic units properly using a distributed parallel-processor model. According to Yasuda

Chapter 1. Introduction 2

and Tachibana [1] only a truly parallel multiprocessor control system could run a multi-robot

system properly. However, such control systems using conventional processors cannot handle

the full complexity of multi-robot systems due to the following reasons:

i) in addition to event driven scheduling, round robin scheduling, where the period of
task switching is desired to be shorter than the time required for processing one motion
command, is needed for two robots to move simultaneously;

ii) the sampling interval for robot motion control largely depends on the time required
for processing of one motion command; and

iii) executable code is inefficient and the safety cannot be proven because control
software is written as polling loops or with interrupt routines.

At the time, conventional processors were not very powerful; hence multitasking performance

consisted of non-deterministic delays due to the above reasons. However, recent improvements

in microprocessors, network technologies and real-time operating systems have allowed

distributed control systems using conventional processors to approach performance levels to that

of parallel systems. Thus a Distributed Robot of Intelligent Devices (DROID) was developed

based on the recent advances in computer hardware and software technology to further research

in the area of sensor-based multiple robotic systems [2]. The conception, design and

implementation to the application of autonomous multiple robotic welding is the topic of this

thesis.

1.1. Sensor based Robotics Research

Early sensor-based robotics research focused primarily on mobile robots and the task of

navigation. These early mobile robot platforms such as the Stanford Robot (known as the

Mobile Autonomous Robot Stanford , MARS) used primitive distributed control [3]. The

control system consisted of a single National Semiconductor 32016 16-bit processor to act at the

Chapter 1. Introduction 3

coordination level. Sensors consisting of 12 Polaroid acoustic sensors, bumpers, pan/tilt sensors

and two video cameras were linked to this microprocessor. Three 8-bit micro-controllers were

responsible for driving/steering the platform and provided encoder/odometry data. This system

made attempts to build a model of the world throughout its path, resulting in high computation

loads prior to each move.

Figure 1.1. Photograph of Mobile Autonomous Robot Stanford (MARS) [3].

Early industrial autonomous robotics research was pursued with emphasis on intelligent

agile robotic work-cells for low volume and high precision manufacturing. Strauss and

Huissoon in 1991, [4], [5], [6] , developed an integrated sensor based dynamic welding system

which followed a weld seam using computer vision techniques and manipulated the position of

the jigged workpiece to allow optimum welding parameters. This system was autonomous in

that it only required the tool-robot to be positioned along the seam; once the welding began, it

created a dynamic piece-wise model of the workpiece and continued without further

Chapter 1. Introduction 4

programming until the weld was complete. This system was limited to a 6 DOF robot with a 2

axis workpiece positioning system. It demonstrated that with conventional hardware and a

distributed control system, autonomy could be achieved using a sensor reaction- based control

paradigm. However, due to technological limitations, heavy optimization was necessary to

achieve this level of control and coordination between the robot controller and the sensor

computer; hence it became very specialized for the task of welding and reconfiguration was

limited.

Figure 1.2. Photograph of the Dynamic Welding System
Courtesy Huissoon and Strauss (1991).

Modern autonomous mobile robots such as Sojourner developed at NASA JPL and

Carnegie Mellon University [7], for exploration of Mars have a more distributed approach to

robot control. Obstacle avoidance and local navigation is handled autonomously based on

sensor data reaction. Since Sojourner is wheeled with active suspension (wheels can be lifted

to overcome obstacles) the kinematics are quite simple and can easily be handled by a single

controller. This controller communicates with tilt sensors, gyroscopes and move commands

using network messaging. The move commands are calculated using stereoscopic cameras for

Chapter 1. Introduction 5

obstacle avoidance as well as supervisory navigation commands from mission control. This

distributed robot architecture has a proven record based on the success of 1996 Mars Pathfinder

mission and s h o u l d b e

extended to i n d u s t r i a l

m u l t i p l e r o b o t i c

systems.

Figure 1.3. Photograph of Sojourner on Martian surface (NASA JPL 1996).

Research in the area of distributed control architectures for multiple robot systems were

pursued in the early 1990's. These research efforts strove to make the robotic system

reconfigurable and modular so as to facilitate autonomous sensor-based research for both mobile

and industrial robotics. Stewart et al [8] in 1992 at Carnegie Mellon University’s Robotics

Institute developed Chimera, a real-time operating system designed for advanced sensor-based

robotic applications. This operating system ran on workstation-class Sun Microsystems

hardware and allowed both robot and sensor modules to be used in a very modular fashion.

Gertz et al [9] in 1994 added a graphical user interface called ONIKA to represent the robot

configurations where icons were used to represent and monitor each robot or sensor element.

Chapter 1. Introduction 6

Although this system has a rich history and existing application libraries, it remains a custom

operating system originally designed for Motorola-based hardware in the early 1990's. This

research shows that the need for such a system was identified early in the 1990's; however the

computing technology was not mature enough. This led the research group to develop their own

real-time operating system and develop their own set of libraries and device drivers for the robot

systems of that epoch.

Yasuda and Tachibana [1], [10] in 1996 suggested the need for parallel multi-robot

control architectures and specified a computer network based control architecture based on

modeling each autonomous robot unit as an object oriented Petri net. A Petri net is a directed

graph with two kinds of nodes (places and transitions) such that no two places or transitions can

be connected directly (a state machine can be considered a subclass of a Petri net) [11]. The

authors modeled each robot task or discrete event as a Petri net transition and implemented this

object oriented modeling in a simulation based on a transputer network. They showed that the

model of parallelism and synchronous communication can work efficiently within this type of

system.

The MARTHA project was developed by Alami et al [12] in 1998 at the Robotics and

Artificial Intelligence group at LAAS/CNRS; its focus was on high level mobile robotic

cooperation and coordination for the application of navigation. Using a shared database of

information, each robot plans its path to avoid each other. These 3 robots operating using

WindRiver VxWorks were used to validate the system. Simulations were run using up to 10

emulated mobile robots in a simulated environment to assess the scalability of their system. This

system shows the promise of using multiple mobile robot systems in high traffic areas for

collision avoidance. The study also shows the importance of intercommunication between

robots and the importance of the integrity of a central database for the robots’ positions.

Jung and Zelinsky [13] in 1998 at the Australian National University’s Robotic Systems

Laboratory designed an architecture for distributed cooperative planning in a behavior-based

multi-robot system called ABBA. ABBA is a task independent architecture that supports

learning, and action selection. It serves as a general framework whereby a collection of simple

Chapter 1. Introduction 7

behaviors or tasks can be embedded, such as navigation, planning, cooperation and

communication, so that a complex tasks can be built up. Using a network of cameras and robots,

they were able to build up simple behaviors to accomplish a complex task such as cleaning a

room. A rule-based action-selection algorithm ties the navigation of the room with picking up

litter and dumping it into a dust-bin. A similar architecture was developed at MIT’s Artificial

Intelligence Laboratory by Parker in 1998 using mathematical models for motivation to achieve

adaptive action selection for each robot [14]. These high-level architectures demonstrate that

complex autonomous tasks are a viable pursuit, providing that the underlying robots and sensors

can be abstracted into intelligent agents. For the case of ABBA, the robot units and sensor were

built up using WindRiver Systems VxWorks real-time operating system.

Very recent work at the University of Coimbra [15], shows investigation of a distributed

network of robots connected on Ethernet. This research effort uses the latest ABB S4 controller

which supports Ethernet and the TCP/IP protocol. High level commands are sent to the

controller from an interface computer via remote process commands (RPCs). These RPCs are

preprogrammed behaviors which can be triggered by a signal sent from the central computer.

The interface computers are Microsoft Windows 95/98/NT/2000-based and the robot units

appear in the Windows Environment as ActiveX communication objects. The authors have

conducted some performance tests for network delays and have shown that delays as long as

20ms exist for Ethernet TCP/IP initiated RPCs to take action. For high-level coordination this

may be acceptable for RPCs; however, real-time sensor-based control requires reaction delays

which are much less (at least 10ms to achieve 60Hz sensor integration).

1.2. Rationale and Objectives

Any of the research efforts of the past have been limited due to technological restrictions.

Sensors were expensive to build and integration was complicated. In addition, computing power

was expensive and interconnect technologies were slow. Hence the amount of human effort

Chapter 1. Introduction 8

required to build autonomous systems was significant.

In recent years, the explosive growth of the consumer computing industry has made the

technologies which were once vital to the autonomous robotics field into commodities. Lasers,

cameras, microphones, rangefinder technology, GPS technology and accelerometers have been

miniaturized drastically due to the consumer electronics industry. These sensors such as the

CCD cameras and accelerometers are available on a single integrated circuit.

High speed inexpensive processors which surpass the performance of those found in

supercomputers of the mid 1990's are now available in every personal computer. Memory

technology has advanced to the point that entire programs and operating systems can be stored

in RAM itself without the need for external storage. This RAM is also at commodity prices and

at access speeds which were unheard of 5 years ago. Hard drive capacities now exceed even

the most demanding applications. All these advances mean that computationally expensive

control algorithms can be attempted using very inexpensive computer hardware.

In addition, the proliferation of the Internet has both advanced network technologies as

well as allowing globalization of our knowledge base. Ethernet cards, Hubs and Routers are

available at commodity prices offering speeds of up to 100Mb/s. Future Ethernet cards will have

bandwidths in the Gb/s range allowing very rich data streams to be sent. The Internet has also

given rise to alternative operating systems built primarily with the efforts of the Open Source

Movement. This movement believes that software source code should be made available to

everyone so that it can be shared and modified for anyone’s needs. This has led to the

emergence of the Linux Operating System, an Open Source and free implementation of the

UNIX operating system. Due to the large momentum behind Linux, many hardware vendors

who formerly would not reveal their hardware specifications are now forced to do so to allow

adequate driver support of Linux [16]. Thus we are no longer limited by the hardware

manufacturers in our integration of their hardware for our systems.

In order to advance autonomous robotic systems research at the University of Waterloo

a stable, modern and modular architecture was developed for multiple robots which are sensor-

driven. This robot architecture is called DROID which stands for ”Distributed Robot of

Chapter 1. Introduction 9

Intelligent Devices”. It features a distributed robotic architecture where modular intelligent

devices are connected to a central intelligence computer (Brain Computer) which coordinates

its behavior via a high speed Ethernet network. This system is reconfigurable and promotes plug

and play performance for the devices such as robot manipulators, sensors and propulsion units.

By using a modern operating system, this system also has the advantage of being remotely

controlled on the Internet using network software technologies such as TCP/IP, Sockets and

JAVA. In addition, it is based on commodity-priced personal computer technology; therefore

it can remain at the cutting edge and still be fairly inexpensive.

Although one can design such an architecture, it must be realized through an application

to prove its effectiveness. In our case, the DROID system was implemented in the industrial

setting for the application of sensor-based autonomous multiple robotic welding. In particular,

we have developed a two robot work-cell which utilizes a laser profiling sensor to dynamically

seam track for welding applications. Robots and sensors were extensively modified to be used

in the DROID system.

This thesis describes the conception of the DROID system, its system architecture

design, the software developed to successfully perform the task of Autonomous Multiple

Robotic Welding, its performance and the future of the DROID system itself.

10

Chapter 2

Hardware and Software Technologies
This chapter focuses on the technologies used to create the DROID system for the

application of Autonomous Multiple Robotic Welding. Much of the design of the DROID

system is based on advances in computer hardware. This chapter begins with a background

description of the existing computer technology at the time of inception, and later robotic

technologies are discussed. This is followed by a brief description of the actual hardware used

in the DROID implementation which includes the i) welding robot, ii) the workpiece positioning

robot, iii) the sensor, and the coordinating Brain Computer. The objective of this chapter is to

give the reader insight into the rationale for choosing certain hardware and software

technologies.

2.1. Current Computer and Robot Technology

2.1.1. Computer Technology

Technology moves especially fast in the computer world and if we design complex

systems based on the current technology, we find that our systems become obsolete by the time

of deployment. With this in mind, we must look ahead to the future and forecast the trends in

technology. From these trends we can decide on using certain technologies that can be upgraded

in the future so that our systems remain at the cutting edge. This section attempts to paint a

Chapter 2. Hardware and Software Technologies 11

picture of the current technologies which guides our system design.

The conception of the DROID system began in early 1998. At the time, Intel

Corporation had just released its Pentium II processor. The Pentium II processor would replace

its slower predecessor by offering almost twice the processing power at the equivalent clock

speed; as well, the clock speed would increase up to 450MHz compared to the 233MHz speed

of the Pentium. With the increased clock frequency, so increased the operating temperature, and

reliability in the absence of active cooling decreased; hence the Intel Pentium II was marketed

primarily as a workstation-class processor.

Intel processor clone companies such as Advanced Micro Devices (AMD) and Cyrix

developed CPU’s which mimic the x86 instruction set of an Intel Pentium processor and which

would run cooler. With the coming of the Pentium II and the proliferation of Pentium clones,

this drove the price of Pentium-class processors down. Eventually, these Intel Pentium-class

processors found their way into industrial applications which had formerly been dominated by

Motorola processors.

In the mid 1980's the Motorola Corporation was a dominant force in the microprocessor

industry, clearly at the leading edge, delivering well designed Complex Instruction Set Computer

(CISC) processors with rich instruction sets and compilers (the 680X0 family). Both industrial

and military system integrators chose Motorola processors along with their peripherals and bus

architecture. Conversely, Intel’s dominance of the personal computer market allowed it to

proliferate its architecture designs onto desktops everywhere. Eventually, Motorola’s

technological lead would be eliminated as high power, low cost Intel processors became

dominant. By the late 1990's integrators were looking to Intel instead for lower-cost computing

systems destined for industrial and military applications.

The processor platform of the DROID system is the Intel Pentium-class processor. Due

to their low-cost, abundance and exceptional floating point mathematics performance, they

provide a stable architecture with which to build future software control systems. In addition,

the Intel architecture has an abundance of peripherals allowing us to build very complex control

systems with off-the-shelf components. However, as Intel processor modules are being adopted

into existing industrial and military systems, they must interface to the existing Motorola

Chapter 2. Hardware and Software Technologies 12

peripherals.

In the mid 1980's, with the adoption of the Motorola processors into military and

industrial applications, the demand for peripheral devices for these applications grew. Since

Motorola could not supply this niche market themselves, they set out to develop an open bus

standard compatible with their processors. This bus standard known as the Versa-Modula-

Europa bus (VMEbus) standard was developed in conjunction with other circuit board

manufacturers. This allowed any third party board manufacturer to interface to any VMEbus

system. Therefore, very modular, complex and upgradeable systems could be built, with

manufacturer independence. The VMEbus architecture was very similar to the 68000's bus

architecture. It began as a peripheral memory-mapped architecture with a 20-bit addressing

space. Later this was increased to 32-bits and eventually to 64-bits. Many of the military and

industrial applications which utilized VMEbus are still in operation today.

 At the conception of the DROID system, the VMEbus architecture was still very much

in use both in military and industrial applications. The new Intel bus architecture at the time was

the Intel Peripheral Computer Interface (PCI) whose bus controller was embedded into every

Intel Pentium processor support chip [17]. Hence all Pentium-class processor computers came

equipped with a PCI bus. With a 32-bit address space and a transmission bandwidth of 133Mb/s

it was proclaimed as the future high-performance bus. Since the Intel bus architecture has

fundamental differences with the VMEbus system, bridging technology is required to integrate

Intel processor modules with VMEbus systems. Fortunately, the Tundra Semiconductor

Corporation built a PCI-to-VME bridge integrated circuit (Universe and Universe II) which

made memory transfers from the PCI bus system to the VMEbus system (and vice-versa)

transparent [18].

Industrial settings present adverse and demanding conditions for interconnect

technologies. This resulted in a plethora of interconnect technologies and protocols being used

in industry such as RS-232, RS-485, DeviceNet, ControlNet, PROFIBUS, and many other

proprietary networking technologies all promising low signal to noise transmission ratios and

high bandwidth. RS-232 is a simple point-to-point twisted pair serial network protocol with

transmission speeds of up to 56Kb/s. RS-485 offers multiple connections of up to 128 nodes

Chapter 2. Hardware and Software Technologies 13

with a shared bandwidth of 10Mb/s. DeviceNet allows 64 nodes to be connected with a

bandwidth of 500Kb/s and a packet size of 8 bytes. ControlNet offers a bandwidth of 5Mb/s.

PROFIBUS is a network protocol which rides on top of Ethernet or RS-485 delivering messages

at a maximum length of 246 bytes. Most of these network technologies with the exception of

RS-232 and RS-485, require costly interface cards. In addition, the cost and lack of

development tools/libraries make these technologies very unattractive [19], [20]. The

overwhelming presence of the Internet has made very low-cost and robust ethernet interfaces

available. As well, the dominance of TCP/IP has given integrators a very stable and robust code

base. With speeds starting at 10Mb/s with well over 1Gb/s transmission rates in the future, it

is the ideal interconnect for any application. The DROID system utilizes Ethernet as the

network interconnect coupled with a high-speed Native Message Passing protocol built into the

QNX Operating System kernel [21].

The emphasis of our system design is to use computer technology which is readily

available from the Personal Computer market. By using this type of hardware, we incorporate

leading edge technology very quickly into our system and reap the tremendous benefits of high

performance, and high storage capabilities.

2.1.2. Robot Technology

Many of the advances in the industrial robotics industry have been in the level of

integration of the robotic controller. The mechanical designs of the 6 degree of freedom robots

developed in the late 1980s have had little change. The controllers, however, have been

drastically affected by computer technology, resulting in a reduction of the overall size of the

controller. Faster processors have allowed a degree of collision detection to be implemented at

the controller level. In addition, the advent of the personal computer has allowed programs to

be written offline and downloaded to the controller using very standard interfaces such as RS-

232 and Ethernet.

Chapter 2. Hardware and Software Technologies 14

Figure 2.1. ABB S4C Industrial Robot Controller

Although the recent advances in industrial robotics have been in the area of ease of use, they

remain proprietary in their modes of communication. Each robot manufacturer has its own

preferred language (Fanuc Karel, CRS RAPL 3, Motoman Inform II, etc.), and its modes of

communication remain proprietary although they may share the same medium (Ethernet, or

Fieldbus). In addition, the integration of sensors to update the robot’s path in real-time still

requires extensive integration.

Robotic visualization tools are available such as Workspace (Flow Software

Technologies, Windsor, Ont.) which allow multiple robotic units to work together. These tools

allow multiple robots to be programmed offline using a single program; however, cooperation

among robots is not a real-time task. In addition, sensor integration in these simulations is

limited to extremely simple devices such as limit switches. These visualization programs must

also support a multitude of robot languages in order to be a viable tool in any industrial setting.

The emphasis of our system design in terms of advancing robot technology is to provide

a generic interface to existing robots, propulsion units and sensors. This generality allows

universal communication to exist and cooperation among these units. Thus, very complex

multiple robotic systems can be built up, programmed and monitored remotely using advanced

network technologies.

Chapter 2. Hardware and Software Technologies 15

Figure 2.2. A screen capture of Workspace in an arc welding application

2.2. Operating Systems

Once the hardware platform had been established for the DROID system, a suitable

software platform or operating system to build our software on had to be chosen. Using Intel

x86 hardware allows the use of almost any operating system. However, not every operating

system is suitable for multiple robotic control due to the inherent designs of the operating

system.

Control of the DROID system requires that signals be read and written at a fixed rate;

any fluctuations in the control rate gives rise to instabilities and unpredictability in the control

system. Hence, we must have complete control of the operating system, in that we must be able

to preempt the operating system kernel with our own control program; this is known as “Hard

Real-Time Performance”. A limited number of operating systems exist which provide this

capability due mainly to security issues.

To connect the many nodes involved in the DROID system, a solid network platform

must be available to the operating system. This includes stable device driver software for

Chapter 2. Hardware and Software Technologies 16

modern network adapters as well as solid network protocol libraries (i.e. TCP/IP, WINSOCK,

etc). Most Unix-like operating systems also have support for a Message Passing Interface

protocol or Parallel Virtual Machine protocol. This is a high speed low-level network protocol

which makes a cluster of machines linked by Ethernet appear as a single parallel processing

virtual machine.

The DROID system must be able to access multiple devices or sensors which may not

be supported by any operating system. Therefore, we must be able to build device drivers for

the sensors and robots which we attach to our system. Since hardware programing is a very

tedious task, we must choose an operating system which is easy to develop hardware interfacing

software on. Although many operating systems offer high-level application development tools

that “almost write by themselves”, these operating systems may not grant access to any

particular device including a physical memory address.

Lastly, we must consider the portability and the future of the code base which we

develop. Operating systems can be completely abandoned very quickly if the software industry

will not write programs for it, although it may be perfectly suitable for many applications. In

addition some operating systems are so proprietary, a simple upgrade to the operating system

may render a crucial operating system component useless. Hence, we must choose an operating

system with both a strong lineage to the past such as a POSIX-compliant operating system (i.e.

UNIX variant), and which has a promising future.

Although very prominent, Microsoft Windows 95/98/NT/2000/ME and UNIX do not

allow application programs or even device drivers to be written with privileges higher than the

operating system kernel; hence they are considered non-real-time operating systems. Only very

recently (late1998), specialized kernels have been developed for Windows NT and LINUX (an

Open Source Unix Implementation) which provide a degree of real-time control. However, at

the time of inception of the DROID system, they were still in alpha stages of development.

Wind River System’s VxWorks, MTOS and Realtime C Environment provide operating

system libraries which allow the control program to be compiled into a monolithic executable

to be downloaded at run-time. Since the program code is compiled with the operating system,

a high degree of control is retained and is considered real-time. However, their offline

Chapter 2. Hardware and Software Technologies 17

development method makes the development of hardware interfacing software somewhat

tedious.

Microsoft DOS and QNX 4.25 provide an environment to program applications which

can preempt the operating system. Software is usually developed on the actual hardware target,

hence it is termed host-based development. However, due to the short-sighted design in DOS

(i.e. the 640KB conventional memory limitation) it was abandoned in the mid 1990's by the

Microsoft Corporation. QNX 4.25 is a 32-bit POSIX compliant real-time operating system.

It is a true multi-tasking operating system which provides low-level access to hardware

resources. The operating system kernel is both powerful and small and it allows applications

to preempt it based on priority levels. It also has a powerful network layer that allows powerful

distributed systems to be built [21].

At the heart of QNX 4.25 is a Message Passing system which allows processes to

communicate with each other. Hence, a QNX 4.25 application consists of many small programs

which provide a dedicated service and are debugged extensively. These small programs then

communicate with each other via Message Passing to become a system. Hence, the code base

is very modular and can easily be upgraded. Therefore it was chosen as the operating system

for the DROID system.

2.3. The Reis RobotStar V15

The Reis Robotstar V15 is a 6 revolute joint manipulator arm manufactured by Reis

Machines Inc. in the late 1980's [22]. It was purchased by the Department of Mechanical

Engineering of the University of Waterloo as a research robot. The key advantages of the Reis

Robotstar V15 are simple robot kinematics and ease of upgrading due to the use of the VMEbus

architecture as a back-plane for the robot controller. Figure 2.3. shows the 6 links and revolute

joints of the Reis Robotstar V15 while Figure 2.4. shows the VMEbus chassis which contains

the processor board and Input/Output boards.

Chapter 2. Hardware and Software Technologies 18

Figure 2.3. The Reis Robotstar V15 in a seam-tracking application

Figure 2.4.. The VMEbus chassis for the

Chapter 2. Hardware and Software Technologies 19

Reis Robotstar V15

Chapter 2. Hardware and Software Technologies 20

Figure 2.5. Schematic of control system for one axis on the Reis Robotstar V15

Figure 2.5. shows the control scheme for a single axis on the Reis Robotstar V15. Each

of the six joints uses a harmonic geared DC-servo motor which is powered by an independent

servo-amplifier. This servo amplifier obtains its command input signal (+5VDC) from the I/O

board which has a digital to analog converter (DAC) for each of the 6 joints. These DACs are

mapped into the VMEbus memory space. An encoder resides on each DC-servo motor

providing an encoder signal to the I/O board encoder counter, again these encoder counters are

mapped into VMEbus memory space. Hence, a closed-loop controller for the 6 joints can be

implemented in software by reading the encoder memory locations and writing to the DAC

memory locations. In addition to the DC-servo motors, a pneumatic piston is used to balance

link 2, however, this is considered a passive balancing system for the Reis Robotstar V15. One

further note, as a safety mechanism, the presence of a Watchdog timer on the VMEbus Interface

Boards requires that the Watchdog timers be reset with a trigger prior to expiry; otherwise the

power amplifiers are disabled, and no further motion is possible without resetting the power

system. Therefore, a Watchdog module is executed at startup to trigger these timers

periodically. If a system failure occurs, this module would be delayed and the timers would

Chapter 2. Hardware and Software Technologies 21

expire and cause a shutdown.

Originally the Reis Robobstar V15 came equipped with an Elan Motorola 68000

processor board running a simple control program burned on EPROMs (Erasable-Programable

Read Only Memory) running at 8MHz. In its stock form the Reis Robotstar V15 cannot provide

the high performance and sensor integration needed to fulfill its role as a research robot. To

upgrade the Reis Robotstar V15 to work with the DROID system, only the processor board was

replaced with a Xycom XVME-655 processor board, since the I/O boards provided by Reis

Machines are more than adequate for interfacing to the robot itself.

The Xycom XVME-655 Processor Board is a complete personal computer (PC) with

VMEbus addressing capabilities. Manufactured by Xycom Automation Inc., [23] it contains the

following:

-Intel Pentium MMX processor operating at 200MHz
-64MB of Extended Data-Out RAM
-IDE disk controller attached to a 4GB hard drive
-floppy controller
-PS-2 keyboard port, parallel, 2 serial ports
-XGA graphics adapter
-100TX capable Ethernet adapter
-Ultra-Wide SCSI adapter
-Tundra Universe II PCI-VME bridge chip.

The XVME-655 has all the capabilities of a desktop PC with the ability to access VME

peripheral cards. Hence any operating system designed for the PC could be used on the

VMEbus as long as device drivers are available for the Tundra Universe Chip [18].

2.4. The GM Fanuc S400

The GM Fanuc S-400 is a 6 revolute joint manipulator arm manufactured by Fanuc

Robotics Inc in the late 1980's for General Motors [24]. Its large size and extensive reach make

it an ideal robot for heavy assembly duty in very harsh industrial environments. The Fanuc S-

Chapter 2. Hardware and Software Technologies 22

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

400 has simple robot kinematics similar to the Reis Robotstar V15 with the exception of the

robot link lengths. Unlike the Reis Robotstar V15, the GM Fanuc S400 has a very proprietary

controller. Powered by a single Motorola 68000 8MHz processor, it performs adequate motion

control with the option of external communication via a RS-232 serial port. All aspects of high-

level controls are accomplished using Fanuc KAREL interpreted programs. Figure 2.6.

identifies the 6 links and revolute joints of the GM Fanuc S-400 robot arm manipulator.

Figure 2.6. The GM Fanuc S-400 robot arm manipulator

Due to the proprietary bus architecture of the Fanuc S-400 controller, extensive hardware

intervention is required to build an adequate interface to the DROID system. For Phase 1 of the

integration of the Fanuc S-400 to the DROID system, a less invasive interface was attempted.

Since the Fanuc S-400 is used primarily as a work-piece positioning system and not for welding,

only the position and orientation of the Wrist-Center-Point is required. Gross movement

commands can be sent to the Fanuc S-400 via the low bandwidth RS-232 interface. To access

the position of the Fanuc S-400, two 4-channel ISA quadrature encoder cards are used (CIO-

QUAD04, Computer Boards Inc. Middleboro, MA). They are attached to the encoder signals

Chapter 2. Hardware and Software Technologies 23

located on each joint controller. Figure 2.7. shows a photograph of the Computer Boards CIO-

QUAD04 Encoder Card. These cards are hosted on a separate computer which runs the QNX

4 real-time operating system and contains an Ethernet card which is in turn connected to the

Brain Computer via the Ethernet connection.

Figure 2.7. Computer Boards Quadrature Encoder 4 Channel Card (CIO-QUAD04)

The host computer for the GM Fanuc S-400 DROID System interface contains the

following equipment.

-Intel Celeron processor operating at 466MHz
-64MB of Extended Data-Out RAM
-IDE disk controller attached to a 4GB hard drive
-floppy controller
-PS-2 keyboard port, parallel, 2 serial ports
-XGA graphics adapter
-100TX capable Ethernet adapter
-2 CIO-QUAD04 Encoder Cards

This is a typical Intel x86 personal computer running the QNX 4 real-time operating

system, hence inexpensive hardware can be used to build the interface to the DROID system.

Chapter 2. Hardware and Software Technologies 24

2.5. The MVS Line Laser Sensor

The MVS Line Laser Sensor is a profiling system developed by MVS Inc. which casts

a laser line onto a surface and captures the reflected image using a CCD camera adjacent to the

line laser generator [25]. Connected to the laser/camera assembly is the ISA processor board

which processes the incoming image and filters it digitally to reveal the feature. Using host-

based software, further feature analysis can be accomplished.

The laser/camera assembly is an independent system. The laser is an infrared laser diode

equipped with a cylindrical lens which produces the line. The camera provides a 512X480 pixel

grayscale image which is refreshed at 30Hz and is RS-170 compliant.

Figure 2.8. The Laser/Camera assembly

The ISA processor board is a proprietary board designed by MVS Inc.; it is equipped

with an IMSA 100 RS-170 camera interface and memory. Unfortunately, the only working

device drivers which exist are for the Microsoft DOS 16-bit Operating System. Therefore, this

system will only function on an Intel x86 personal computer equipped with at least 2 ISA

expansion slots. Currently, the MVS host computer is an Intel 486 ISA-bus personal computer

with a 500MB IDE hard drive running MS-DOS 6.22. This computer is also equipped with a

Chapter 2. Hardware and Software Technologies 25

serial port via which the processed feature location is exported to the Brain Computer.

Figure 2.9. The ISA processor board

To determine the feature location such as the center of the seam to be welded, a host-

based program must be written to i) access the filtered image on the processor board, ii)

determine the feature location using statistical and numerical methods, and iii) to translate this

location into real world coordinates. This program is developed using both Microsoft Assembler

and Microsoft QuickBASIC 4.5. Assembler routines are used for high-speed low-level access

of the frame buffer while QuickBASIC routines are used for statistical computation and data

translation.

2.6. The Brain Computer

Like the brain in living systems, the Brain Computer acts as the main information

processing unit. It must interface to the numerous inputs (sensor units) and outputs (motor units)

of the DROID system. Once interfacing is established to the sensor and motor units, memory

caches are created to house the streams of data of each unit. These streams of data can then be

Chapter 2. Hardware and Software Technologies 26

processed to accomplish an autonomous coordinated task or maneuver. The actual equipment

which makes up the Brain Computer is as follows:

-Intel Pentium II processor operating at 333MHz
-64MB of SDRAM
-ATA-33 disk controller attached to a 5GB hard-drive
-PS-2 keyboard port, 1 parallel, 2 serial ports
-PCI XGA graphics adapter
-2 100TX capable Ethernet adapter
-1 Computer Boards CIO-DAS08 Data Acquisition Card
-1 Thrustmaster analog joystick

To interface to the sensor and motor units of the DROID system, a QNX network

interface is required. The Brain Computer runs the QNX 4 real-time operating system and is

equipped with a supported PCI 10/100Mbps Ethernet card. This allows the Brain Computer to

be connected to up to 255 units/nodes on the QNX Local Area Network. If more units/nodes

need to be attached, multiple Ethernet cards can be equipped on the Brain Computer to act as

a bridge to another QNX network.

To provide access via the Internet, an additional PCI 10/100Mbps Ethernet card is

equipped on the Brain Computer. Since the TCP/IP protocol is supported by QNX, socket-

based communication can be established with any machine on the Internet. Hence, the Brain

Computer can be considered as an Internet Gateway which can provide bi-directional access to

any sensor/motor unit in the DROID system from any Internet computer in the world.

To attach to legacy devices, the Brain Computer has 2 serial ports and a parallel port

which is a standard on conventional Intel x86 personal computers. QNX provides access to

these devices through its own device drivers and mounts these devices onto the file system.

Hence access to these ports can be achieved using simple file access methods.

Since certain devices do not come equipped with a serial/parallel/USB/Ethernet port,

interface analog voltages and TTL logic is supported on the Brain Computer using a Computer

Boards Data-Acquisition Board (CIO-DAS08, Computer Boards Inc.). This allows simple

devices such as welding controllers or simple work-piece positioning systems to be used in the

DROID system. A modified Thrustmaster analog joystick is currently attached to the DROID

Chapter 2. Hardware and Software Technologies 27

Button 1 Up

Down
Left

Right

Button 2
Button 3

Button 4
Y-Axis X-Axis

system using this data-acquisition board which provides 2 analog axis of control and 8 digital

input channels.

The Brain Computer also acts as a development machine and central repository of the

DROID system’s software. Hence it is equipped as a graphics terminal with multiple window

support provided by the Photon Windows Manager of QNX. To run the Photon Windows

Manager, a supported video graphics adapter is required. For actual code development, the

Brain Computer is equipped with a WATCOM C/C++ Compiler Version 11 (Waterloo, Ontario)

and a host of Unix ported development utilities such as GNU make, vi, emacs, cvs, etc.

Figure 2.10. Thrustmaster Analog Joystick

28

Chapter 3

System Architecture

This chapter focuses on the system design/architecture of the DROID system. It begins

with an overview of the DROID system. It then proceeds to explain the network protocol used

to establish communication between each subunit with the Brain Computer. This is followed

by a description of what a subunit must fulfill in order to connect to the Brain Computer. Lastly,

we discuss the task programs used to coordinate the various sensor subunits with the motor

subunits. This chapter’s objective is to give the reader an understanding of the DROID system’s

functionality. However, the actual implementation of the functions described is left for the next

chapter.

3.1. Overview

The paradigm of the Distributed Robot of Intelligent Devices (DROID) system is to have

a system architecture which can extend the robotic system for any given task while having the

complexity hidden. The addition or removal of robotic arms or sensors should be transparent

to the system integrator. In addition programming task programs should be simple due to the

abstraction of the underlying hardware.

To achieve this flexibility, we use "life" or "nature" as a model. Central to our system

is a "brain", which plays a supervisory role in our integrated system. Each "subunit", such as

Chapter 3. System Architecture 29

Coordinated
Task

Program

Robot 1
(Controller)

Robot 2
(Controller)

Robot 3
(Controller)

Sensor
Array 1

Sensor
Array 2

Propulsion
Unit

Central Intelligence
(Brain)

Robot 1

Status

Cmds

Remote
Interface

Robot 2

Status

Cmds

Remote
Interface

Robot 3

Status

Cmds

Remote
Interface

Propulsion
Unit

Status

Cmds

Remote
Interface

Sensor 1

Sensor
Data

Remote
Interface

Sensor 2

Sensor
Data

Remote
Interface

Operating System Ethernet Layer

Shared Memory
Database

the robotic arm, sensor or propulsion unit is connected to the Brain Computer using a high speed

interconnect, in this case, 10Mbps Ethernet. In order for a "subunit" to be made available to the

Brain Computer, it must be able to communicate in a standard method. It is through this

standard communication method that status and command data are related from subunit to the

Brain Computer. These status and command data are held in a database on the Brain Computer

and are refreshed at a fixed clock rate governed by the "heartbeat". Therefore, a task program

need only deal with accessing the database on the Brain Computer in order to perform a

coordinated task between multiple robots and sensors.

Figure 3.1. Overview of DROID

Chapter 3. System Architecture 30

3.2. Network Architecture and Communications Protocol

Subunits, are defined as autonomous entities which process and provide data to the Brain

Computer. Robotic arm subunits process data by receiving command data and executing some

movement while providing positional data. Sensory subunits interpret sensor data and can

provide target information to the Brain Computer. Depending on the functional class of the

subunit, a class specific database will be created for that subunit. This database of known

subunits is created at the start of execution of the initialization software resident on the Brain

Computer. In order for a subunit to be connected to the database it must identify itself using

a unique identifier or name which is placed in the system's name space. Ideally, a subunit should

be powered and identified prior to starting the initialization software. Each subunit has a

corresponding remote client which resides on the Brain Computer. It is this client which

searches the name space for the subunit's server, establishes a "Message Passing Conduit" and

refreshes the Brain Computer’s subunit database.

The initialization software begins execution by building the appropriate database of

subunits for a given set of tasks. It then executes each remote subunit client needed to maintain

each subunit’s database. Next, it executes a synchronization program known as the "heartbeat"

program.

The "heartbeat" program is a fixed timer tied to the computer's real-time clock generating

a synchronization event at a rate of 60 Hz. The "heartbeat" program is in fact a server which

registers its own unique identifier in the system's name space. In order for remote subunit clients

to refresh the databases in a synchronized manner, it must first search the name space for the

heartbeat. It then connects to the "heartbeat" server and provides it with its Program ID. This

also sets up a "Message Passing Conduit" and upon each synchronization event a message is sent

to each client notifying it that a 60Hz cycle has begun. At the start of each new cycle, command

data is sent to each subunit, and each subunit replies with its status data. For example, cartesian

commands are sent to a robot arm, and the robot arm will reply with its encoder positions. This

send and reply method guarantees that a connection is established throughout message passing

since the reply acts as an acknowledgment.

Chapter 3. System Architecture 31

Subunit
Shared Memory

Datatbase

Brain Computer

Subunit’s Computer

Subunit
Remote Client

Subunit
Server

Message Passing
Conduit

(via Ethernet)

Figure 3.2. The three elements of a subunit

Chapter 3. System Architecture 32

Brain ComputerSubunit’s Computer

Reply

Send

Subunit
Remote Client

Subunit
Server

Command
Message

Status
Message

Message Passing
Conduit

(via Ethernet)

Figure 3.3. Message Passing for a robot subunit

3.3. Subunit Interfaces

Each class of subunit has a unique interface with which to communicate with the Brain

Computer through. This section will describe in detail, the standard interface for a robot arm

class with six revolute joints and a line laser sensor. Due to our example task program,

Autonomous Multiple Robotic Welding, the only database classes available at this time are the

standard 6 revolute joint robotic arm manipulator and the line laser tracking sensor.

Most industrial robot arm manipulators follow a common kinematic model. In our

application, both the Reis Robotstar V15 and the GM Fanuc S400 share the same kinematic

model, however the length of each link is different. Figure 3.4. compares the Reis Robotstar

V15 and the GM Fanuc S400; they each have 6 revolute joints and 6 links. In addition the final

3 joints share a coincident origin at the wrist center.

Chapter 3. System Architecture 33

725mm

540mm

60
0m

m

J1

J2

J3 J4 J5 J6

Reis Robotstar V15

540mm

60
0m

m

J6J5J4J3

J2

J1

725mm

Figure 3.4. Comparison of Reis Robotstar V15 to GM Fanuc S400

For this class of robot manipulator two databases are generated for each subunit. They

are known as the "Status shared memory Area" and the "Command shared memory area".

Shared memory refers to the POSIX 1003.1 implementation of the Shared Memory Inter-Process

Communication method found on most implementations of UNIX including QNX 4, SUN

Microsystems Solaris and Linux. In this implementation, a memory area is created and made

globally accessible to the operating system through an operating system call. Exclusive access

to this is granted to the program which has ownership of the semaphore (signaling event).

Programs use an operating system call to place the execution of the program in a sleep state (no

CPU usage) until the semaphore is available. The semaphore is incremented upon acquisition

and decremented upon release. The arbitration of which program has access to the semaphore

is priority based. Therefore, programs using a shared memory resource should have the same

Chapter 3. System Architecture 34

priority to avoid locking of the database due to preemption of the lower priority program.

Table 3.1. lists the fields in the status structure. In general, status information is retained

in this database such as current cartesian position of the robot's Wrist-Center-Point (WCP) and

the rotation matrix associated with the pose of this point. In addition, the 6 current joint encoder

positions and the previous commanded encoder positions are retained in memory. By

maintaining the previous commanded encoder positions we can track the target encoder position

without accessing another shared memory area which would require waiting for another

semaphore. Also, this database contains a busy signal, which tracks how many heartbeat counts

are necessary to complete the current encoder position command. Therefore, position commands

can be queued until the current command is completed. There is also a home status which

indicates whether the robot's encoders have been zerod correctly (homed).

Table 3.2. lists the fields in the command structure. In general, command information

is retained in this database. In order for robot arm manipulators to be commanded properly

using

the Brain Computer, each robot must maintain their respective database using the following

protocol. Command of the robot is governed by two status fields in the database refered to as

the COMMAND mode and the COORDINATE mode.

Upon creation of the robot command structure, the COMMAND mode is placed in JOG

mode while the COORDINATE mode is placed in JOINT mode. Since the robot has initially not

been homed, only relative encoder commands can be made to jog the robot into the approximate

home position or into a safe position prior to homing. Once homing is initiated, the robot's

command mode is placed in HOME mode until it has completed its homing procedure at which

point its command mode becomes NORMAL and the status HOME field becomes HOMED.

At this point of operation, either JOINT mode commands or CARTESIAN mode commands can

be made. A JOINT mode command comprises 6 encoder position commands along with the

number of heartbeat counts needed to complete it. A CARTESIAN mode command comprises

of a x, y, z positions in millimeters and the rotation matrix of the wrist-center-point relative to

a global reference frame and the number of heartbeat counts required to complete the command.

Chapter 3. System Architecture 35

Table 3.1. The Status shared memory interface

Field Name Description

x Cartesian x distance wrt Global Ref. Frame [mm]

y Cartesian y distance wrt Global Ref. Frame [mm]

z Cartesian z distance wrt Global Ref. Frame [mm]

R 3X3 Rotation Matrix wrt Global Ref. Frame

encoder_pos 6 joint encoder positions wrt to home [signed encoder counts]

encoder_cmd current 6 joint encoder cmds wrt to home [signed encoder

counts]

busy “heartbeat” counts left for current command

homed status flag either HOMED or FALSE

Table 3.2. The Command shared memory interface

Field Name Description

x Cartesian x distance wrt Global Ref. Frame [mm]

y Cartesian y distance wrt Global Ref. Frame [mm]

z Cartesian z distance wrt Global Ref. Frame [mm]

R 3X3 Rotation Matrix wrt Global Ref. Frame

cart_time_count “heartbeat” counts for current cartesian command

encoder_pos 6 joint encoder cmds wrt to home [signed encoder counts]

joint_time_count “heartbeat” counts for current joint command

coord coordinate system: CARTSPACE or JSPACE

cmd_mode command mode: OFF, HOME_MODE, JOG_MODE

sent status flag: TRUE or FALSE

Chapter 3. System Architecture 36

These definitions are kept in a common header file which is included in each accessing

program. Also contained in the header file is the shared memory identifier. To access these

memory areas, a program uses an operating system call along with the shared memory identifier

to obtain the handle to the shared memory. It is then memory mapped into the program's

memory space and accessed as a typical data structure; however, the semaphore must be waited

on prior to access.

In general, sensor arrays provide targeting information to a system in order to update its

position. Ideally they should operate autonomously in a continuous manner, constantly sensing

the environment and relating the freshest data when requested; in other words, they should act

as a server. In the case of the MVS Line Laser Sensor, the seam feature’s location and surface

orientation in sensor reference frame coordinates is required . These coordinates and orientation

are then passed at the heartbeat rate to the Brain Computer. Therefore, only the transformation

matrix is required by the brain to use the sensor. Table 3.3. lists the fields of the sensor's Status

shared memory. It is very similar to the Status shared memory database of the robot arm

manipulator except that an invalid flag is used to identify erroneous data.

Table 3.3. The Sensor status shared memory interface

Field Name Description

x Cartesian x distance wrt Global Ref. Frame [mm]

y Cartesian y distance wrt Global Ref. Frame [mm]

z Cartesian z distance wrt Global Ref. Frame [mm]

R 3X3 Rotation Matrix wrt Global Ref. Frame

encoder_pos not used

encoder_cmd not used

busy not used

homed used as an invalid flag for sensor data

3.4. Task Programs

Chapter 3. System Architecture 37

A "Task program" is simply any program which can fulfill a task using the DROID

system. These can take the form of simple move commands or they can be as complex as

multiple robotic coordination programs such as the Seam Tracking program. In its essence, a

"Task program" does the following: i) sets up shared memory access to the required subunit

databases, ii) reads these databases and iii) modifies the command databases of the subunit to

be commanded. If synchronization is required, the task program itself can search for the

heartbeat and request for a Message Passing Conduit to be set up to achieve global

synchronization.

The following utility task programs have been written and can be executed on any robot

attached to the Brain Computer. These programs have been written using a UNIX style. This

means that each program is very small, self-contained and provides a very specific function

which can be controlled using runtime-parameters. Since the programs are written in this

manner, they can be used in UNIX-style script files and executed very much like an interpreted

language program. Thus a very flexible programming language can be built up from these small

task programs.

The Joystick program, is a generic robot program which is used to command robot

movement in Joint mode or Cartesian mode using an analog joystick. The robot identifier must

be specified as a run-time argument to select which robot can be commanded. Use of the

Joystick program is not only limited after the homing routine, but is available prior to homing

in the event the robot must be moved to a safe location prior to homing.

The Home program is a generic robot program which initiates the homing routine by

changing the Command Mode to the HOME value. Once the home signal has been sent to the

robot, the robot takes care of the homing itself with no further control from the Home program.

The robot identifier must be specified as a run-time argument to select which robot is to be

homed.

The Move program is a generic robot program which commands movement to the robot

in a specified time. At run-time, the move command accepts a robot identifier, a command

mode, six position commands based on the command mode, and the time in seconds to complete

Chapter 3. System Architecture 38

the move. Once the move command is initiated, it checks to see whether the robot is available

for a move command via the Busy field in the status memory database. It then waits until the

previous move is completed before writing to the command memory area. Joint mode

commands require six encoder count values relative to the zero or home position, while cartesian

mode commands require an x, y, and z position as well as the relative roll, pitch, roll angles of

the final 3 joints (in degrees) to give the required wrist center point position and pose relative

to the global reference frame. The Move program provides a very rich interface with which to

build very elaborate move scripts very similar to machining applications.

The Snoop program is a generic program used to view database information

continuously. At this point, it accepts a subunit identifier and echos all status information at a

rate of 1Hz via the Standard Output port. There is no reason that it must be limited to only the

standard console. It is possible to route this output to a Graphical User Interface or through a

TCP/IP network port to be visualized on a remote station or a web page.

39

Chapter 4.

Generic Motion Control

This chapter focuses on one of the main aspects of the DROID system: the ability to

control the motion of a robot subunit. The chapter begins with an explanation of the design of

the generic motion algorithm with respect to the implementation on the Reis Robotstar V15, the

prototype robot subunit. The implementation on a GM Fanuc S400 robot will also be described

but is considered a slight variation of the Reis Robotstar V15's motion controller. The objective

of this chapter is to give the reader enough background information necessary to implement the

algorithm on any given robot subunit. It is in theory possible to implement any robot to be used

on the DROID system.

4.1. Prototype Implementation, the Reis Robotstar V15

4.1.1. Robot Mechanics and Kinematics

Before we can begin to design a motion controller for the Reis Robotstar V15, the

mechanics of motion must be understood. This involves determining the robot’s forward

kinematics, the inverse kinematic solution as well as encoder gearings and inter-relationships

among joints and calibration values.

Chapter 4. Generic Motion Control 40

725mm

540mm

60
0m

m

4.1.1.1. Robot Forward Kinematics

The Reis Robotstar V15 is a 6 revolute joint robot which provides 6 degrees of freedom,

hence any position and wrist orientation can be performed by this robot provided that this point

and orientation can be reached physically. Figure 4.1. illustrates the link and joint relations of

the Reis Robotstar V15.

Although the motion controller doesn’t necessarily require that the current cartesian

position and orientation be known, it is useful for monitoring the progress of a cartesian move

command. The current cartesian position and orientation of the wrist center can be determined

using the forward kinematics of the Reis Robotstar V15. Using the Denavitt-Hartenberg [27],

[28] convention, we assign reference frames to the robot in the home configuration and

determine the link parameters. Figure 4.2. illustrates the reference frames assigned to the robot

while Table 4.1. shows the link table for the robot.

Figure 4.1. Reis Robotstar V15 Geometry

To determine the wrist position and orientation with respect to the world reference frame we

perform a series of transformations. Equation 4.1. shows each transformation matrix for each

revolute joint. Using the link table, we can determine the 6 local transformation matrices for

each joint.

Chapter 4. Generic Motion Control 41

X

x

x

x

x

Y

y

y

y

y

y

Z

z

z

z
z

z

2

4

6

5

3

0

2

4

6

5

3

0

2

4

6

5

3

x

y
z

1

1

1

Figure 4.2. Reference Frame Assignment based on D-H convention

Table 4.1. Link Table for D-H convention

Link Joint

Variable

Angle

θn

Displacement

dn

Length

ln

Twist

αn

1 θ1 θ1 725mm 0 +90o

2 θ2 θ2+90o 0 600mm 0o

3 θ3 θ3 0 0 +90o

4 θ4 θ4 540mm 0 -90o

5 θ5 θ5 0 0 +90o

6 θ6 θ6 0 0 0o

Chapter 4. Generic Motion Control 42

1
2

1

1

1

0 0
0 0

0 1 0
0 0 0 1

A
d

=
−



















1

1

cos sin
sin cos

θ θ
θ θ

4
5

4 4

4 4

4

0 0
0 0

0 1 0
0 0 0 1

A
l

=
−

−



















cos sin
sin cos

θ θ
θ θ

3
4

3 3

3 3

0 0
0 0

0 1 0 0
0 0 0 1

A =
−



















cos sin
sin cos

θ θ
θ θ

5
6

5 5

5 5

0 0
0 0

0 1 0 0
0 0 0 1

A =
−



















cos sin
sin cos

θ θ
θ θ

6

6 6

6 6

0 0
0 0

0 0 1 0
0 0 0 1

Awcp =

−

















cos sin
sin cos

θ θ
θ θ

2
3

2 2 2 2

2 2 2 2

0
0

0 0 1 0
0 0 0 1

A

l
l

=

− − −
−



















sin cos sin
cos sin cos

θ θ θ
θ θ θ

A) Joint 1 A Matrix B) Joint 2 A Matrix

C) Joint 3 A Matrix D) Joint 4 A Matrix

E)

Joint 5 A Matrix F) Joint 6 A Matrix

(4.1.)

From Figure 4.2. 0A1 is an arbitrary matrix that defines the World Frame (Frame 0) with respect

to the robot’s base frame (Frame 1). Multiplying the above 6 matrices with 0A1 yields the wrist

center position and rotation matrix (WCP) with respect to the world frame.

0Twcp = 0A1 1A2 2A3 3A4 4A5 5A6 6Awcp (4.2.)

Chapter 4. Generic Motion Control 43

X

Y

Z 1 1

1

1

1

1

Angle 1
Lin

k 2
’

Lin
k 3

’

XY

Z

Link 1

Lin
k 2

Link 3

4.1.1.2. The Inverse Kinematic Solution

In order to convert cartesian positions and orientations to joint angles, the inverse

kinematic solution for the robot must be solved. The robot kinematics of the Reis Robotstar V15

allow for a geometric approach to solving the inverse kinematics of the robot. Since all 6

revolute joints share a common plane and the fact that the last 3 joints are located at the wrist

center, we can solve for position by isolating the first 3 joints. Figure 4.3. Illustrates the

geometric solution for determining angles 1, 2, 3 from trigonometry. Angle 1 is determined

simply by using the arctan function for the x and y position. Using the z position and the

projection of links 2 and 3 on the xy plane we can determine the distance from the origin to the

wrist center point. We can then determine angles 2 and 3 using the cosine law on the triangle

formed by links 2, 3 and the distance from the origin to the wrist-center point.

Figure 4.3. Geometric solution for angles 1,2,3 based on position only

Notice that it is possible to have 2 different solutions at this point for angles 2 and 3 depending

on the configuration of the elbow (above or below the horizontal through the WCP). In general,

all solutions should be found and the closest solution to the current joint configuration will be

Chapter 4. Generic Motion Control 44

selected.

To determine the final 3 joint angles so as to arrive at the desired wrist orientation,

matrix methods are used. The wrist configuration of the Reis Robotstar V15 consists of a roll

axis (Z) revolute joint followed by a pitch axis (Y) joint followed by a roll-axis joint (Z). This

corresponds to the Euler ZYZ matrix shown in Equation 4.2. where alpha, beta and gamma

correspond to joint angles 4,5 and 6 in radians respectively [27].

R
c c c s s c c s s c c s
s c c c s s c s c c s s

s c s s c
Z Y Z' ' ' (, ,)α β γ

α β γ α γ α β γ α γ α β
α β γ α γ α β γ α γ α β

β γ β γ β
=

 − − −
 + − +

−

















(4.2.)

This matrix can be considered as the transformation from the local reference frame situated at

joint 4 to the desired orientation of the wrist-center (4Twcp). Using the forward kinematics

developed in section 4.1.1.1., we can substitute angles 1, 2, and 3 into the kinematic chain to

determine the transformation from the origin to frame 4 (see Equation 4.3). Hence the wrist-

center transformation (0Twcp) can be determined by multiplying 0T4 to 4Twcp.

0T4 = 0T1 1T2 2T3 3T4 (4.3.)
0Twcp = 0T4 4Twcp (4.4.)
4Twcp = (0T4)-1 0Twcp (4.5.)

Therefore angles 4,5 and 6 can be determined by comparing the resultant matrix of Equation 4.5.

By inspection, alpha, beta, and gamma can be easily solved using inverse trigonometry,

however this leads to multiple solutions.
4Twcp = R z’y’z’(α, β, γ) (4.6)

β = acos -1(4Twcp(3,3)) (4.7.)

Chapter 4. Generic Motion Control 45

α = acos -1(4Twcp(1,3))/sin(β) (4.8.)

γ = asin -1(4Twcp(3,2))/sin(β) (4.9.)

For each possible alpha angle, we can determine the corresponding beta and gamma. In total

there are 8 possible solutions for the inverse kinematics, however, due to workspace limits, not

all are accessible. Therefore, we determine all solutions and eliminate those that are not

reachable, we then choose the closest solution in terms of joint space movements. The method

for determining the closest solution is explained in detail in Section 4.1.7.

4.1.1.3. Encoder Gearing and Interconnectivity

Once the joint angles for a given cartesian move are determined by the inverse kinematic

solution, we must determine the number of equivalent encoder counts. To convert radians into

encoder counts we must have specific knowledge of the gear reduction ratios from the harmonic

drives to the joint. The Reis Robotstar V15 uses harmonic drive motors which are reduced by

a factor of 100 to drive each joint. According to the Reis Robotstar V15's literature [22], the

harmonic drives are equipped with differential encoders such that one revolution requires 4000

counts. Hence the final ratio of degrees to encoder counts is calculated using Equation 4.10.

radians to encoders = 1000*4000/360 (4.10.)

The Reis Robotstar V15 uses a servo motor placement system which couples certain

joints together. Joint 2 and joint 3 are coupled such that for every 100 encoder counts of joint

3, one encoder count must be added to joint 2. As well for every 100 encoder counts of joint

2, one encoder count must be added for joint 3. Joint 4 and joint 5 are coupled such that for

every 100 encoder counts of joint 4, one encoder count must be subtracted to joint 5. As well

for every 100 encoder counts of joint 5, one encoder count must be subtracted for joint 4.

 j2 = j2_angle *(radians to encoders) + j3/100 (4.11.)

Chapter 4. Generic Motion Control 46

 j3 = j3_angle *(radians to encoders) + j2/100 (4.12.)

 j4 = -j4_angle *(radians to encoders) + j5/100 (4.13.)

j5 = j5_ang *(radians to encoders) - j4/100 (4.14.)

4.1.1.4. Optical Calibration Procedure

In most robot applications, the home position of the robot is determined using a

reference fixture. Once this position is determined, the encoder values are stored and referred

to each time the robot needs to return to its home position. This is a fairly straight forward

system if the robot is relatively small, however, as the robots get larger, so do the fixtures.

An alternative to this fixture method is to use an optical method of calibration which

uses a structured light beam to determine the accuracy of a given set of calibration values. The

structured light beam, an LED laser, is placed in the center of the tool face of the robot and a

sequence of moves and measurements are performed to determine the accuracy of the gearing

ratios and the home offsets from the limit switch positions of each joint.

We begin by placing the robot in a pose close to the home position and mark the position

of the projected laser point on a screen. To ensure that the laser is centered correctly within the

fixture, joint 6 is rotated and the projected point is checked for coincidence. Joint 4 is rotated,

if joint 5 is at the correct home position, the laser should remain at the same point. Otherwise

joint 5's calibration point is adjusted until it is correct. Following this, joint 3 is rotated and the

line it produces on the screen is traced. Joint 5 is then rotated, if joint 4 is at the correct home

position, these lines should be coincident. Otherwise joint 4's calibration position is adjusted.

Next, the robot is moved such all links point straight up. Rotating joint 1 and joint 4 should

produce a single dot, otherwise, joint 2's calibration point is adjusted along with joint 3's 90o

position. Our final check involves drawing a circle with a radius of Link 3 on the floor. The

robot is moved to its new perceived home position and joint 5 is rotated 90o to the floor. Joint

1 is rotated, if joints 2 and 3 are calibrated correctly, the circle should have a diameter of

1080mm.

Chapter 4. Generic Motion Control 47

540mm

Adjust
Joint 5

Adjust
Joint 3

Adjust
Joint 3

Adjust
Joint 2

Adjust
Joint 2

Check 1
Joint 5Calibration

of Joint 5

Calibration
of Joint 2 & 3

Calibration
of Joint 2 & 3

Calibration
of Joint 4

Check
Joint 4

Check
Joint 1

Check
Joint 1

Adjust
Joint 4

From the above procedure, it can be seen that the calibrated values for joint 1 and 6 are

arbitrary. In our implementation, joint 6 is calibrated using an inclinometer, while the zero

position for joint 1 lies at the center of its workspace. Although the above procedure can be

quite tedious, it allows a fixture-less method to be used for calibration requiring only an

inexpensive LED laser and a ruler. Since most robots share the same kinematics with the Reis

Robotstar V15, this calibration method can be extended to them as well.

Figure 4.4. Optical Calibration

Chapter 4. Generic Motion Control 48

4.1.2. Robot Hardware Interfacing

The Reis Robotstar V15 is equipped with 2 interface expansion cards. These interface

expansion cards allow robot devices to be mapped into the memory of the VMEbus. These robot

devices include i) 6 16-bit encoder counters, ii) 6 12-bit digital to analog converters attached

to each servo amplifier, iii) 6 joint limit switches, and iv) 2 Watchdog timers.

Each joint is equipped with a differential quadrature encoder which increments or

decrements a 16 bit counter upon rotation. Upon power up, these counters contain an arbitrary

value, however any write to this memory location will reset the encoder counter to 0. This

feature is not always available for other robots, hence it is not exploited in the generic motion

controller.

Each joint is driven using a servo motor and a harmonic drive with a ratio of 100:1. This

servo is driven with a DC voltage provided by a servo amplifier. The input voltage is supplied

to the servo amplifier by a signed 12 bit digital to analog converter (DAC).

For each joint, a limit switch is installed in a known rotational location. Its primary

function is to serve as an aid in calibration of the robot’s home position. This limit switch is

connected to a digital input line.

In the event that the interface expansion cards are disconnected from the VMEbus, a

timer will elapse and shutdown the servo-amplifier’s power supply. This will latch a system

fault which can only be reset by powering down the entire Reis Robotstar V15's controller.

These timers must be written to at a constant rate to ensure continuous operation of the

controller. Each timer register is connected to a 16-bit digital output port.

The Reis Robotstar V15 is equipped with a VMEbus passive backplane which all

expansion cards are attached to. Since the VMEbus adopts the Motorola standard of mapping

devices into the physical memory space, all devices connected to the 2 interface expansion cards

(such as the devices mentioned earlier) can be directly accessed using conventional memory read

and write routines.

Chapter 4. Generic Motion Control 49

4.1.3 Software Design

The main purpose of the Generic Motion Controller is to provide a universal motion

control interface to the Brain Computer for any given robot or motion device. It was originally

developed on the Reis Robotstar V15 as a high performance replacement motion controller for

the original controller which was shipped with the robot in the late 1980's. Due to the Reis

Robotstar V15's VMEBus architecture, upgrading the motion controller was possible without

extensive hardware intervention. Using modern processors and the QNX 4 realtime operating

system, a truly flexible and extremely modular approach to software motion control was taken.

To achieve this degree of modularity and flexibility a centralized database is used to store

command and status data much like the shared database of the Brain Computer. However,

additional information is required to achieve low-level control. This data-centric architecture

allows every aspect of motion control to be achieved independently by small program modules

with a standard interface to the central database. Hence, kinematic models, device drivers, servo

controllers, and subunit servers can be added, updated or removed to suit any robot hardware

requirements. The generic motion controller implementation for the Reis Robotstar V15

represents the superset of generic motion control software. This is due to the ability to gain very

low-level access to the robot hardware via the VMEBus. Hence, its motion control software

is used as a standard implementation for a 6 revolute joint robot arm manipulator.

Similar to the shared memory of the Brain Computer, the motion controller computer

"arm1" also retains two shared memory areas corresponding to the status and command

information of the robot. In addition, access to this shared memory is achieved in the identical

manner as that described in Section 3.3 for the Brain Computer.

 Table 4.2. lists the fields in the Status shared memory structure. In comparison to the

Status shared memory structure residing on the Brain Computer, the Status shared memory

structure residing on the “arm1" computer is identical. Table 4.3. lists the fields in the

Command shared memory structure. In comparison to the Command shared memory structure

residing on the Brain Computer, there are two sets of encoder command fields called external

encoder and internal encoder. These encoder command sets refer to a gross Joint Mode

Chapter 4. Generic Motion Control 50

xvme.lib
Tundra

Device Driver

servo.c
Servo
500Hz

planner.c
Planner

60Hz

servo_agent.c
Servo Agent

reis_remote.c
Remote Agent

joy.c
Joystick

Interface

movereis.c
Command
Interface

reis_agent.c
I/O Agent

File

Message
Passing

Message
Passing

Message
Passing

Shared Memory
Area

Shared Memory
Area

Commands Status

Reis
Area

Central Intelligence
(Brain)

Reis Robotstar V15
MotionController

Ethernet

VMEbus

Other
Units

Command and a Joint-Space interpolated way-point generated from the Planner program

module.

Figure 4.5. Datagram of the Reis motion controller

Chapter 4. Generic Motion Control 51

Table 4.2. The Status shared memory interface of the motion controller

Field Name Description

x Cartesian x distance wrt Global Ref. Frame [mm]

y Cartesian y distance wrt Global Ref. Frame [mm]

z Cartesian z distance wrt Global Ref. Frame [mm]

R 3X3 Rotation Matrix wrt Global Ref. Frame

encoder_pos 6 joint encoder positions wrt to home [signed encoder counts]

encoder_cmd current 6 joint encoder cmds wrt to home [signed encoder

counts]

busy “heartbeat” counts left for current command

homed status flag either HOMED or FALSE

Table 4.3. The Command shared memory interface of the motion controller

Field Name Description

x Cartesian x distance wrt Global Ref. Frame [mm]

y Cartesian y distance wrt Global Ref. Frame [mm]

z Cartesian z distance wrt Global Ref. Frame [mm]

R 3X3 Rotation Matrix wrt Global Ref. Frame

cart_time_count “heartbeat” counts for current cartesian command

encoder_cmd_ext 6 joint encoder cmds wrt to home [signed encoder counts], external

joint_time_count “heartbeat” counts for current joint command

encoder_cmd_int 6 joint encoder cmds wrt to home [signed encoder counts], internal

coord coordinate system: CARTSPACE or JSPACE

cmd_mode command mode: OFF, HOME_MODE, JOG_MODE

Chapter 4. Generic Motion Control 52

4.1.4. Functionality

Figure 4.6. illustrates the general operation of the Generic Motion Control software

implementation for the Reis Robotstar V15. This software acts as an embedded robot controller

which requires very little user intervention. Upon powering on the Reis Robotstar V15's

controller chassis, the VMEbus processor board is booted. QNX 4.25 is boot-strapped and

begins to load the necessary device drivers which include i) video/console drivers, ii) network

adapter drivers, iii) network protocols iv) serial communication drivers v) and VMEBus drivers.

A safety feature of the Reis Robotstar V15 and most conventional robot arm

manipulators is the existence of Watchdog timers. Watchdog timers must be written to at a

given interval to ensure that the processor board is still attached to the VMEbus. If

disconnection of the processor module occurs these timers are not written too, hence control is

lost and the control shuts down its servo motors and logs a fault. Hence a Watchdog program

is executed following the device driver loading to ensure continuous operation of the motion

control software.

Once access to the VMEbus is possible and the Watchdog timers are maintained, the

Servo program module is executed. At this point, the operator can safely enable the servo

motors without having unwanted motion. The Servo program module executes its Proportional-

Integral-Derivative (PID) discrete control law at an independent operating frequency of 500Hz

and waits for HOME signal from the Brain Computer.

Following the Servo Program’s execution is the creation of the Status and Command

shared memory structures. These structures are initialized with safe values so that unwanted

sudden motion is eliminated.

Once the shared memory structures are available, the Servo Agent program module is

executed. Since the Servo program module maintains constant control of the servo motors at

an independent rate of 500Hz, interruptions cannot be tolerated. In addition, direct access to the

shared memory area could lead to lock-ups as other programs may preempt the Servo program.

Hence the Servo Agent is used to access the shared memory structures on behalf of the Servo

program.

Chapter 4. Generic Motion Control 53

The Subunit Server program module is then executed. It refreshes the Command shared

memory structure with the Command shared memory structure data on the Brain Computer and

simultaneously sends the contents of the Status shared memory structure to the Brain Computer

at the “heartbeat” frequency (60Hz). Finally, the Planner program module is executed but it

suspends its execution until the robot has been homed.

Once the HOME signal has been received by the Servo program module it begins its

Homing procedure which consists of sequentially moving each joint through its range looking

for a limit switch at a known encoder position. After all switches have been located, the HOME

status is changed to NORMAL.

At this point of operation either Joint Mode commands or Cartesian Mode commands

can be sent to the motion controller. Based on the Command Mode, the Planner Program

module will read the given command and convert it into a series of interpolated way-points. The

next way point is placed in the internal encoder command field of the Command shared memory

structure. In addition, the remaining “heartbeat” counts for the current gross move command

is updated.

The Servo Agent program module then reads the internal encoder command fields and

simultaneously updates the current encoder positions of the Status shared memory structure.

The internal encoder commands are passed to the Servo program module.

Once the Servo program module receives the internal encoder commands it executes its

Joint Level Planner subroutine. The Joint Level Planner subroutine executes at the “heartbeat”

frequency subdividing the command into 8 Joint-Space way-points (500Hz/60Hz . 8) and

places these way-points into a position queue. Depending on the circumstances, different

position queues or velocity profiles are fed to the Servo Controller routine. For example, in the

event of a sudden stop, a “braking” velocity profile is used to ensure that the servo motor gears

are not damaged.

The Servo Controller routine uses its discrete PID control law to compute the required

control action for each servo motor. This control action is then scaled to a value which can be

written into a DAC which is attached to the servo motor hardware. These DACs and encoder

counters can be accessed from function calls via the VMEbus device driver.

Chapter 4. Generic Motion Control 54

Execute
Startup Script

HOME

Cartesian
CMD

JOINT
CMD

Execute
Watchdog
Program

1

2

3

4

5

6
Execute
Planner
Program

Execute
Subunit Server

Program

Execute
Servo Agent

Program

Execute
Servo Controller

Program

Create
Shared Memory

Areas

Power
ON

Boot
OS-Kernel

Load Device
Drivers

Execute
Homing
Routine

Planner
Converts to
Joint Space

Planner
Generates
Waypoints

Each Waypoint
sent to

Servo Controller

Robot
Moves

Waiting for
MOVE CMD

HOME CMD sent to
Servo Controller

JOG CMD sent to
Servo Controller

Waiting for
HOME CMD

JOG CMD

This entire motion control system acts as a state machine. All that is required to perform

a move command is to change the respective command fields in the Command shared memory

structure. The rest is taken care of by the Generic Motion Control programs.

Figure 4.6. Flowchart of Motion Controller Operation

Chapter 4. Generic Motion Control 55

4.1.5. The Servo Program

The Servo program performs the low-level functions required to maintain control of the

Reis Robotstar V15's 6 joints. Operating at a rate of 500Hz, it is the primary control unit of our

generic motion controller. The Servo program itself is composed of an initialization phase

followed by a main control loop in which 3 major functions are executed based on the state of

the motion controller. Figure 4.7. illustrates the execution flow of the Servo program. The 3

major functions include i) the Servo function which is a discrete implementation of a 6 channel

Proportional-Integral-Derivative Controller (PID), ii) the servo_planner function which feeds

encoder commands to the Servo function via a command queue and iii) the Home function

which executes a homing routine to determine the zero position of each joint.

The Servo program begins with the registration of the Servo program name into the

system’s name space. This allows other programs to communicate with the servo program via

a Message Passing Conduit. Message Passing is more suited for the servo program so as to

avoid a lock up if it were to access a shared memory area instead.

Following name registration, we setup a 500Hz rate generator to trigger a signal every

2ms using the set_timer function. Next we enter the main execution loop which puts the

processor in a wait state until a message is received. If the message received is a triggered signal

from the rate generator, it executes the Servo function in conjunction with the homing routine

based on the home status flag, otherwise, it checks if it is a command packet which will then

execute the servo_planner function. The command packet contains high-level joint or cartesian

commands which are sent at a rate of 60Hz from the servo_agent program. Since the command

and the low-level control rate are different, a position command queue is required to separate

the command packet into 8 interpolated movements which will then be executed by the Servo

routine at the 500Hz rate. The majority of the code in the Servo program deals mainly with

writing appropriate values into this position command queue or in support of it.

Chapter 4. Generic Motion Control 56

True

True

True

True

False

Start

Set-up the Timer
To Trigger at

500Hz

Wait for a
Message to be

Received

Execute
Home

Function

Execute
Servo

Function
Execute

Servo Planner
Function

Write
PID

Gain Values

Register the
Servo Program

for Message Passing

Timer
Message

Servo
Command
Message

Tuning
Command
Message

Home Flag
and

Not Homed

False

False

False

Figure 4.7. Flowchart of the Servo program

4.1.5.1. The Servo Routine

The low-level access to the robot hardware is performed by the Servo function. In order

to read the joint encoder values, limit switch status’ and to drive the servo motors, read/writes

Chapter 4. Generic Motion Control 57

must be performed on the memory addresses of the VMEbus. These read and writes are

performed by calling compiled device driver functions provided by the VMEbus hardware

manufacturer and including them with the Servo program.

The Servo function begins with the reading of the joint encoder counters via the device

driver functions; these 16-bit values are then checked for encoder roll-over and converted into

a 32-bit signed integer. Next, the target encoder positions are computed based on the home flag.

The homed situation computes the target values by obtaining the relative-from-home orientation

encoder commands from the position command queue and adding it to the calibrated zero

encoder position. The non-homed situation copies the relative encoder commands to the target

values. These target values are then checked against a set of maximums and minimums before

the position command queue counter is decremented.

In fact there are two position command queues, one which is accessed directly by the

servo function, while the other holds the next 8 positions to be commanded. This second queue

is referred to as the position command queue cache. Upon decrementing the position command

queue counter to zero, the servo function copies the contents of the queue cache to the queue

and resets the counter to 8. However, if there is no data available in the cache, an emergency

braking procedure is loaded into the position command queue instead and executed.

Once the target data is available, a discrete PID controller is implemented using the

following algorithm [26].

 pos_error = target_encoder_pos[i] - encoder_pos_abs[i];

 servo_cmd = polarity[i]*K1[i] * (pos_error + K2[i] * integral[i]);

 if (servo_cmd > -RANGE12BIT)

 if (servo_cmd < RANGE12BIT)

 integral[i] = integral[i] + TIME_CONSTANT * (pos_error - K3[i] *

 servo_cmd);

 else

 servo_cmd = MAX12BIT;

 else

 servo_cmd = MIN12BIT;

The limiting of the servo_cmd to the maximum and minimum control action is required to avoid

Chapter 4. Generic Motion Control 58

True

True

Start

Convert the 16-bit
encoder values

into 32-bit Integers

Check for
Encoder Roll-Over

Calculate Servo
Commands using

Discrete PID
Control Law

Calculate
Target encoder
positions from

Position Queue

Load the new
Position Queue

Load the Braking
Maneuver into
Position Queue

Decrement
Position Queue

Counter

Read Encoders using
XVME API functions

Write Servo Commands
into DAC using

XVME API functions

Position
Queue

Counter > 0

Position
Queue
is valid

False

False

the integral error accumulation. Finally these servo command values are written into the DAC

registers of the interface cards via the VMEBus device driver functions.

Figure 4.8.

Flowchart of the Servo Function

Chapter 4. Generic Motion Control 59

4.1.5.2. The Servo Planner

The Servo Planner function is responsible for shaping the position command queue cache

which is delivered to the Servo function and allows smooth transitions to the target points. The

function begins with determining the target encoder position. If JOG Mode is required, the

target encoder position is determined by adding the encoder command from the command

message to the last encoder command hence a relative command is generated. Otherwise, the

target encoder position is copied directly from the command message. The target encoder

position is then limited by the maximum allowable speed for the given joint to become the actual

target position.

Once, the actual target position is computed, the encoder step value is determined. In

this application a linear ramp is desired and is shown in the following code segment. This

algorithm permits linear accelerations and braking. Note that the final value in the queue

guarantees that the cache remains on target.

 encoder_step = (target_encoder_act[i] - encoder_cmd[i][QUEUE_DEPTH -1])

 /(QUEUE_DEPTH);

 encoder_cmd_cache[i][0] = encoder_cmd[i][QUEUE_DEPTH -1] +

 encoder_step;

 encoder_cmd_cache[i][1] = encoder_cmd[i][QUEUE_DEPTH -1] +

 2*encoder_step;

 encoder_cmd_cache[i][2] = encoder_cmd[i][QUEUE_DEPTH -1] + 3*encoder_step;

 encoder_cmd_cache[i][3] = encoder_cmd[i][QUEUE_DEPTH -1] + 4*encoder_step;

 encoder_cmd_cache[i][4] = encoder_cmd[i][QUEUE_DEPTH -1] + 5*encoder_step;

 encoder_cmd_cache[i][5] = encoder_cmd[i][QUEUE_DEPTH -1] + 6*encoder_step;

 encoder_cmd_cache[i][6] = encoder_cmd[i][QUEUE_DEPTH -1] + 7*encoder_step;

 encoder_cmd_cache[i][7] = target_encoder_act[i];

Chapter 4. Generic Motion Control 60

True

True

Start

Load Target encoder
Positions from

Servo Command
message

Calculate
Target encoder

positions by adding
displacement command

 to previous
Position Queue

Targets are reduced
to Max Step

Calculate the
incremental step

Generate the
new Position Queue

using the incremental step

Command
Mode =

JOG Mode

Targets
>

Max Step

False

False

Figure 4.9. Flowchart of the Servo Planner

Chapter 4. Generic Motion Control 61

4.1.5.3. The Homing Routine

The Homing function is responsible for initialization of the robot. Since the robot can

be in any configuration at power up, a known position must be found so that all movements can

be made relative to it. The zero position corresponds to the known position of the joints where

internal limit switches are activated. These internal limit switches are accessible via two digital

output registers on the expansion cards. Again, these memory locations are accessible via

VMEbus device driver functions compiled with the servo program. A state machine algorithm

has been implemented which moves one joint at a time.

The Homing function begins by reading the digital output registers and masking each bit

to obtain the state of each joint limit switch. Each joint is searched in series using a set of IF

statements. If the limit switched is activated initially, we assume that the position of the joint

is past the zero position. A “back-off” latch is set and a single relative joint encoder position

command of “moderate speed” (20 encoder counts) in the opposite direction is sent into the

encoder command cache to be executed at a rate of 500Hz by the servo function. Once the joint

switch is no longer active, the “back-off” latch is off and a “moderate speed” command is sent

in the forward direction until the joint switch is active. Then a single encoder count command

is sent in the reverse direction until the limit switch is inactive. This procedure establishes the

exact location in encoder counts of the limit switch and this value added to the known encoder

counts to the home position is stored as the Encoder Position Zero. Thus when a 0 is written

to the command cache, the robot will move to the home position. This procedure is executed

for each joint until all switches are found, then the Home Flag is finally set true.

Chapter 4. Generic Motion Control 62

True

True

True

True

Start

Move in the reverse
direction at Moderate

Speed

Move in the reverse
direction slowly

Move in the forward
direction at Moderate

Speed

Braking Manuever

Homed

Increment
the Current

Joint

Read Limit Switch
Registers from I/O card

using XVME API functions

Store the current encoder position
and Calulate

Zero, Min and Max positions.
Set current joint homed

Current
Joint Limit
Switch is

Active

Current Joint Limit
Switch is Active

and
Finished Braking

Current Joint Limit
Switch is Active

and
Previous is Inactive

Current
Joint
> 6

False

False

False

False

Figure 4.10. Flowchart of the Homing Function

Chapter 4. Generic Motion Control 63

4.1.6. The Servo Agent

The Servo Agent program serves as an isolation mechanism for the generic motion

controller. Since high-level interprocess communication is achieved via a shared memory

system, all processes must be of the same priority to avoid lockups. This occurs when a higher

priority process preempts a lower process who has sole ownership of shared memory semaphore

yet still requires access to the shared memory. Hence it will never gain access to the shared

memory since the lower process cannot continue to release the semaphore to the higher process.

Since the servo function must remain at a higher priority because it is handling hardware,

an equal priority servo agent is executed which copies pertinent data from the shared memory

on the servo function’s behave and delivers it at a fixed rate of 60Hz to the Servo program in the

form of a command message. Figure 4.11. illustrates the functionality of the Servo Agent in the

form of a flowchart.

Chapter 4. Generic Motion Control 64

True

True

Start

Set-up Shared
Memory Area

Access

Wait for a
Message to be

Received

Store
Planner

ID

Copy Command
Message Contents

into Shared Memory

Send Reply Message

Trigger the Planner
Program via the

Planner ID

Copy Status
Shared Memory

Contents into
Reply Message

Register the
Servo Agent Program
for Message Passing

Planner ID
Message

Command
Message

False

False

Figure 4.11. Flowchart of the Servo Agent

Chapter 4. Generic Motion Control 65

4.1.7. The Planner

The Planner program is executed only after the robot has been homed. Its main purpose

is to convert both cartesian and joint space move commands into smaller joint space moves. The

program consists of a main execution loop which calls specific functions based on the command

flags in the shared memory areas. Header or include files are used to centralize the Reis

Robotstar V15's specific hardware related data. Link lengths as well as calibration data and

joint gearing ratios are kept in the reis_defs.h file. The planner programs execution loop is

controlled via the heartbeat from the Brain Computer which is propagated to the planner

program via the Reis Agent program. Figure 4.12. illustrates the execution flow of the planner

program.

The program begins execution by attempting to locate the Reis Remote program. This

is followed by the Planner program registering its own unique identifier into the system’s

namespace for Native Message Passing. Once registration is complete, the Command and Status

shared memory areas are opened for access. Before the main execution loop is entered, the

connection to the heartbeat is established by sending the Planner’s Process Identification

Number to the Reis Remote program. Upon each elapsed heartbeat, a message will now be sent

to the planner program on behalf of the heartbeat from the Reis Remote.

Once inside the main execution loop, the Command and Status shared memory are

accessed via the read_shmem() function. This function copies all pertinent information into a

local data structure identical to the shared memory areas. Of particular interest is the command

mode and the home flag. If the robot has not been homed, execution for this heartbeat cycle is

terminated. Otherwise, the command mode flag is checked for a cartesian command set or a

joint-space command set. If a cartesian command set is issued, a loop is entered where the

inverse kinematics are solved 8 times, one for each possible robot configuration, using the

cart_to_joint() function. As each solution is determined in joint angles, it is converted into joint

encoder counts using the joint_to_act() function. These converted joint solutions are placed

inside a solution array. As well, these joint solutions are checked to see if they are physically

reachable. If they aren’t reachable, the solution is given a corresponding invalidation flag.

Chapter 4. Generic Motion Control 66

Start

Register Planner
Program for

Message Passing

Set up
Shared Memory

Access

Set up
to Trigger

Reis Agent

Locate the
Reis Agent for

Message Passing

True

True

True

Wait for a
Message to be

Received

Store
Reis Agent

ID

Read Status
Shared Memory

Contents

Convert Cartesian
to Joint Space

using Inverse Kinematics

Convert Joint
Angles to Actuator

Space

Select Closest
Solution

Linearly Interpolate
to obtain the next Joint
Space Waypoint based

on Target Time

Trigger the
Servo Agent via the

Program ID

Reis Agent ID
Message

Heartbeat
Message

Cartesian
Command

False

False

False

Figure 4.12. Planner Program

Chapter 4. Generic Motion Control 67

int cart_to_joint (float x, y, z, *Rot_ptr, int solution, *j1_ang_ptr,
*j2_ang_ptr, *j3_ang_ptr, *j4_ang_ptr, *j5_ang_ptr, *j6_ang_ptr)

{

/* Creating A-Matrix (ZYZ-Orientation Matrix)*/
 for(i=0; i<4;i++)
 for(i=0; i<4;i++)
 if (j == 3)

 {
 if (i == 0) A[0][3] = x;
 else if (i == 1) A[0][3] = y;
 else if (i == 1) A[0][3] = z;

 }
 else
 A[i][j] = *Rot_ptr; Rot_ptr++;

/* Inverse Kinematic Solution */
 theta1 = atan2(A[1][3], A[0][3]);
 d1 = A[2][3] - Link0;

if ((solution == 0)||(solution == 1)||(solution ==2)
 ||(solution == 3))
 d2 = sqrt(A[0][3]*A[0][3] + A[1][3]*A[1][3]);
 else
 d2 = -1*sqrt(A[0][3]*A[0][3] + A[1][3]*A[1][3]);

 D = (d1*d1 + d2*d2 - L1*L1 - L2*L2)/(2*L1*L2);

if ((solution == 0)||(solution == 1)||(solution == 4)
 ||(solution == 5))
 Ds = sqrt(1-D*D);
 else
 Ds = -1*sqrt(1-D*D);

 theta3 = atan2(D, Ds);
 L2c = Link2*cos(theta3);
 L2s = Link1 + Link2*sin(theta3);
 Alpha = atan2(L2c, L2s);
 Beta = atan2(d1, d2);
 theta2 = Alpha + Beta - HALF_PI;

/* Compute Inverted end-of-arm frame ZYZ-orientation matrix*/
 Ctheta1 = cos(theta1); Stheta1 = sin(theta1);
 Ctheta2 = cos(theta2); Stheta2 = sin(theta2);
 Ctheta3 = cos(theta3); Stheta3 = sin(theta3);

 R[0][0] = -Ctheta1*(Stheta2*Ctheta3 + Ctheta2*Stheta3);
 R[0][1] = -Stheta1*(Stheta2*Ctheta3 + Ctheta2*Stheta3);
 R[0][2] = Ctheta2*Ctheta3 - Stheta2*Stheta3;

 R[1][0] = Stheta1;
 R[1][1] = -Ctheta1;

 R[2][0] = -Ctheta1*(Stheta2*Stheta3 - Ctheta2*Ctheta3);
 R[2][1] = -Stheta1*(Stheta2*Stheta3 - Ctheta2*Ctheta3);
 R[2][2] = Ctheta2*Stheta3 + Stheta2*Ctheta3;

Chapter 4. Generic Motion Control 68

/* Compute the wrist orientation Matrix */
 O[0][0] = R[0][0]*A[0][0] + R[0][1]*A[1][0] + R[0][2]*A[2][0];
 O[0][1] = R[0][0]*A[0][1] + R[0][1]*A[1][1] + R[0][2]*A[2][1];
 O[0][2] = R[0][0]*A[0][2] + R[0][1]*A[1][2] + R[0][2]*A[2][2];

O[1][0] = R[1][0]*A[0][0] + R[1][1]*A[1][0] + R[1][2]*A[2][0];
O[1][1] = R[1][0]*A[0][1] + R[1][1]*A[1][1] + R[1][2]*A[2][1];
O[1][2] = R[1][0]*A[0][2] + R[1][1]*A[1][2] +
R[1][2]*A[2][2];

 O[2][0] = R[2][0]*A[0][0] + R[2][1]*A[1][0] +
R[2][2]*A[2][0];

 O[2][1] = R[2][0]*A[0][1] + R[2][1]*A[1][1] +
R[2][2]*A[2][1];

 O[2][2] = R[2][0]*A[0][2] + R[2][1]*A[1][2] +
R[2][2]*A[2][2];

/* Compute Z-Y-Z angles for wrist orientation */
if ((solution == 0)||(solution == 2)||(solution == 4)

 ||(solution == 6))
 Rr = sqrt(O[2][0]*O[2][0] + O[2][1]*O[2][1]);
else
 Rr = -1*sqrt(O[2][0]*O[2][0] + O[2][1]*O[2][1]);

Beta = atan2(Rr, O[2][2]);
if (Beta != 0)
{
 Sb = sin(Beta);
 Alpha = atan2(O[1][2]/Sb, O[0][2]/Sb);
 Gamma = atan2(O[2][1]/Sb, -O[2][0]/Sb);
}

 else
{
 Alpha = 0.0;

 Gamma = atan2(-O[0][1], O[0][0]);
}
/* Translating Final Outputs */
 *j1_ang_ptr = theta1*RAD_TO_DEG;
 *j2_ang_ptr = theta2*RAD_TO_DEG;
 *j3_ang_ptr = theta3*RAD_TO_DEG;
 *j4_ang_ptr = Alpha*RAD_TO_DEG;
 *j5_ang_ptr = Beta*RAD_TO_DEG;

 *j6_ang_ptr = Gamma*RAD_TO_DEG;
return 0;
}

int joint_to_act (float j1_ang, j2_ang, j3_ang, j4_ang,
 j5_ang, j6_ang,

 int *j1_ptr, *j2_ptr, *j3_ptr,
*j4_ptr, *j5_ptr, *j6_ptr)
{
 j1 = -j1_ang * J_GEAR;

 if ((j1 < J1_MIN) || (j1 > J1_MAX)) return 1;

 j3 = j3_ang * J_GEAR;
 j2 = j2_ang * J_GEAR + j3/100;
 if ((j2 < J2_MIN) || (j2 > J2_MAX)) return 2;

Chapter 4. Generic Motion Control 69

 j3 = j3_ang * J_GEAR + j2/100;
 if ((j3 < J3_MIN) || (j3 > J3_MAX)) return 3;

 j5 = j5_ang * J_GEAR;
 j4 = -j4_ang * J_GEAR + j5/100;
 if ((j4 < J4_MIN) || (j4 > J4_MAX)) return 4;

 j5 = j5_ang * J_GEAR - j4/100;
 if ((j5 < J5_MIN) || (j5 > J5_MAX)) return 5;

 j6 = j6_ang * J_GEAR;
 if ((j6 < J6_MIN) || (j6 > J6_MAX))

 return 6;

 *j1_ptr = j1; *j2_ptr = j2; *j3_ptr = j3; *j4_ptr = j4;
 *j5_ptr = j5; *j6_ptr = j6;
 return 0;
}

After all solutions have been found and checked, a single solution is selected using the

pick_soln() function. The pick_soln() function assigns each valid solution a score based on the

overall number of encoder counts needed to reach the solution. It is possible to weight each joint

so as to favor a certain configuration. In our implementation we added weights to joints 1, 2 and

3 so that movements about these joints would not be favored. Equation 4.15. shows the score

function where the k values represent the joint weights..

(4.15.)Score k jpos jposn i ni previ
i

= −
=

∑ | |
1

6

int pick_soln(int *soln_set, int *invalid,
 int *prev_j_ang, float *j_gain)
{
 int i,j, first, solution;
 int soln[8][6], invalid_idx[8]; int prev[6];

 float K[6]; float move_score, min_move_score;

/* Loading into local cache */
 for (i=0; i<8; i++)
 {
 for (j=0; j<6; j++)
 {
 soln[i][j] = *soln_set;
 soln_set++;
 }
 invalid_idx[i] = *invalid;

Chapter 4. Generic Motion Control 70

 invalid++;
 }

 for (i=0; i<6; i++)
 {
 K[i] = *j_gain;
 prev[i] = *prev_j_ang;
 j_gain++; prev_j_ang++;
 }

/* Decision Function */
 solution = -1;
 first = 1;
 for (i=0; i<8; i++)
 {
 if (!invalid_idx[i])
 {
 move_score = fabs(soln[i][0]-prev[0])*K[0] +

 fabs(soln[i][1]-prev[1])*K[1] +
 fabs(soln[i][2]-prev[2])*K[2] +
 fabs(soln[i][3]-prev[3])*K[3] +
 fabs(soln[i][4]-prev[4])*K[4] +
 fabs(soln[i][5]-prev[5])*K[5];

 if ((move_score < min_move_score) || (first))
 {
 first = 0; solution = i;
 min_move_score = move_score;
 }
 }
 }
 return solution;
}

Once the joint space solution has been determined, the joint-space interpolation routine

or plan_joint_cmd() function is executed. The plan_joint_cmd() function takes the joint-space

command and interpolates the next joint-space move which will be accomplished in 16.7ms

(60Hz). The time count is then decremented so that the number of steps required to finish the

move can be monitored. These encoder commands are then copied into the internal encoder

command registers of the shared memory area where the Servo Agent program will pick up the

commands and send them to the Servo program to initiate movement of the Reis Robotstar V15.

int plan_joint_cmd (void)
{
 int step, i;

/* Calculate the Step */
 for (i=0; i < NUM_JOINTS; i++)
 if (local_cmd.joint_time_count > 1)
 {

Chapter 4. Generic Motion Control 71

 step = (local_cmd.encoder_cmd_ext[i] -
 local_stat.encoder_cmd[i])/local_cmd.joint_time_count;

 local_cmd.encoder_cmd_int[i] = local_stat.encoder_cmd[i] + step;
 }
 else
 local_cmd.encoder_cmd_int[i] = local_cmd.encoder_cmd_ext[i];

 if (local_cmd.joint_time_count > 0)
 local_cmd.joint_time_count--;

/* Sending Command Information */
 sem_wait(&cmd_ptr->semaphore);
 for (i=0; i < NUM_JOINTS; i++)
 {
 cmd_ptr->encoder_cmd_ext[i] = local_cmd.encoder_cmd_ext[i];
 cmd_ptr->encoder_cmd_int[i] = local_cmd.encoder_cmd_int[i];
 }
 cmd_ptr->joint_time_count = local_cmd.joint_time_count;
 cmd_ptr->coord = JSPACE;
 sem_post(&cmd_ptr->semaphore);

/* Updating the Status Information */
 sem_wait(&stat_ptr->semaphore);
 stat_ptr->busy = local_cmd.joint_time_count;
 sem_post(&stat_ptr->semaphore);

 return 0;
}

4.1.8. The Reis Agent and the Remote Reis Programs

The Reis Agent program resides on the motion control computer while the Remote Reis

program resides on the Brain Computer. These two programs form the network link necessary

to deliver data from the Brain Computer to the Reis motion controller and vice-versa.

The Remote Reis program begins by attaching to the heartbeat program. Each time a

heartbeat message is sent to the Remote Reis program it copies its contents from the Reis’s

shared memory area of the Brain Computer into a Native Message Passing packet. This packet

contains command data and is then sent to the Reis Agent program across the Ethernet link.

Once the package is received by the Reis Agent program, the command data is copied

into the command shared memory area of the Reis motion controller. Status data from the

motion controller is also copied and packed into a Native Message Passing packet. This packet

is sent back to the Remote Reis program to form a reply. In addition, a heartbeat relay message

Chapter 4. Generic Motion Control 72

is sent to the Planner program to indicate that a new command package has been copied into the

shared memory area.

Once the Remote Reis program has received the status data from the motion controller,

it uses the forward kinematic model for the Reis Robot to calculate the current cartesian position

and orientation matrix of the wrist-center point. This new status data is then copied into the

Status shared memory area of the Brain Computer.

4.2. GM Fanuc S400 Motion Controller

4.2.1. Overview

The GM Fanuc S400 motion controller represents a partial implementation of the generic

motion controller described in Section 4.1. Due to the proprietary nature of the bus architecture,

only access to the encoders on the Fanuc controller has been attempted. Gross movement

commands are achieved using the Fanuc controller’s built-in RS-232 serial interface.

Designed as an automotive welding/lifting robot for General Motors in the late 1980's,

its controller design was meant for the harsh environment of a factory. Its programming

language came in the form of an interpreted high level language similar in syntax to BASIC; this

programming language is called KAREL. The KAREL programs can be written on the

controller directly or written offline and sent to the controller via the RS-232 serial interface.

Although the serial interface was meant to be used primarily for file transfer, it also allows data

to be sent to and from the controller. By writing a KAREL serial server program on the

controller which sends its cartesian location, receives cartesian commands and translates these

data points into KAREL commands, a simple off-board controller can be built. The main

disadvantage to this approach is that the Karel interpreted language is computationally expensive

and its processor is not powerful enough to handle such a processor intensive task. Thus, a bi-

directional server program could not be used to build an off-board controller.

Chapter 4. Generic Motion Control 73

ISA
Encoder

Card

Serial.c Serial
Port

Encoder.c

Gmf1_agent.c
I/O Agent

Message
Passing

Shared Memory
Area

Commands Status

GM Fanuc S-400
MotionController

Ethernet

Figure 4.13. Anatomy of the GM Fanuc S400 motion control software

The design approach taken in building a generic motion controller interface for the GM

Fanuc S400 to the DROID system was to build a highly optimized KAREL server which

receives command data via the serial interface and translates the data into cartesian move

commands. It is fortunate that the Fanuc S400 Controller is modular in terms of its internal

circuit design and allows encoder signals to be read from a port located on each of its axis

control circuitry. These single-end encoder signals are sent to two ISA encoder card located on

the DROID generic motion control interface computer. Figure 4.13. illustrates a detailed

schematic of the anatomy of the GM Fanuc S-400's motion control software which resides on

the interface computer.

This implementation of generic motion control for the GM Fanuc S400 was built by

Chapter 4. Generic Motion Control 74

Crymble [30] and is referred to as GMF1. The following discussion is limited to the operational

characteristics and data flow of the software modules which make up the GMF1 Motion

Controller.

4.2.2. Shared Memory

The shared memory area residing on the GMF1 is similar to the Reis Robotstar V15's

motion controller in that they contain both a Command and Status shared memory area (see

Table 4.2. and Table 4.3). The Command shared memory area holds both cartesian and joint

space commands as well as homing commands. The Status shared memory area contains current

cartesian location and orientation and joint encoder counts as well as status flags. Access is

granted by first obtaining a semaphore signal and relinquishing it upon terminating the access.

Since the database can be monopolized during accessing it is important that every accessing

module must have equal priority so that another module cannot interrupt during its access thus

locking the shared memory area.

4.2.3. GMF1 Agent and Remote GMF1 programs

To interface to the DROID system’s Brain Computer, a network link is necessary to

deliver data from the Brain Computer to the GMF1 motion controller and vice-versa. This is

provided by the GMF1 Agent and Remote GMF1 programs. These programs are similar to those

of the Reis Robotstar V15's motion controller. The GMF1 Agent program resides on the motion

control computer while the Remote GMF1 program resides on the Brain Computer.

The Remote GMF1 program begins with attaching to the heartbeat program. Each time

a heartbeat message is sent to the Remote GMF1 program, it copies its contents from the

GMF1’s shared memory area of the Brain into a native message passing packet. This packet

contains command data and is then sent to the GMF1 Agent program across the Ethernet link.

Chapter 4. Generic Motion Control 75

Once the package is received by the GMF1 Agent program, the command data is copied

into the command shared memory area of the Motion Controller Computer. Status data from the

motion control computer is also copied and packed into a Native Message Passing packet. This

packet is sent back to the Remote GMF1 program to form a reply. In addition, a heartbeat relay

message is sent to the Serial program to indicate that a new command package has been copied

into the shared memory area.

4.2.4. The Serial Program

Communication between the GMF1 motion control computer and the Fanuc S400

controller is achieved using a serial link. The Fanuc S400 controller is equipped with a RS-232

25-pin serial port which has a bandwidth of 9600 bps.

The Serial program begins execution by initializing the serial port. It then waits for a

relay message from the GMF1Agent program indicating that a new command has been placed

in the Command shared memory area. It then obtains the semaphore to gain access to the

Command shared memory area and copies the contents into a local cache and finally

relinquishes control of the shared memory area. Since the command data is in the form of a

transformation matrix, it must be converted into global translations and Euler rotation angles

so that the KAREL Serial Server can generate the appropriate move commands. This command

set is sent to the KAREL Serial Server as ASCII characters separated by whitespaces.

The incoming messages from the Brain Computer are sent at a rate of 60Hz which

corresponds to the DROID system heartbeat. Due to the underpowered processor resident on

the Fanuc Controller (Motorola 68000 at 16MHz), a 60Hz cycle rate for the KAREL Serial

Server program is not possible. The strain of the KAREL interpreted language limits the cycle

rate of the KAREL Serial program to 6Hz even under optimized conditions. Hence, the Serial

program must ignore the other 9 commands and only send the most recent command set to the

Fanuc controller once it has completed its previous move.

Chapter 4. Generic Motion Control 76

4.2.5. The Encoder Program

The main function of the GM Fanuc S400 is to provide workpiece positioning for the

DROID Seam Tracking application. Its payload capabilities make it a good candidate for such

labor. Furthermore, due to the control rate limitations of its controller, it must perform gross

movements at a rate of 6Hz while the Reis Robotstar V15 provides tool positioning at 60Hz.

Although there is a large discrepancy in control rates, the 2 robots can cooperate and work at the

60Hz as long as the slower robot can provide status information concerning its position and

orientation at 60Hz.

 To provide positional and orientation data of the Wrist-Center-Point (WCP) at 60Hz or

greater, each joint encoder signals was sampled using an ISA encoder board, as shown in

Section 2. The Encoder program is device driver/server which initializes the 2 ISA encoder

boards and reads the contents of each encoder register at a rate of 120Hz. Each joint encoder

count is then mapped into a joint angle which follows the Denavit-Hartenberg convention.

Using a forward kinematic model, the 6 joint angles are converted into a transformation matrix

which is placed into the status memory area. This data is then sent to the DROID Brain

Computer by the GMF1 Agent on the next heartbeat pulse.

The Encoder program operates at 120Hz using an independent timer so as to isolate it

from the rest of the DROID system. It samples at least twice the heartbeat cycle to ensure that

the transformation matrix is the most recent.

77

Chapter 5.

Seam Tracking Implementation

This chapter focuses on the Seam Tracking application program where a single line laser

profile sensor is used to provide seam data to the multiple robotic system at a rate of 60Hz. The

line laser responsible for profiling the seam is created using a laser diode and cylindrical lens

to form a line. This line is cast across the joint or seam and the reflected profile is acquired by

a gray-scale charged-coupled device camera (CCD). This image is acquired and digitally

filtered using a digital signal processing board which resides on a host computer. This host

computer interfaces the digital signal processing board with a given operating system thus

allowing an application program to process and deliver the seam’s positional data to the multiple

robotic system via a serial link. The chapter begins with an explanation of the kinematics of

seam tracking. Then we discuss the system software used to operate the MVS sensor and

interface it to the DROID system. This chapter concludes with an explanation of the seam

tracking task program.

Chapter 5. Seam Tracking Implementation 78

5.1. Kinematics of Seam Tracking

One of the key objectives in Dynamic Seam Tracking is to map out a portion of the

welding seam with respect to the workpiece coordinate system. Figure 5.1. illustrates an enlarged

view of the seam area. In our application of Autonomous Multiple Robotic Welding, the seam

feature that we are trying to identify takes the form of a “lap-joint” or a “stepped profile”. The

workpiece reference frame origin is coincident with the Wrist-Center-Point (WCP) of the

workpiece holder robot (GM Fanuc S400) since it is a fixed point with respect to the workpiece

and its pose can be computed from the forward kinematics of the workpiece holder robot. From

Figure 5.1. the Sensor reference frame is fixed with respect to the Reis WCP frame and is related

by the transformation (Reis)6Tsensor. The seam feature is determined with respect to the sensor frame

and can therefore be defined with respect to the Reis WCP frame using the following

transformation equation.

(Reis)6 Tseam = (Reis)6Tsensor sensorTseam (5.1.)

However, the seam location with respect to the weld robot is not adequate for mapping since the

weld robot is moving with respect to the workpiece, hence its origin would be constantly

changing. Therefore, the WCP of the workpiece holder robot is used since the workpiece is

rigidly held in place by the workpiece holder robot.

To determine the seam location with respect to the WCP of the workpiece holder robot

we refer to the kinematic diagram illustrated in Figure 5.2. Note the direction of the arrows

dictate the relativity of each reference frame. Since each robot’s WCP transformation is known,

we can determine the seam position with respect to the workpiece holder wrist center with the

following Transformation Equations.

(Reis)0 Tglobal globalT(GMF1)0 (GMF1)0T6 (GMF1)6Tseam = (Reis)0T6 (Reis)6Tseam (5.2.)

Or
(GMF1)6Tseam = ((Reis)0 Tglobal globalT(GMF1)0 (GMF1)0T6)-1 (Reis)0T6 (Reis)6Tseam (5.3.)

Chapter 5. Seam Tracking Implementation 79

zx
y

Sensor

z
xy

Reis
Wrist-Center

z

x
y

GM Fanuc
Wrist-Center

z

z

z

x

x

x
y

y

y

Global
Reference

Frame

Reis Base
Frame

GMF1 Base
Frame

Workpiece
Holder

Workpiece
z

xy

Reis
Tool-Point

zx
y

seam

Similarly we can determine the current Tool-Tip transformation with respect to the workpiece

holder WCP with the following transformation equations.

(Reis)0 Tglobal globalT(GMF1)0 (GMF1)0T6 (GMF1)6Ttool = (Reis)0T6 (Reis)6Ttool (5.4.)

Or
(GMF1)6Ttool = ((Reis)0 Tglobal globalT(GMF1)0 (GMF1)0T6)-1 (Reis)0T6 (Reis)6Ttool (5.5.)

Figure 5.1. Reference frames used in Seam Tracking software

Chapter 5. Seam Tracking Implementation 80

zx
y

z
xy

T(Reis)0
6

T(Reis)6
Tool T(Reis)6

Sensor

T(Reis)6
Seam

z

x
y

TGlobal
(Reis)0

z

TGlobal
(GMF1)0

T(GMF1)0
6

T(GMF1)6
SeamT(GMF1)6

Tool

TSensor
Seam

z

zx

x

x

y

y

y

Global
Reference

Frame

Reis Base
Frame

Reis WCP

GMF1 WCP

Tool Frame

GMF1 Base
Frame

z
xy

zx
y

Sensor Frame

Seam Frame

Figure 5.2. Kinematic Diagram

The seam position and orientation with respect to the workpiece holder WCP is captured

at the “heartbeat” frequency and stored in a dynamic queue or dynamic seam patch. This patch

of the workpiece represents the seam from the camera to the tool point as shown in the enlarged

view of Figure 5.1. The next section describes the determination of the move commands for both

the welding robot and the workpiece holder robot.

Chapter 5. Seam Tracking Implementation 81

5.2. Coordinated Motion Control

The objective of any tracking system is to control motion such that a desired point is

coincident with the target. Dynamic Seam Tracking is no different, however as more degrees of

freedom are involved in the system, more choices are available as to the approach to the target.

In this implementation of Autonomous Multiple Robotic Welding, two 6 degrees of freedom

robot arm manipulators are used to give a total of 12 degrees of freedom. Hence, there are a very

large number of possible orientations that both the welding robot and workpiece holder robot can

take to make the welding tip coincide with the seam position and orientation. This is a very

desirable situation, especially for welding since it is always possible to reach the optimal

orientation for welding. However, rules must be put into place such that the optimal orientation

for welding is always selected from the large number of possible solutions. This section

describes the process of determining the target location from the captured seam data resident in

the dynamic seam patch and the determination of the motion commands for both the welding

robot as well as the workpiece holder robot.

The dynamic seam patch contains the position and orientation of the seam with respect

to the workpiece holder wrist center from the point directly below the current camera position to

the current tool tip location. Therefore, as the welding robot moves past a seam position it is

discarded and as new seam positions are acquired they are added to the patch. In addition, the

number of captured positions in the patch or resolution is dynamic. Since we are acquiring seam

data at the”heartbeat” rate (60Hz), lower travel velocity will yield higher resolutions. Hence,

during the initial acceleration phase of welding, the resolution will be high as the inertia of

motion leads to low velocities (large patch), however, as the velocity reaches the target velocity

the resolution will decrease or the patch will shorten.

Chapter 5. Seam Tracking Implementation 82

Z0X0
Y0

ZnXn
Yn

X1

Current
Tool
Point

Current
Captured

Point

MVS Camera

Travel
Velocity
(mm/s)

Y1

Z2
X2

Y2

Z3X3
Y3

Figure 5.3. The Dynamic Seam Patch

Due to the dynamic nature of the seam patch, the seam must be searched in order to

determine the target seam position and orientation for the current control cycle. The search

begins at beginning of the patch which represents the current camera position on the seam. The

patch is then traversed sequentially towards the current tool tip position with respect to the

workpiece holder robot. The target seam position is actually a linearly interpolated position

based on the linear distance required to meet the travel velocity specified by the user in mm/s.

Therefore, each seam position in the patch is evaluated to determine its linear distance from the

current tool tip position. Once the two bounding seam positions are determined, the target seam

position is linearly interpolated. In order to compute the orientation portion of the transformation

matrix, the transformation matrix is first rotated at the roll angle determined from the MVS

Chapter 5. Seam Tracking Implementation 83

zx
y

zx
y

xUpper
Bounding

Point

Current
Tool
Point

Current
Captured

Point

Lower
Bounding

Point
Target

MVS Camera

Travel
Velocity
(mm/s)

y

z
x

y

zx
y

sensor. The yaw axis rotation angle is computed from Equation 5.6. while the pitch angle is

calculated using Equation 5.7. By multiplying each angle by a gain prior to rotating the

transformation matrix, the yaw and pitch compensation behavior of our system can be controlled

so that the seam feature can be maintained within the camera throughout seam tracking.

Yaw Angle = atan-1 ((x0-xn)/dist_sensor_to_tool) (5.6.)

Pitch Angle = atan-1 ((y0-yn)/dist_sensor_to_tool) (5.7.)

Figure 5.4. Interpolation scheme for determining target seam position and orientation

Once the Target Tool Tip transformation matrix has been determined it must be translated

into a wrist center transformation matrix for the welding robot. Using the kinematic diagram

shown in Figure 5.4., the wrist center transformation equation for the welding robot can be

determined using the tool transformation with respect to the global reference frame.

Chapter 5. Seam Tracking Implementation 84

global T(Reis) 0l (Reis)0T6 (Reis)6Ttool = globalT(GMF1)0 (GMF1)0T6 (GMF1)6Ttool Equation 5.8.
(Reis)6Ttool = (global T(Reis) 0l (Reis)0T6)-1 globalT(GMF1)0 (GMF1)0T6 (GMF1)6Ttool Equation 5.9.

Ideally this motion control action should be accomplished in one “heartbeat” count.

5.3. MVS System Software

The digital signal processing (DSP) board which captures and filters the video image of

the seam profile is a proprietary product built by MVS Inc. (St. Laurent, Quebec). Its design with

respect to hardware and software dates back to the mid 1990's and because of this, the host

operating system is Microsoft DOS. Due to the proprietary nature of this DSP board,

initialization is difficult to achieve without the optimized libraries compiled by MVS Inc.

Hence, MVS’s compiled Control Program is used to initialize the video processor board prior to

the execution of the application program. Figure 5.5. displays the Control Program’s graphical

user interface to the MVS DSP board. It performs the proper initialization of the DSP board as

well as providing read and write access to the DSP’s memory and configuration registers. This

allows a variety of cameras and digital video filters to be used with the board. The configuration

data required for each digital filter are stored in HEX files which reside in the executable’s

directory.

The image from the RS-170 camera is captured at a resolution of 512X240 with a frame

rate of 60 frames per second and a grayscale resolution of 256 levels. Since the incoming image

contains a significant amount of information and noise, digital filtering must be applied to reduce

the amount of extraneous data. A Finite-Impulse-Response (FIR) filter is used to identify and

locate the seam feature, the result of this filtering is a 512X240 1-bit bitmap with a single pixel

for each row representing the best approximation of the seam feature. This bitmap is placed in

the memory banks of the DSP card and can be accessed at a rate of 60Hz after each frame has

been captured.

Chapter 5. Seam Tracking Implementation 85

Figure 5.5. The P1C30 Control Program

5.4. Application Software

The application software, called sensor.exe processes the filtered video data into a seam

position and orientation and sends this data to the Brain Computer at a rate of 60Hz via the serial

port. Figure 5.6. shows a screen capture of the sensor.exe program which graphically monitors

the position and attitude of the surface with respect to the camera. It also displays the targeted

feature which is a discontinuity across two lines where one side is higher than the other (a lap-

joint). It also displays the frames processed/second upon exiting the program. The key

components in sensor.exe includes the power2 assembly language routine which reads the video

data from the MVS DSP board, the line fitting and discontinuity detection code which determines

the seam’s positional data, the graphics portion and the serial output which transmits the data to

the Brain Computer.

Chapter 5. Seam Tracking Implementation 86

Figure 5.6. Screen Capture of the sensor.exe

The power2() function is an assembly routine located within the ml4.asm file, its object file must

be linked in order to gain access to the MVS DSP board. The reason for this assembly routine

is that board’s memory contents are refreshed upon each video vertical retrace. This vertical

retrace occurs every 16.7ms (60Hz) and memory must be accessed during this time. Therefore,

accesses to the memory must take place within 1 ms (approximately) to ensure data integrity.

Since conventional C-code cannot assure this, high performance assembly code is used to

perform the memory copying.

The sensor.exe program begins by initializing the calibration coefficients for the

particular sensor used. These coefficients allow the pixel data to be converted into real-world

coordinates (mm and radians). The graphics system is then initialized and the user interface is

Chapter 5. Seam Tracking Implementation 87

drawn. Next, the serial port (COM 1) is opened and is configured as an output device.

The main execution loop is where the data analysis is done. It begins by calling the

power2() assembly routine which waits for the processor board memory to be free before

accessing it. Therefore the execution loop’s control rate is synchronized with the vertical retrace

at 60Hz. The data read in is an array of 240 integers whose contents are the processor board’s

estimate to where the profile center lies along the screen row. There are 240 screen rows and 512

columns per access. This image corresponds to the interlaced image from the camera to give a

combined resolution of 512X480 pixels.

The following section describes briefly the data analysis procedure developed by Strauss

[5]which is implemented in sensor.exe. It begins by generating a histogram to determine the

concentration of data points along a given column. This histogram indicates the spread of the

pixel data and defines the limits of our line fitting algorithm. Next, the first derivative along a

fixed interval of points is calculated. The largest first derivative should indicate the area where

the discontinuity lies.

Once the feature is detected, two straight lines are fitted to the data on either side of the

discontinuity point. These two straight lines approximate the surface and the slope of this line

defines the roll angle relative to the camera frame. The program then converts this pixel position

data into real-world coordinates using calibrated pixel-to-mm data. The data values are sent to

the serial port as ASCII data which are delimited by commas. Finally the lines which represent

the surface, the discontinuity target and the position and slope values are written to the user

interface. The execution loop ends when an escape key is pressed and the frames

processed/second is calculated.

Chapter 5. Seam Tracking Implementation 88

True

Start

Initializing Graphics
and Drawing

User Interface

Initialize the
Serial Port

Calculate Frames/
second

Write to Serial Port

Wait and Read
the DSP Memory

into the
Profile Array

Draw Data to the
Graphical User

Interface

Call Power2()
ASM function

Convert from pixel units
to real world coordinates

and slope

Fit 2 Straight Lines

Find Discontinuity

Generate Histogram

Initialization ofSeam Tracking
Variables and Coefficients

KeyBoard
Hit = esc

False

Figure 5.7. Flowchart of application software operation

Chapter 5. Seam Tracking Implementation 89

5.5. Dynamic Seam Tracking Task Program

5.5.1. Overview

For our multiple robotic system to accomplish an autonomous coordinated weld, a Task

program is needed to coordinate each robotic arm manipulator and process the incoming seam

data from the sensor. This Task program is called “seamtrack” and resides on the Brain

Computer.

Dynamic Seam Tracking is a technique used to accomplish a weld autonomously without

preplanning the path for a robot to travel through. Using only sensor data and kinematic

relationships, the seam tracking software will determine the optimal path dynamically as it

receives new sensor data. The sensor need only be placed in the general viewable vicinity of the

weld seam. Once the Dynamic Seam Tracking program is started it continues along the seam

without further user intervention. However, some kind of user intervention is used to stop the

seam tracking program.

Figure 5.8. illustrates the role of each subunit. The Reis Robotstar V15 acts as the

welding robot. The GM Fanuc S400 acts as the workpiece holder and the MVS Line Laser

Sensor acts as the seam sensor input element in this system. In theory, either robot manipulator

can act as welding robot or workpiece holder. However, due to the finer degree of control

attained on the Reis Robotstar V15 through the implementation of the generic motion control

software, it is the preferred welding robot while the payload capabilities of the GM Fanuc S400

favor it as the workpiece holder.

Chapter 5. Seam Tracking Implementation 90

Figure 5.8. Hardware Setup for an Multiple Robotic Autonomous Welding

5.5.2. Software Implementation of Dynamic Seam Tracking

The Dynamic Seam Tracking Program is called “seamtrack” and resides on the Brain

Computer. It is an independent compiled executable which can be run at the console with a

single run-time argument. In this implementation, the runtime argument represents the desired

travel velocity along the seam in mm/s. In order to execute properly, the shared memory areas

of the subunits belonging to the i) Reis Robotstar V15 motion controller ii) GM Fanuc S400

motion controller and iii) the MVS Line Laser Sensor must be created and initiated. The

“heartbeat” synchronization server must be operational. As well, the MVS Line Laser sensor

must be brought into the viewable vicinity of the weld seam.

Chapter 5. Seam Tracking Implementation 91

Figure 5.9. illustrates the major software components which make up the “seamtrack”

program. The include header files allow access to robot specific geometry definitions and access

to the shared memory areas. This allows robot geometry to be centralized in a common header

file for ease of access and upgrading. From the diagram, it can be seen that each step in the

Dynamic Seam Tracking technique has been coded into its own function. This allows every step

to be upgraded with relative ease and facilitates debugging. This allows the “seamtrack”

program to have the same simple and modular paradigm found throughout the DROID system.

The “seamtrack” program begins its execution by initializing key variables and flags as

well as all transformation matrices using the robot geometry definitions found in the header files.

This is followed by the decoding of the run-time arguments which in this case is a single

argument representing the travel velocity of the seam tracking in mm/s. Next the locating of the

“heartbeat” synchronization event server module is attempted every second. The program will

wait indefinitely if the “heartbeat” is not present. Once the “heartbeat” is located, a triggering

event known as a “proxy” is establish within the “seamtrack” program. This proxy’s identifier

is then sent to the “heartbeat”. Each “heartbeat” expiration will then trigger the “seamtrack”

proxy, this is how synchronization will be accomplished.

The next step is to map all required shared memory areas locally for read and write

privileges using the unique identifiers found in the header files. In this program, this refers to the

Reis Robotstar V15's shared memory area (welding robot), the GM Fanuc S400's shared memory

area(workpiece holder), and the MVS Line Laser Sensor shared memory area (sensor input).

Chapter 5. Seam Tracking Implementation 92

GM Fanuc Robot
Shared Memory

Area

Reis Robot
Shared Memory

Area

MVS Sensor
Shared Memory

Area

Welding
Robot

seamtrack Executable

Dynamic
Seam Patch

Workpiece
Holder Robot

Seam Sensor
Device

setup_proxy(...)

Math funcs

toolpt_wrt_holder(...)

tool_robot_wcp_wrt_holder(...)

gen_tool_robot_wcp(...)

holder_robot_wcp(...)

update_seam_wrt_holder(...)

write_robot_cmd(...)

interpolate(...)

main(..)

Functions for seamtrack.c

common.h

shmem.h

seamtrack.h

Header Include Files

Figure 5.9. Anatomy of the “Seamtrack” Task program

Once synchronization and shared memory areas are established, we enter the main

execution loop. At the beginning of this loop, the processor is put to sleep waiting for the

“proxy” to be triggered from the ” heartbeat”. After being triggered by the “proxy” the GMF1

shared memory area is read using the holder_robot_wcp() function. This function waits for the

shared memory semaphore to become available before downloading the database into its

corresponding transformation matrix. The Reis shared memory area is read in the same manner

using the tool_robot_wcp_wrt_holder() function, however, this particular function also uses

kinematic relationships (Equation 5.10.) to determine the Reis robot’s WCP with respect to the

GMF1's WCP.

(GMF1)6T(Reis)6 =(global T(Reis) 0l (Reis)0T6)-1 globalT(GMF1)0 (GMF1)0T6 (5.10.)

Next, the tool point of the Reis robot is determined with respect to the GMF1's WCP using the

toolpt_wrt_holder() function using Equation 5.5.

Chapter 5. Seam Tracking Implementation 93

New seam data is read from the MVS shared memory area and incorporated into the seam

patch using the update_seam_wrt_holder() function. This function transforms the MVS seam

data with respect to the GMF1's WCP using Equation 5.3. It then determines the yaw and pitch

angles using Equations 5.6. and 5.8. The yaw and pitch rotation angles are then multiplied by a

yaw gain and a pitch gain respectively prior to being applied to the transformation matrix so as

to maintain the seam feature within the camera during seam tracking. The seam patch is then

rotated and the new seam transformation matrix is placed at the front of the queue.

The target position and pose within the seam patch of the tool point is calculated using

the interpolate() function. This function searches the queue looking for the two bounding points

which the target tool point will lie between. It then linearly interpolates to satisfy the seam travel

velocity. The orientation is taken from the seam transformation matrix which lies at the front of

the seam patch queue.

Using the kinematic relationship of Equation 5.11 , the WCP with respect to the Reis

robot’s base is calculated using gen_tool_robot_wcp(). As well, the gen_hold_robot_wcp()

function determines the new position and pose of the workpiece holder robot’s WCP with respect

to the GMF1 robot’s base. Finally, these two robot commands are written to their respective

shared memory areas using the write_robot_cmd() function.

(Reis)0T6 =globalT(GMF1)0 (GMF1)0T6 (GMF1)6Ttool ((Reis)6 Ttool)-1 (5.11.)

Figure 5.10. illustrates the execution flow of the Seam Tracking Task program. The source code

for select functions is included at the end of this chapter.

Chapter 5. Seam Tracking Implementation 94

Found

YES

Start

Decode
Run-Time

Arguements

Map
Shared Memory

Areas Locally

Transform
w.r.t.

Holder W.C.P

Determine
New Tool
Position

(Interpolation)

Read Robot
Shared Memory

Areas

Update
Dynamic

Seam Patch

Determine
Tool Tip

Transformation
w.r.t.

Holder W.C.P.

Convert to
Wrist Center

Transformations

Determine
New Holder

Transformation

Write to Robot
Shared Memory

Areas

Waiting for
Synch from

Proxy

Send Proxy ID
to “Heartbeat”

Variable, Flag
and Matrix

Initialization

Pause for
1 sec

Looking for
“Heartbeat”

Not Found

Figure 5.10. Flowchart of Seam Tracking software operation

int tool_robot_wcp_wrt_holder(shmem_cmd_t *cmd_ptr, float
 *T06hold_ptr, *Ttool_hold_ptr,

 *T06tool_ptr,*T6tool_hold_ptr)
{

 float T06hold_inv[4][4], Ttool_hold_inv[4][4], temp[4][4],
*T06_ptr;
 int i,j, error;

 T06_ptr = T06tool_ptr;

/* Command Information */
 sem_wait(&cmd_ptr->semaphore);
 for (i=0;i<3;i++)
 for(j=0;j<4;j++)
 {
 if (j == 3)

Chapter 5. Seam Tracking Implementation 95

 {
 if (i==0) *T06_ptr = cmd_ptr->x;
 else if (i==1) *T06_ptr = cmd_ptr->y;
 else if (i==2) *T06_ptr = cmd_ptr->z;
 }
 else
 *T06_ptr = cmd_ptr->R[i][j];
 T06_ptr++;
 }
 sem_post(&cmd_ptr->semaphore);

/* Generating Tool WCP wrt to Holder WCP */
 error = mat_inv_homo(T06hold_ptr, &T06hold_inv[0][0]);
 error = mat_inv_homo(Ttool_hold_ptr,

 &Ttool_hold_inv[0][0]);
 error = mult44(&T06hold_inv[0][0], &Ttool_hold_inv[0][0],
 &temp[0][0]);
 error = mult44(&temp[0][0], T06tool_ptr, T6tool_hold_ptr);

 return 0;
}

int update_seam_wrt_holder(float *T6tool_hold_ptr,
 *Tcamera_6_ptr, int *tcp_idx)
{

 static int dead_zone = 30, first = TRUE;
 static float temp[4][4], temp2[4][4];

 static float Tyaw[4][4]; Tpitch[4][4];
 int i,j,k,error;
 float yaw=0, pitch=0;

/* Initialize the Seam Information */
 if (first)
 {
 first = FALSE;
 for (i=0; i<3; i++)
 for (j=0; j<4; j++)
 seam[0][i][j] = Treis7_gmf1[i][j];
 }

/* Reading the MVS Data for Roll and Translation Information
 */
 if (dead_zone > 0)

dead_zone--;
 else
 {
 dead_zone = 0;
 sem_wait(&mvs_stat_ptr->semaphore);
 Tmvs[0][3] = mvs_stat_ptr->x;
 Tmvs[1][3] = mvs_stat_ptr->y;
 Tmvs[2][3] = mvs_stat_ptr->z;
 for(i=0;i<3;i++)
 for(j=0;j<3;j++)
 Tmvs[i][j] = mvs_stat_ptr->R[i][j];
 sem_post(&mvs_stat_ptr->semaphore);
 }

Chapter 5. Seam Tracking Implementation 96

/* Determine the Pitch and Yaw from Previous Seam
 Transformation */
 yaw = -(Tmvs[1][3]/CAMERA_TO_TCP)*kpyaw;
 pitch = (Tmvs[0][3]/CAMERA_TO_TCP)*kppit;

 Tyaw[1][1] = cos(yaw); Tyaw[1][2] = -sin(yaw);
 Tyaw[2][1] = sin(yaw); Tyaw[2][2] = cos(yaw);

 Tpitch[0][0] = cos(pitch); Tpitch[0][2] = sin(pitch);
 Tpitch[2][0] = -sin(pitch); Tpitch[2][2] = cos(pitch);

 error = mult44(T6tool_hold_ptr, Tcamera_6_ptr,
 &temp[0][0]);
 error = mult44(&temp[0][0], &Tmvs[0][0], &temp2[0][0]);
 error = mult44(&temp2[0][0], &Tpitch[0][0], &temp[0][0]);
 error = mult44(&temp[0][0], &Tyaw[0][0], &temp2[0][0]);

/* Rotating the Seam Queue */
 for (i=*tcp_idx; i >= 0;i--)
 for (j=0; j < 3; j++)
 for (k=0; k < 4; k++)
 seam[i+1][j][k] = seam[i][j][k];
 *tcp_idx = *tcp_idx + 1;
/* Update with the latest Data */
 for (i=0; i<3; i++)
 for (j=0; j<4; j++)
 seam[0][i][j] = temp2[i][j];

 return 0;
}

int toolpt_wrt_holder(float *T6tool_hold_ptr,
 *T67_tool_ptr, *Ttool7_hold_ptr)
{
 int error;
 error = mult44(T6tool_hold_ptr, T67_tool_ptr,
 Ttool7_hold_ptr);

 return 0;
}

int interpolate (float vel, int *tcp_idx_ptr, float
 *Ttool7_hold_ptr, *Ttool7_hold_new_ptr)
{
 int i,j, found;
 float prev_dx, prev_dy, prev_dz, prev_dist;
 float next_dx, next_dy, next_dz, next_dist;
 float btwn_dx, btwn_dy, btwn_dz, btwn_dist;
 float Ttool7_hold[4][4], *ptr;

 ptr = Ttool7_hold_ptr;
 for (i=0;i<4;i++)
 for(j=0;j<4;j++)
 {
 Ttool7_hold[i][j] = *ptr;
 ptr++;
 }

Chapter 5. Seam Tracking Implementation 97

/* Determine the Interpolated value using the further of the
 two points */
 if (*tcp_idx_ptr > MAX_QUEUE) *tcp_idx_ptr = MAX_QUEUE;
 else if (*tcp_idx_ptr < 1) *tcp_idx_ptr = 1;

/* Find the Index which is closest to the TCP */
 prev_dx = seam[*tcp_idx_ptr][0][3] - Ttool7_hold[0][3];
 prev_dy = seam[*tcp_idx_ptr][1][3] - Ttool7_hold[1][3];
 prev_dz = seam[*tcp_idx_ptr][2][3] - Ttool7_hold[2][3];
 prev_dist = sqrt((prev_dx*prev_dx + prev_dy*prev_dy +
 prev_dz*prev_dz));

 next_dx = seam[*tcp_idx_ptr-1][0][3] - Ttool7_hold[0][3];
 next_dy = seam[*tcp_idx_ptr-1][1][3] - Ttool7_hold[1][3];
 next_dz = seam[*tcp_idx_ptr-1][2][3] - Ttool7_hold[2][3];
 next_dist = sqrt((next_dx*next_dx + next_dy*next_dy +

 next_dz*next_dz));

 btwn_dx = seam[*tcp_idx_ptr-1][0][3] -
 seam[*tcp_idx_ptr][0][3];
 btwn_dy = seam[*tcp_idx_ptr-1][1][3] -
 seam[*tcp_idx_ptr][1][3];
 btwn_dz = seam[*tcp_idx_ptr-1][2][3] -
 seam[*tcp_idx_ptr][2][3];
 btwn_dist = sqrt((btwn_dx*btwn_dx + btwn_dy*btwn_dy +
 btwn_dz*btwn_dz));
 found = FALSE;
 while ((!found) && (*tcp_idx_ptr > 1))
 {
 if((prev_dist < btwn_dist) && (next_dist < btwn_dist))
 found = TRUE;
 else if (next_dist < vel)
 {
 found = TRUE;
 *tcp_idx_ptr = *tcp_idx_ptr -1;
 }
 else
 *tcp_idx_ptr = *tcp_idx_ptr - 1;
 prev_dx = seam[*tcp_idx_ptr][0][3] - Ttool7_hold[0][3];
 prev_dy = seam[*tcp_idx_ptr][1][3] - Ttool7_hold[1][3];
 prev_dz = seam[*tcp_idx_ptr][2][3] - Ttool7_hold[2][3];
 prev_dist = sqrt((prev_dx*prev_dx + prev_dy*prev_dy +
 prev_dz*prev_dz));

 next_dx = seam[*tcp_idx_ptr-1][0][3] -
 Ttool7_hold[0][3];
 next_dy = seam[*tcp_idx_ptr-1][1][3] -
 Ttool7_hold[1][3];
 next_dz = seam[*tcp_idx_ptr-1][2][3] -
 Ttool7_hold[2][3];
 next_dist = sqrt((next_dx*next_dx + next_dy*next_dy +
 next_dz*next_dz));

 btwn_dx = seam[*tcp_idx_ptr-1][0][3] -
 seam[*tcp_idx_ptr][0][3];
 btwn_dy = seam[*tcp_idx_ptr-1][1][3] -
 seam[*tcp_idx_ptr][1][3];

Chapter 5. Seam Tracking Implementation 98

 btwn_dz = seam[*tcp_idx_ptr-1][2][3] -
 seam[*tcp_idx_ptr][2][3];
 btwn_dist = sqrt((btwn_dx*btwn_dx + btwn_dy*btwn_dy +
 btwn_dz*btwn_dz));
 }

/* Determine the Interpolated value using the further of the
 two points */
 if (*tcp_idx_ptr > MAX_QUEUE)
 *tcp_idx_ptr = MAX_QUEUE - 1;
 else if (*tcp_idx_ptr < 1)
 *tcp_idx_ptr = 1;

 ptr = Ttool7_hold_new_ptr;
 for (i=0;i<3;i++)
 for(j=0;j<4;j++)
 {
 if (j == 3)
 {
 if (i==0)
 *ptr = Ttool7_hold[0][3] + vel/next_dist*next_dx;
 else if (i==1)
 *ptr = Ttool7_hold[1][3] + vel/next_dist*next_dy;
 else if (i==2)
 *ptr = Ttool7_hold[2][3] + vel/next_dist*next_dz; }
 else
 *ptr = seam[0][i][j];
 ptr++;
 }
 return 0;
}

int gen_tool_robot_wcp(float *T0tool_0hold_ptr, *T06hold_ptr,
 *Ttool7_hold_new_ptr,*T67tool_ptr, *tool_cmd_ptr)

{
 static float temp[4][4], T06[4][4], T07[4][4];
 int error;

/* Calculate the Tool Point Transformation WRT to the World
 */
 error = mult44(T0tool_0hold_ptr, T06hold_ptr,
 &temp[0][0]);
 error = mult44(&temp[0][0], Ttool7_hold_new_ptr,
 &T07[0][0]);
 error = mat_inv_homo(T67tool_ptr, &temp[0][0]);
 error = mult44(&T07[0][0], &temp[0][0], &T06[0][0]);

/* Calculate the Tool Point Transformation WRT to the World
 */
 error = mult44(&T06[0][0], T67tool_ptr, &T07[0][0]);
 error = mat_inv_homo(T67tool_ptr, &temp[0][0]);
/* Calculate the New Robot WCP Transformation */
 error = mult44(&T07[0][0], &temp[0][0], tool_cmd_ptr);

 return 0;
}

99

Chapter 6.

Experimentation and Performance

This chapter focuses on exploring the performance envelope of the seam-tracking task

program as well as identifying key parameters which affect its overall performance. The chapter

begins by discussing the objectives of the seam-tracking task program. The methodology of the

data collection will be discussed. As well, the rationale for the test conditions of each trial

collected will be explained. The chapter concludes with a presentation of the data collected as

well as observations concerning the performance of the seam-tracking program with respect to

key variables. Although a large number of experiments were conducted, only selected

experiments are presented to highlight the key observations and conclusions for the sake of

brevity.

6.1. Experimental Methodology

The objective in Dynamic Seam Tracking is to follow an arbitrary path in 3 dimensional

space within a given accuracy. While the tool-point is traveling the path, it must maintain its

feed-velocity as well as its relative pose to the workpiece.

Chapter 6. Experimentation and Performance 100

zx
y

Sensor

Tracking Sensor
Collection Sensor

z
xy

Reis
Wrist-Center

z

x
y

GM Fanuc
Wrist-Center

z

z

zx

x

x

y

y

y

Global
Reference

Frame

Reis Base
Frame

GMF1 Base
Frame

Workpiece

zx
Pitch

Yaw

Roll

y

Reis
Tool-Point

zx
y

seam

The key indicator of performance for the seam-tracking system is the deviation from the

seam at the tool-point. Using a secondary MVS laser profiling sensor positioned virtually at the

Tool-Tip position, the following values are collected: i) the lateral deviation from the seam in

millimeters ii) the height deviation from the seam in millimeters iii) the roll angle of the surface

in radians. These 3 values indicate the error in the Seam Tracking system, because if no error

were present, these 3 values would be zero. These error values are available to the DROID

system at a rate of 60Hz which corresponds to twice the control rate of the Seam Tracking

system. The collection of data occurs at 10Hz to facilitate analysis and charting. Since the data

is made available to the DROID system via shared memory, data collection can be synchronized

to other events within the system.

Figure 6.1. Seam reference frame

Chapter 6. Experimentation and Performance 101

z

x y

Reis
Wrist-Center

GM Fanuc
Tool-Plate-Center

Experimental
Workpiece

Z
X

Y

As each trial is executed and the data collected, a single system parameter will be varied

to qualitatively illustrate the effects of this parameter on seam tracking performance. These key

parameters include: i) the seam travel speed, ii) the angular orientation of the workpiece iii) the

position of the workpiece, iv) the yaw angle gain, v) the pitch angle gain, vi) the sensory transport

delay, vi) wrist setup configuration..

6.1.1. Experimental Workpieces

 Due to the nature of the Seam Tracking program, an initial section is required to start

building the seam segment between the sensor and the tool center point needed for tracking.

From its predefined starting position, the robot is programmed to move the sensor in a straight

line along the seam. Once this initial section has been traveled and the tool center point has

reached the point on the seam at which the sensor started, any path can be tracked. In the first

set of experiments, a step change in seam direction was used to investigate the response of the

system. This step input is provided by a track with a 100mm initial straight section followed by

an instantaneous change in direction of 5 degrees, the path remains straight for 600mm. This

track is fixed to the GM Fanuc S-400 workpiece holder robot’s tool plate.

Figure 6.2. Step- Input Experimental Workpiece

Chapter 6. Experimentation and Performance 102

z

x

y

Reis
Wrist-Center

GM Fanuc
Tool-Plate-Center

Experimental
Workpiece

Z

X Y

The track itself is constructed using a 50mm plastic C- channel. Using a small width channel

allows the track to be positioned deep inside the Reis Robotstar V15's work envelope without

interfering with any of its links. The track is white in color and is a specular surface which

provides excellent image data to the MVS sensors. The reason for using an ABS plastic channel

is that its flexibility allows very aggressive tracking algorithms to be attempted without fear of

colliding with a rigid workpiece. Figure 6.2 illustrates the Step Input Experimental Workpiece

and its approximate orientation during the experiments.

Figure 6.3. Ramp Input Experimental Workpiece

In addition, to the step input, a pseudo ramp input can be provided to the seam tracking

system by having an initial straight section followed by a fixed radius arc. A second experimental

workpiece was constructed using a flat 1000mmx1000mm sheet of PVC plastic. The surface of

the PVC sheet is uniform and reflects the laser light used by the profiling sensor. Precision

Chapter 6. Experimentation and Performance 103

mounting holes are located at one corner of the sheet to allow rigid placement of the workpiece

to the robot tool plate. 5 tracks of 50mm are spaced 50mm apart. Each track comprises of a

300mm straight track, the track then turns 90 degrees with a fixed radius and concludes with a

300mm straight track. The radii vary from 200mm to 500mm with values at 200mm, 300mm,

400mm and 500mm. The tracks exhibit a uniform edge height of approximately 2mm. Figure

6.3. illustrates the Ramp Input Experimental Workpiece and its approximate orientation during

the experiments.

6.1.2. Variable Descriptions and Ranges

The previous section illustrates that each track varies in terms of cartesian position,

plotting the acquired sensor data with respect to each x,y ,z axis would not provide a very

meaningful comparison. Therefore, data was plotted with respect to the path length traveled so

that data from any path can be compared. This actual path length is the independent variable.

Therefore, the seam travel speed is the linear distance traveled along the seam in millimeters per

second. The speed was varied from 4mm/s to 64mm/s with the following travel speeds: 4mm/s,

8mm/s, 16mm/s, 32mm/s, and 64mm/s.

Due to the kinematics of the Reis Robotstar V15, the different positions/orientations

place the robot in different joint configurations which may affect the ability of the robot to reach

its target position/orientation in a seam-tracking cycle thereby affecting the

accuracy/performance of the Seam Tracking system. Another situation that arises due to joint

configurations is the crossing over from a workspace partition to another. The work space of the

robot can be considered a sphere centered about joint 2. This sphere is partitioned into 8 using

three orthogonal planes which intersect at the origin of the workspace sphere. Crossing these

planes results in the robot changing its joint configuration instantaneously. Depending on the

location of this cross-over, the results vary from slight jitter to momentary lose of camera data.

To avoid this situation, we limit the Seam Tracking to the positive x, positive y, positive z

spherical partition.

Chapter 6. Experimentation and Performance 104

Figure 6.4. (i) Position within positive workspace and 0 degree Roll and Pitch

Figure 6.4. (ii) 300mm lateral offset of the track to position (i)

Chapter 6. Experimentation and Performance 105

Figure 6.4.(iii) Same as position (i) but with a 30 degree Roll of the track

Figure 6.4. (iv) Same as position (i) but 45 degree Roll of the track

Chapter 6. Experimentation and Performance 106

Figure 6.4. (v) Same as position (i) but 30 degree incline

Figure 6.4. (vi) Position and orientation along radial

Chapter 6. Experimentation and Performance 107

 Figure 6.4. (vi) Same as position (i) but vertical.

Seven different starting positions and orientations were used to explore the seam tracking

performance with respect to position and orientation. These joint configurations include i)

position within positive workspace (x = 300mm, y = 100mm, z = 1340mm w.r.t. Reis Base) and

0 degree Roll and Pitch (i.e. the track is flat) ii) 300mm lateral offset of the track to position (i),

iii) same as position (i) but with a 30 degree Roll of the track, iv) same as position (i) but 45

degree Roll of the track, v) same as position (i) but 30 degree incline vi) position and orientation

along radial, vii) same as position (i) but vertical. Figures 6.4. (i) through (vii) illustrate the

different joint configurations used to reach each start position/orientation.

In order to have the MVS Sensor positioned on the seam throughout seam-tracking, a

proportional controller is implemented so as to rotate the camera about the tool-tip so that the

seam feature remains within the camera view. These proportional gains are defined as the Yaw

Angle Gain for the Yaw plane and the Pitch Angle Gain for the Pitch plane. The Yaw Angle

Chapter 6. Experimentation and Performance 108

Gain was varied from 0.05 to 0.75 with values at 0.05, 0.15, 0.25, 0.35, 0.55, and 0.75. The Pitch

Angle Gain was varied from 0.05 to 0.45 with values at 0.05, 0.15, 0.25, 0.35, and 0.45.

The DROID architecture is a distributed network of robots and sensors, therefore it is

crucial that data transfer occur in predictable and timely fashion. To explore the possibility of

adverse network connections, delays were inserted into the sensor stream. This experiment

consisted of running the Seam Tracking program for 150mm (which is approximately when

steady-state tracking is reached), then a single delay between 1 to 16 seam tracking cycles is

inserted and the tracking monitored. The inserted delays are 1 cycle, 2 cycles, 4 cycles, 5cycles,

6cycles, 7cycles, 8 cycles and 16 cycles. Since the seam tracking frequency is 30Hz, these

delays correspond to 33.3ms, 66.7ms, 133.3ms, 166.7 ms, 200.0 ms, 233.3ms, 266.7ms, and

533.3ms delays.

6.2. Experimental Results and Data Analysis

6.2.1. Experiment Set 1: Position, Orientation and Seam Travel Speed

 The first experiments conducted were those which varied position, orientation and seam

travel speed. The purpose of these experiments was to identify the optimal position of the

workpiece, the optimal orientation and the maximum travel speed for this given seam tracking

configuration. Certain key variables were needed to be fixed, although at this point we could not

determine their optimal values. One of these non optimized variables is the workspace partition,

which we set as the positive x, positive y positive z partition. Other non optimized variables

include the proportional gains used for the control of the seam tracking. Different gain values

can cause the Seam Tracking program to respond differently which is not what this initial

experiment wishes to focus on, thus the gains were kept constant at values of 0.15 for the yaw

gain and 0.25 for the pitch gain. Table 6.1. is an experimental matrix which shows the variable

setting for each experiment. An experiment consists of a single Seam Tracking program

execution on a given experimental workpiece, at a given position, at one of the 5 seam velocities

Chapter 6. Experimentation and Performance 109

dictated in Section 6.1. For the step-input workpiece, all 5 seam travel speeds (4, 8, 16, 32, 64

mm/s) are run for 5 of the 7 position/orientation positions mentioned in section 6.1. For the

Ramp Input Experimental Workpiece, 4 of the 5 seam travel speeds (4, 8, 16, 32mm/s) are run

for the vertical position due to workspace interference.

Table 6.1. Initial Exploration: Travel Speed and Position/Orientation

ID Track Travel Speed Orientation Position

1.1 Straight-Line (step input) 4 mm/s 0o roll, 0o pitch position (i)

1.2 Straight-Line (step input) 8 mm/s 0o roll, 0o pitch position (i)

1.3 Straight-Line (step input) 16 mm/s 0o roll, 0o pitch position (i)

1.4 Straight-Line (step input) 32 mm/s 0o roll, 0o pitch position (i)

1.5 Straight-Line (step input) 64 mm/s 0o roll, 0o pitch position (i)

1.6 Straight-Line (step input) 4 mm/s 0o roll, 0o pitch position (i),

+300mm lateral

offset

1.7 Straight-Line (step input) 8 mm/s 0o roll, 0o pitch position (i),

+300mm lateral

offset

1.8 Straight-Line (step input) 16 mm/s 0o roll, 0o pitch position (i),

+300mm lateral

offset

1.9 Straight-Line (step input) 32 mm/s 0o roll, 0o pitch position (i),

+300mm lateral

offset

1.10 Straight-Line (step input) 64 mm/s 0o roll, 0o pitch position (i),

+300mm lateral

offset

Chapter 6. Experimentation and Performance 110

ID Track Travel Speed Orientation Position

1.11 Straight-Line (step input) 4 mm/s 30o roll, 0o pitch position (i)

1.12 Straight-Line (step input) 8 mm/s 30o roll, 0o pitch position (i)

1.13 Straight-Line (step input) 16 mm/s 30o roll, 0o pitch position (i)

1.14 Straight-Line (step input) 32 mm/s 30o roll, 0o pitch position (i)

1.15 Straight-Line (step input) 64 mm/s 30o roll, 0o pitch position (i)

1.16 Straight-Line (step input) 4 mm/s 45o roll, 0o pitch position (i)

1.17 Straight-Line (step input) 8 mm/s 45o roll, 0o pitch position (i)

1.18 Straight-Line (step input) 16 mm/s 45o roll, 0o pitch position (i)

1.19 Straight-Line (step input) 32 mm/s 45o roll, 0o pitch position (i)

1.20 Straight-Line (step input) 64 mm/s 45o roll, 0o pitch position (i)

1.21 Straight-Line (step input) 4 mm/s 0o roll, 30o pitch position (i)

1.22 Straight-Line (step input) 8 mm/s 0o roll, 30o pitch position (i)

1.23 Straight-Line (step input) 16 mm/s 0o roll, 30o pitch position (i)

1.24 Straight-Line (step input) 32 mm/s 0o roll, 30o pitch position (i)

1.25 Straight-Line (step input) 64 mm/s 0o roll, 30o pitch position (i)

1.26 500 mm radial (ramp input) 4 mm/s 0o roll, 90o pitch position (i)

1.27 500 mm radial (ramp input) 8 mm/s 0o roll, 90o pitch position (i)

1.28 500 mm radial (ramp input) 16 mm/s 0o roll, 90o pitch position (i)

1.29 500 mm radial (ramp input) 32 mm/s 0o roll, 90o pitch position (i)

1.30 400 mm radial (ramp input) 4 mm/s 0o roll, 90o pitch position (i)

1.31 400 mm radial (ramp input) 8 mm/s 0o roll, 90o pitch position (i)

1.32 400 mm radial (ramp input) 16 mm/s 0o roll, 90o pitch position (i)

1.33 400 mm radial (ramp input) 32 mm/s 0o roll, 90o pitch position (i)

1.34 300 mm radial (ramp input) 4 mm/s 0o roll, 90o pitch position (i)

1.35 300 mm radial (ramp input) 8 mm/s 0o roll, 90o pitch position (i)

1.36 300 mm radial (ramp input) 16 mm/s 0o roll, 90o pitch position (i)

Chapter 6. Experimentation and Performance 111

ID Track Travel Speed Orientation Position

1.37 300 mm radial (ramp input) 32 mm/s 0o roll, 90o pitch position (i)

1.38 200 mm radial (ramp input) 4 mm/s 0o roll, 90o pitch position (i)

1.39 200 mm radial (ramp input) 8 mm/s 0o roll, 90o pitch position (i)

1.40 200 mm radial (ramp input) 16 mm/s 0o roll, 90o pitch position (i)

1.41 200 mm radial (ramp input) 32 mm/s 0o roll, 90o pitch position (i)

6.2.2. Experiment 1: Observations

Figure 6.5. shows the data collected from a trial where the step input workpiece was

rotated 30 degrees about the Roll axis and the trial conducted at 8mm/s. The response is a typical

seam tracking response to a step input. The seam tracking begins with an initial error. Due to

the Seam Tracking program’s initial conditions routine, the error is only corrected after it has

traveled for more than 100mm. An overshoot is seen in the Y axis as the seam-tracking begins

and a slight steady-state error is observed. The X-axis appears to exhibit minimal overshoot with

a slight steady-state error. The roll angle typically undergoes little change, hovering about zero

slightly.

Chapter 6. Experimentation and Performance 112

Figure 6.5. Step input response for all axis’ with 30 degree roll at 8mm/s

In general, as speed increases, the overshoot on the X axis increases slightly. The Y axis

overshoot is reduced and produces a smoother response initially. However, oscillations result late

in seam tracking at 16 mm/s. At 32 mm/s the seam tracking trial is cut short as the lead sensor

loses the seam feature. At 64mm/s the oscillations amplitudes are much larger. Figure 6.6. shows

the step input response of a workpiece rolled at 30 degrees at 4mm/s, 8mm/s, 16mm/s, 32mm/s

and 64 mm/s.

Chapter 6. Experimentation and Performance 113

Chapter 6. Experimentation and Performance 114

Figure 6.6. Step input response for all axis’ at 30 degree Roll angle

Chapter 6. Experimentation and Performance 115

Figure 6.6. Step input response for all axis’ at 30 Degree Roll Angle (cont’d)

Chapter 6. Experimentation and Performance 116

Figure 6.6. Step input response for all axis’s at 30 degree Roll angle (cont’d)

From Figure 6.7. Experiment 1.7 shows that as the workpiece is placed farther away from

the robot it causes stronger oscillations throughout the seam tracking trial. Rotating the

workpiece about the roll axis causes the response to be smoother and reduces the oscillations.

Experiment 1.12 shows that at 30 degree roll angle, the system is most stable with the given

proportional gains. Experiment 1.17 shows that at 45 degree roll the response is also stable, but

not as stable as the 30 degree case. Rotating the workpiece about its pitch angle such as in

Experiment 1.22 causes an amplified overshoot at the 100mm mark as well as causing higher

amplitude oscillations at the latter part of the seam.

Chapter 6. Experimentation and Performance 117

Figure 6.7. Step input response for all axis’ with changing Position/Orientation

Chapter 6. Experimentation and Performance 118

Chapter 6. Experimentation and Performance 119

Figure 6.7. Step input response for all axis’ with changing Position/Orientation (cont’d)

Chapter 6. Experimentation and Performance 120

Figure 6.7. Step input response for all axis’ with changing Position/Orientation (cont’d)

The data collected from the experiments conducted with ramp inputs show better tracking

performance in the Y axis (lateral) compared X axis. The roll axis remains unaffected by the

ramp input regardless of the speed or radius. Figure 6.8. shows a set of data collected for 500mm

radius at 4 mm/s.

Chapter 6. Experimentation and Performance 121

Figure 6.8: Typical Seam Tracking system response to ramp input

For the Y axis, the system tracks the seam, maintaining a slight offset in error until at

approximately 300 mm, it attempts to compensate and overshoots the target. Figure 6.9 to 6.12

shows a series of Y axis plots as the seam travel speed increases and are grouped according to

radius. From Figures 6.9 and 6.12. it can be seen that the trends remain the same as the speed

increases As the radius decreases, which corresponds to a larger ramp slopes, the lateral error

remains at approximately 1mm but compensation occurs late in the seam tracking trial indicating

a slower response to the ramp input.

Chapter 6. Experimentation and Performance 122

Chapter 6. Experimentation and Performance 123

Figure 6.9: Lateral Seam Tracking system response to Ramp Input Radius of 500mm

Figure 6.10: Lateral Seam Tracking system response to Ramp Input Radius of 400mm

Chapter 6. Experimentation and Performance 124

Figure 6.11: Lateral Seam Tracking system response to Ramp Input Radius of 300mm

Chapter 6. Experimentation and Performance 125

Figure 6.12: Lateral Seam Tracking system response to Ramp Input Radius of 200mm

Chapter 6. Experimentation and Performance 126

In Figure 6.13, it can be seen that the X-axis carries a depth error of up to 5mm throughout

the seam tracking trials. Later in the trial, oscillations can be seen which are centered at

approximately the 5mm depth level indicating that the error is a steady-state error which could be

eliminated if a degree of integral control were present. This described response is typical for the

ramp input trials regardless of speed or ramp input which can be seen in Figure 6.13 which are

selected X axis/depth data sets.

Figure 6.13. Selected X axis/Depth responses to ramp input

Chapter 6. Experimentation and Performance 127

Figure 6.13. Selected X axis/Depth responses to ramp input (cont’d)

Chapter 6. Experimentation and Performance 128

z

x

Reis
Wrist-Center

Reis
Wrist-Center

Workpiece
Workpiece

Pitch
Angle

Yaw
Angle

Lead
Sensor

Lead
Sensor

Seam

Tool-Tip
Sensor

Tool-Tip
Sensor

X

Y

6.2.3. Experiment 2: Stability with Respect to Radial Distance

From Experiment 1, it was observed that as the Reis Robotstar V15 moved outwards with

respect to the work sphere, the robot’s wrist experienced an increasing oscillatory motion as the

robot reached farther to get to its target point. In Experiment 1, this rocking motion was not

collected, therefore, Experiment 2 monitors the angular data of the wrist as the tool tip moves

closer to the outer boundaries of the work sphere. The robot begins seam-tracking on a radial line

from the z-axis using the Step Input Experimental Workpiece and concludes at approximately

600mm. For each experiment the travel speed is varied at values of 4, 8, 16,32, 64 mm/s. Since

the proportional gains are not yet optimized, the values were kept constant at 0.15 for the Yaw

angle and 0.25 for the Pitch angle similar to Experiment 1.

Figure 6.14. Determining the Yaw and Pitch Angles

The angular data is determined by collecting sensor data from both the lead sensor and the tool

tip sensor. Since the length from sensor to sensor is known, the Pitch angle and the Yaw angle of

the sensors can be calculated trigonometrically and plotted against the seam travel distance. Table

Chapter 6. Experimentation and Performance 129

6.2 is a list of experiments to illustrate stability under different travel speeds.

Table 6.2. Stability with respect to Radial Distance and Travel Speed

ID Track Travel Speed Orientation Position

2.1 Straight-Line (step input) 4 mm/s 0o roll, 0o pitch on xy radial

2.2 Straight-Line (step input) 8 mm/s 0o roll, 0o pitch on xy radial

2.3 Straight-Line (step input) 16 mm/s 0o roll, 0o pitch on xy radial

2.4 Straight-Line (step input) 32 mm/s 0o roll, 0o pitch on xy radial

2.5 Straight-Line (step input) 64 mm/s 0o roll, 0o pitch on xy radial

6.2.4. Experiment 2 Observations

The data collected is plotted and grouped into Lateral/Yaw axis data and Depth/Pitch axis

data. In general, at low speeds such as 4mm/s and 8mm/s, the data is fairly smooth, however as

the speed increases, fluctuation amplitudes increase especially at the latter part of seam tracking.

At 32mm/s, seam tracking is cut short as the large amplitudes of oscillation cause the lead sensor

to lose the seam feature thus ending the tracking. Figure 6.15 shows the lateral tool displacement

as the speed increases while Figure 6.16 shows the Depth. One note of interest is that the radial

line lies along a spherical partition boundary line, this causes the kinematics to switch wrist

configurations given the position of the tool.

The Lateral/Yaw axis exhibits in-phase oscillations on both the lead sensor and the tool

tip sensor throughout seam-tracking, thus canceling each other to produce a smooth yaw angle

about zero. Figure 6.17. shows a trial at 16mm/s, although the oscillations are pronounced, they

are none the less in-phase, hence there is no yaw angle oscillations. In Figure 6.18., we can see

that seam tracking begins after the 100mm point has been reached on the seam. As the seam

tracking continues, the system experiences increasing oscillations as it passes the 400mm mark.

Chapter 6. Experimentation and Performance 130

Figure 6.15. Lateral stability along a radial line as speed increases

Chapter 6. Experimentation and Performance 131

Figure 6.15. Lateral stability along a radial line as speed increases (cont’d)

Chapter 6. Experimentation and Performance 132

Chapter 6. Experimentation and Performance 133

Figure 6.16. Depth stability along a radial line as speed increases

Figure 6.16. Depth stability along a radial line as speed increases (cont’d)

Chapter 6. Experimentation and Performance 134

Figure 6.17. Lateral/Yaw axis stability on a radial line at 16mm/s

Chapter 6. Experimentation and Performance 135

Figure 6.18. Lateral/Yaw axis stability on a radial line at 8mm/s

The Depth/Pitch axis data collected shows that the lead sensor data is maintained at zero

by the proportional controller. We can see that seam-tracking begins after 100mm of seam have

been traveled. At 16mm/s we can see that the depth data collected does not contain as much

oscillations as the lateral data in Figure 6.15. There is a pronounced disturbance at 300mm which

is in phase for both the lead sensor and the tool position resulting in a region of oscillation. As

the seam tracking progresses oscillations become present and increase as the limit of the

Chapter 6. Experimentation and Performance 136

workspace is reached. Since the lead sensor maintains itself at zero throughout the seam-tracking,

any tool position movement results in a pitch angle rotation in addition. The oscillation peaks of

the lead sensor are opposite in direction to the tool sensor resulting in larger rotations in the pitch

axis. Figure 6.19. shows the Depth/Pitch angle data for a trial along the radial line conducted at

16mm/s and is very representative of the other experiments.

Figure 6.19. Depth/Pitch axis stability on a radial line at 16mm/s

Chapter 6. Experimentation and Performance 137

6.2.5. Experiment 3: Gains and Transport Delays

Experiment 1 shows that at a 30 degree roll, a very stable configuration for seam tracking

is reached with a step input. The purpose of Experiment 3 is to explore the effects of the

proportional gain for the Pitch and Yaw axis controllers. By choosing the most stable

configuration, we can eliminate almost all other variables and vary either the Yaw gain or the Pitch

gain. For the Pitch gain experiments, the Yaw gain is kept constant at 0.15, while the Pitch gain

is varied at values of 0.05, 0.15, 0.25, 0.35, and 0.45. For the Yaw gain experiments, the Pitch

gain is kept constant at 0.15 while the Pitch gain is varied at values of 0.25, 0.35, 0.55, and 0.75.

In addition, each set of gains were conducted at 16 mm/s and the other at 32 mm/s to show the

difference in response due to the increased travel speed. Once again the stability of the system can

be determined by looking at the Pitch and Yaw angle of the sensor configuration.

Transport Delays are interruptions in the delivery of data. Likewise, the 30 degree Roll

configuration is used in this experiment set for stability under a step input. In these experiments,

the sensory data from the MVS profiling sensor is delayed a number of control cycles (30Hz), and

the stability is monitored. One of the safety features built into the seam tracking program is that

if invalid data is supplied to the brain, the x, y and roll angle are set to zero. This usually causes

the seam-tracking system to continue on a straight course and then resuming seam tracking once

new data is available. If the delay is small, the Seam Tracking system should be able to handle

the delay, however larger delays can cause instabilities.

For the Transport Delay Experiments, the Seam Tracking program was modified to support

simulation of Transport Delays. A buffer corresponding to the size of Transport Delay cycles is

created at the start of the program. At a fixed point the delay is executed. This causes the sensor

data to be set to zero for the number of Transport Delay cycles. The actual data is stored in the

buffer. When the delay is over, the Seam Tracking resumes but data which is delayed by the

number of Transport Delay cycles is used instead. Actual data from the sensor is then routed to

the rotating buffer and delayed before being used for seam tracking. Table 6.3. is a list of

experiments for varying Gains and Transport Delays.

Chapter 6. Experimentation and Performance 138

Table 6.3. Stability with respect to Gains and Transport Delays

ID Track Travel

Speed

Orientation/

Position

Gain / Delay

3.1. Straight-Line (step input) 16 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.05

3.2. Straight-Line (step input) 16 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.15

3.3. Straight-Line (step input) 16 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.25

3.4. Straight-Line (step input) 16 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.35

3.5. Straight-Line (step input) 16 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.45

3.6. Straight-Line (step input) 16 mm/s 30o roll, 0o pitch,

position (i)

Kp (yaw) = 0.05

3.7. Straight-Line (step input) 16 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.25

3.8. Straight-Line (step input) 16 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.35

3.9. Straight-Line (step input) 16 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.55

3.10. Straight-Line (step input) 16 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.75

3.11. Straight-Line (step input) 32 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.05

3.12. Straight-Line (step input) 32 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.15

Chapter 6. Experimentation and Performance 139

ID Track Travel

Speed

Orientation/

Position

Gain / Delay

3.13. Straight-Line (step input) 32 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.25

3.14. Straight-Line (step input) 32 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.35

3.15. Straight-Line (step input) 32 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.45

3.16. Straight-Line (step input) 32 mm/s 30o roll, 0o pitch,

position (i)

Kp (yaw) = 0.05

3.17. Straight-Line (step input) 32 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.25

3.18. Straight-Line (step input) 32 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.35

3.19. Straight-Line (step input) 32 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.55

3.20. Straight-Line (step input) 32 mm/s 30o roll, 0o pitch,

position (i)

Kp (pitch) = 0.75

3.21. Straight-Line (step input) 8 mm/s 30o roll, 0o pitch,

position (i)

Delay = 1cycles

33.3ms

3.22. Straight-Line (step input) 8 mm/s 30o roll, 0o pitch,

position (i)

Delay = 2 cycles

66.7ms

3.23. Straight-Line (step input) 8 mm/s 30o roll, 0o pitch,

position (i)

Delay = 4 cycles

133.3ms

3.24. Straight-Line (step input) 8 mm/s 30o roll, 0o pitch,

position (i)

Delay = 5 cycles

166.7ms

3.25. Straight-Line (step input) 8 mm/s 30o roll, 0o pitch,

position (i)

Delay = 6 cycles

199.8ms

Chapter 6. Experimentation and Performance 140

ID Track Travel

Speed

Orientation/

Position

Gain / Delay

3.26. Straight-Line (step input) 8 mm/s 30o roll, 0o pitch,

position (i)

Delay = 7 cycles

233.1ms

3.27. Straight-Line (step input) 8 mm/s 30o roll, 0o pitch,

position (i)

Delay = 8 cycles

266.7ms

3.28. Straight-Line (step input) 8 mm/s 30o roll, 0o pitch,

position (i)

Delay = 16 cycles

533.3ms

6.2.6. Experiment 3 Observations

From the data collected from both the lead sensor and the tool-tip sensor we see that low

level gains promote a smooth response to the step input. As the gains increase, stability especially

at the latter part of seam tracking is decreased. However, the same gains at higher travel speeds

exhibit a much smoother response. These observations, in general are for both the Y and X axis.

The X axis, however is much more stable and less affected by the increasing gains. This is evident

as the gain at which the X-axis begins to exhibit unstable behavior is 0.55 while the Y-axis

becomes unstable at 0.35. Hence the gains should be carefully chosen with respect to travel speed

as well as seam tracking performance. Figure 6.20. shows selected plots from the Pitch Gain

Experiments. Figure 6.21. shows selected plots from the Yaw Gain Experiments.

Chapter 6. Experimentation and Performance 141

Figure 6.20: Pitch Gain Experiment, Depth stability with a step input

Chapter 6. Experimentation and Performance 142

Figure 6.20: Pitch Gain Experiment, Depth stability with a step input (cont’d)

Chapter 6. Experimentation and Performance 143

Chapter 6. Experimentation and Performance 144

Figure 6.20: Pitch Gain Experiment, Depth stability with a step input (cont’d)

Chapter 6. Experimentation and Performance 145

Figure 6.21: Yaw Gain Experiment, Lateral stability with a step input

Chapter 6. Experimentation and Performance 146

Figure 6.21: Yaw Gain Experiment, Lateral stability with a step input (cont’d)

Chapter 6. Experimentation and Performance 147

Chapter 6. Experimentation and Performance 148

Figure 6.21: Yaw Gain Experiment, Lateral stability with a step input (cont’d)

Chapter 6. Experimentation and Performance 149

The observations for the Transport Delay experiments are discussed in this section. Actual

seam tracking begins after 100mm has been traveled followed by slight oscillations at the latter

part of seam-tracking which we have observed in previous experiments. The Transport Delays

are injected at 150mm. From Figure 6.22 and Figure 6.23, it can be observed that a Transport

Delay of 1 cycle/ 33.3ms or 2 cycles/66.7 ms has almost no effect on the Seam Tracking system

and exhibit similar responses to the delay, as there is little disturbance surrounding the 150mm

area.

Chapter 6. Experimentation and Performance 150

Figure 6.22. Stability data for 1 cycle Transport Delay

Chapter 6. Experimentation and Performance 151

Figure 6.23. Stability data for 2 cycle Transport Delay

Figure 6.24 shows the trial conducted with a 4 cycle or 133.3ms delay . The data has the

same initial behavior as the previous experiments, however oscillations begins at approximately

250mm for both the X and Y axis followed by increasing amplitude in the oscillations. At this

point the system can be considered unstable.

Chapter 6. Experimentation and Performance 152

Figure 6.24. Stability data for 4 cycle Transport Delay

To better investigate the trends as the system becomes unstable, 5, 6, and 7 cycle Transport

Delay plots are shown. Figure 6.25. shows the trial conducted with a 5 cycle/166.7ms delay

inserted at 150mm. This figure shows a slight oscillation following the insertion of the delay,

after 350mm the oscillations become significantly large and the system can be considered unstable

after this point.

Chapter 6. Experimentation and Performance 153

Figure 6.25. Stability data for 5 cycle Transport Delay

Figure 6.26. shows the trial conducted with a 6 cycle/200.ms delay inserted at 150mm.

This figure shows a slight oscillation following the insertion of the delay, after 250mm the

oscillations become significantly large and the system can be considered unstable after this point.

Hence, the system is getting unstable earlier indicating that the system cannot recover from this

delay.

Chapter 6. Experimentation and Performance 154

Figure 6.26. Stability data for 6 cycle Transport Delay

Figure 6.27. and 6.28 show the trials conducted with a 8 cycle/266.7.ms delay inserted at

150mm, and a 16 cycle/300ms delay. These figures shows a slight oscillation following the

insertion of the delay at 150mm, after 250mm the oscillations become significantly large and the

system can be considered unstable after this point.

Chapter 6. Experimentation and Performance 155

Figure 6.27. Stability data for 8 cycle Transport Delay

Chapter 6. Experimentation and Performance 156

Figure 6.28. Stability data for 16 cycle Transport Delay

Chapter 6. Experimentation and Performance 157

6.2.6. Experiment 4: Repeatability

Due to the dynamic nature of the seam tracking system, we must be able to assess the

repeatability and consistency. The Repeatability Experiment consisted of using the step input

workpiece with a Roll angle of 30 degrees and running the Seam Tracking program at 16 mm/s.

This run was repeated 4 times with data being collected from both the lead sensor and the tool-tip

sensor. Figure 6.30 and 6.31, shows the data collected during one of the executions.

Figure 6.29: Lateral/Yaw Axis data for Repeatability Experiment

Chapter 6. Experimentation and Performance 158

Figure 6.30: Depth/Pitch axis data for Repeatability Experiment

From the four trials, the standard deviation for each axis of each sensor is calculated. Since

the angles are calculated values, they are not included in the calculation. The standard deviation

calculation includes: the lead sensor lateral data, the tool lateral data, the lead sensor depth, and

the tool depth. These calculations are plotted with respect to seam length in Figure 6.32 and

Figure 6.33. We can observe that the data is very consistent, with the exception of the tool depth

at the 400-500mm region.

Chapter 6. Experimentation and Performance 159

Figure 6.31: Standard deviation for Lateral data

Chapter 6. Experimentation and Performance 160

Figure 6.32: Standard deviation for Depth data

Chapter 6. Experimentation and Performance 161

6.2.7. Experiment 5: Alternate Wrist Setup

The purpose of the Alternate Wrist Setup Experiment is to briefly explore the possibility

of another sensor configurations with respect to the Reis Robotstar’s wrist. An extension block

which is slanted at 30 degrees in the pitch axis is placed between the tool mounting plate and the

dual sensor fixture. Therefore, Yaw axis movement will require moving joints other than just

joint 6 as in the former case. However, Pitch axis movement will require less abrupt corrections

and minimize some of the late oscillatory motions of the wrist . In addition, this configuration

extends the range working range of the robot. Experiment Set 5 consists of a single execution of

the seam-tracking program using start position (i), and conducted at a travel speed of 16mm/s.

Upon initial seam tracking trials with this configuration, it was observed that the system

was unstable with the proportional gains set at 0.4 kp(yaw) and 0.2 for kp(pitch) which were

determined to be optimal for the first wrist setup. Thus the gains were lowered by a factor of 4

to 0.1 kp(yaw) and 0.05 for kp(pitch) to maintain adequate stability during the trial. Figure 6.34

shows the Alternate Wrist Configuration.

Figure 6.33. Alternate Wrist Configuration

Chapter 6. Experimentation and Performance 162

6.2.8. Experiment 5: Observations

The raw data collected from each sensor exhibits a very long path indicating that this

configuration does indeed increase the seam tracking range of the system. The lateral data shows

lead sensor fluctuating slightly about the zero. The actual tool data does not begin to correct until

100mm is reached. As the seam tracking continues farther along the seam, it begins to experience

a more dramatic oscillation about its target values for both the lead sensor and the tool point

position. The calculated yaw angle is maintained at zero indicating minimal yaw angle oscillations

and smooth travel in the yaw axis.

Figure 6.34: Lateral/Yaw axis data for Alternate Wrist Setup Experiment

Chapter 6. Experimentation and Performance 163

The data for the depth is dramatically smoother than for the lateral case. The lead sensor

remains at zero indicating excellent compensation for the Pitch axis. Once again correction for

depth begins after 100mm of seam travel and seam tracking begins. The tool depth fluctuates

slightly as the sensor moves farther along the seam. The calculated Pitch angle exhibits a slight

rocking which increases in amplitude after 400mm.

Figure 6.35: Depth/Pitch axis data for Alternate Wrist Setup Experiment

This configuration demonstrates some promising features such as extended range and excellent

sensor compensation in both axis. The oscillations at the latter part of seam tracking must still be

considered. In general, this sensor configuration, appears to exhibit better performance than the

earlier configuration. Hence, future experimentation should be conducted to determine the

optimum controller gains for this configuration.

164

Chapter 7.

Discussion and Recommendations

This thesis described the conception, design and preliminary trials of a distributed multiple

robotic sensor-based system. This system called DROID which stands for a Distributed Robot of

Intelligent Devices was designed to be an open architecture system capable of adapting to any

given task. Based on conventional Personal Computer technology it makes extensive use of

inexpensive high performance computing power and high bandwidth interconnect technologies.

Coupled with a high performance real-time operating system and a native message passing

interface, very powerful software based robot controllers and intelligent sensor can be built up and

integrated together with relative ease.

 To evaluate the DROID architecture, the task of Autonomous Multiple Robotic Welding

was implemented. This application requires two robotic arm manipulators and a laser profiling

sensor to be integrated into the distributed architecture and made to work together. The previous

section reported the performance data collected from various seam-tracking trials. This chapter

discusses the success of the DROID system in this application as well as some shortcomings. We

conclude with recommendations for future possible work.

165

7.1. Discussion

Developing the DROID system for Autonomous Multiple Robotic Welding demonstrated

the power of a modular and distributed architecture. Each robotic arm was considered a separate

entity with a known interface, thus independent development of motion control interfaces could

be built for each robot element. Although the Reis Robotstar V15 and the GM Fanuc S400 robots

are completely different robots, the modular open architecture allows the Seam Tracking program

to communicate with each robot in a simple and identical manner. In addition, sensors such as the

profiling sensor and the joystick controller could be used on any of the two robots through the

standard interface.

To connect each robot to the central intelligence computer (Brain Computer), standard

10Mbps Ethernet was used. Although the bandwidth is mediocre by today’s standards it provides

adequate transmission speeds and communication delays between robotic nodes are minimal,

thanks to the Native Message Passing protocol of the QNX realtime operating system. This

Ethernet connectivity also allows Brain Computers to be developed/programmed/trained off-line

using simulation facilities and then integrated into the actual network with minimal down-time.

The Brain Computer also acts as a TCP/IP to QNX Native Message Passing Router such

that it can be connected to the Internet while also allowing access to the QNX private network of

robot and sensor computers. This capability allows remote access from any point in the world

using TELNET, FTP, HTTP or Berkeley Socket Interfaces. Maintenance and supervisory control

can be achieved remotely making this system ideal for remote and dangerous environments. The

Brain Computer also has the ability to act as a development host environment, thus remote

development teams can develop, debug, monitor and deliver code off-site thereby reducing

expensive down-time and on-site integration.

Development for the DROID system primarily consists of building interfaces to existing

robot manipulators and sensors. In theory, any robot or sensor could be integrated into DROID

as long data streams can be interfaced to a PC computer. Most of the existing code base is

developed using a high-level language such as C, the code is modular, reusable and easily

understood. Thus significant development time is saved. Also, by using a UNIX-style operating

166

system such as QNX 4.25 programs are written with command line arguments and are stand-alone

such that they can be incorporated into UNIX style scripts. Thus an extendable robot language

can be developed based on these small programs. By using a multi-tasking operating system, very

sophisticated monitoring systems can be built to aid in debugging these programs. Lastly, the

operating system allows the programmer extensive access to low-level hardware, thereby allowing

device driver to be written quickly. All the above aspects facilitate software development on the

DROID system and set it apart from conventional embedded programming.

From the experimental data collected, it is evident that the tasks such as seam tracking can

be implemented correctly on this multiple robotic platform. With such a centralized data system

development of a task program can be very quick and straight-forward. In the case of the seam-

tracking program, we were able to focus our development on seam tracking without having to

worry about the underlying hardware.

It was determined that seam-tracking, since it is cartesian kinematic problem is

significantly affected by the joint configuration of the robot. Depending on the location of the

robots, differing performance levels resulted. Performance was best when the robot’s wrist was

confined in a given partition with minimal cross-over into an adjacent partition and if the robot

did not have to “reach out”. Over-extension of the robot in its workspace sphere leads to

instabilities and rocking motion of the wrist configuration which was observed in the latter part

of every seam tracking trial. Hence, the workpiece holder robot must keep the seam patch within

the confines of a partition and well within the interior of the tool robot’s reach for optimal seam

tracking performance. In addition, alternative sensor configurations with respect to the wrist such

as that in Experiment 5 prove to have better performance in terms of extended range and accuracy.

Investigation into optimum mounting angles and controller gains should be pursued in future

studies.

Based on the experimental results, it can be concluded that proportional gains for the seam-

tracking system are affected by the rate of turn (radius), the travel speed, and the

location/configuration of the wrist itself. This leads us to conclude a multi-variable controller

is required. This controller, could take the form of a neural network or fuzzy logic controller.

Since seam-tracking is very dependent on joint configuration, it seams that a seam-tracking

controller which controls the joints directly as opposed to making cartesian correction would be

167

more adequate for a 6 revolute jointed robot. This would make the system independent from the

inverse kinematics of reaching the point. This coupled with a learning-based neural network/fuzzy

logic system would lead to an optimal seam-tracking controller.

The extensive experimentation demonstrates that a rich set of data collected as well a vast

set of circumstances can be simulated with the DROID system. Our preliminary experiments with

transport delays shows the DROID system future depends on the ability to handle delays in data

delivery. Currently, delays of 200ms can be handled fairly well with minimal adverse affect.

However, this delay could be extended if data integrity programming is implemented.

7.2. Limitations of Design

Although, the DROID system improves and eliminates many of the problems associated

with multiple robotic control systems it does have certain limitations. One of the difficulties

experienced during developing the DROID system for Autonomous Multiple Robotic Welding

was integrating existing robot controllers and sensors into this environment. Much of the

responsibility for developing the DROID interface computer of each subunit rests on the system

integrator. Fortunately, robots such as the Reis Robotstar V15 have a open bus architecture which

allowed a fairly simple upgrade path to integrate into the DROID system. The GM Fanuc S400

robot however is extremely proprietary, thus only a partial motion control interface was

implemented and somewhat limits the DROID system. Unfortunately, this is fairly widespread

and the Reis example is more the exception than the rule.

QNX hardware support is rather limited as well. For example, Ethernet cards were

selected not on performance issues but for compatibility. As well, many of the expansion cards

such as data acquisition and video frame-grabbers which have available Microsoft Windows

Operating System device drivers do not have such drivers for QNX. Once again, the responsibility

of integrating expansion cards lies with the system integrator. This may require significant

programming effort depending on the level of board information obtained form the manufacturer.

In summary, the limitations of the DROID system itself is largely due to the proprietary nature of

168

the computer and robot manufacturers.

7.3. Recommendations

The DROID system is an ideal development system for multiple robotics. One of the

intentions of this thesis was to develop an experimental robotic work-cell to conduct research in

sensor-based research for multiple robots. The Autonomous Multiple Robotic Seam Tracking

trials conducted represent a preliminary experiment to realize the DROID system concept of multi-

robot and sensor coordination. The experience that we have gained opens the door to endless

possible tasks which could be tackled with the DROID system. In order perform this type of

experimentation or tasks, more sensors and robots must be integrated into the DROID system.

Such integration involves the writing of device drivers and upgrading robot controllers to

communicate with the Brain Computer via Ethernet. Sensors to integrate include force/torque

transducers, video cameras and frame-grabbers, and ultrasonic transducers. In addition to

hardware device drivers being developed, more sophisticated software controllers could be written

for the DROID system robots such as neural network or fuzzy logic servo control modules,

force/torque control, collision avoidance algorithms, visual servo control, and non-linear control.

These modules could be written and easily integrated into the DROID Framework due to its

modular concept which was designed primarily to facilitates the experimentation of different

control paradigms and schemes on the DROID system.

Communication can also be improved by upgrading the Ethernet backbone to 100Mb/s or

1Gb/s using fast Ethernet adapters and Ethernet switches. This would minimize latencies inherent

in the system as well as allowing richer data streams to be delivered between subunits and the

“brain”. This would extend the DROID system to be used in more sophisticated applications

which use a large array of sensors such as sensor-driven autonomous robotic work-cells and

mobile autonomous robotic applications. These applications would require better remote user

interfaces for tele-operation and the development of simulation and visualization tools.

169

As computing power increases, the DROID system should be upgraded to advantage of the

tremendous performance increases. The DROID system architecture makes it possible to

constantly maintain the system at the cutting edge. With this in mind the only limits for the

DROID system lies in the imagination of the system integrator.

170

References

[1] Yasuda, G., Tachibana, K., “ Computer network based control architecture for

autonomous distributed multirobot systems”, Computers & Industrial Engineering, vol

31 no 3-4, p 697-702, Pergamon Press Inc., 1996.

[2] Ng, L., Huissoon, J. P., “A Distributed Multi-Robotic Environment for Flexible

Manufacturing”, Proceeding of the 31st International Symposium on Robotics(ISR 2000),

p 194-5, 2000.

[3] Kriegman, D. J., Triendl, E., Binford, T. O., “ A mobile robot: sensing, planning and

locomotion”. Proceedings of the 1987 IEEE International Conference on Robotics and

Automation, vol.1, p.402-8., IEEE Comput. Soc. Press, 1987.

[4] Huissoon, J. P., Strauss, D. L., “Automatic Control of a Robotic Gas Metal Arc Welding

Cell”, Conference Proceedings of Fifth World Conference on Robotics Research, p 16-1

to 16-11, 1994.

[5] Strauss, D. L. “Real-time Seam Tracking and Torch Control for a Welding Robot”.

M.A.Sc. Thesis, University of Waterloo, 1991.

[6] Stefanuk, W. “A Multiprocessor Based Robot Cntroller: Software Design, Force Sensor

References 171

Integration, and External Force Estimation”. M.A.Sc. Thesis, University of Waterloo,

1988.

[7] Singh, S., Simmons, R., Smith, T., Stentz, A., Verma, V., Yahja, A. , and Schwehr, K.,

“Recent Progress in Local and Global Traversability for Planetary Rovers”, Proceedings

of the IEEE International Conference on Robotics and Automation, IEEE, 2000.

[8] Stewart, D. B., Schmitz, D. E., Khosla, P. K.,” The Chimera II real-time operating system

for advanced sensor-based robotic applications”, IEEE Transactions on System, man, and

Cybernetics, vol 22 no 6, p 1282-1295, IEEE , 1992.

[9] Gertz, M. W., Stewart, D. B., Khosla, P. K.,” Human-machine interface for distributed

virtual laboratories”, IEEE Robotics & Automation Magazine, vol 1 no 4, p 5-13, IEEE

, 1994.

[10] Yasuda, G., “ Object-oriented multitasking control environment for multirobot system

programming and execution with 3D graphic simulation”, International Journal of

Production Economics, vol 60, p 241-250, Elsevier Science, 1999.

[11] Villarroel, J. L., Silva, M. and Muro-Medrano, P. R., “Petri nets in a knowledge

representation schema for the coordination of plant elements”, Preprints of IFAC/IMEKO

Symposium on Intelligent Components and Instruments of Control Applications, p 341-

346, 1992.

[12] Alami, R., Fleury, S., Herrb, M., Ingrand, F., Robert, F., “Multi-robot cooperation in the

MARTHA”, IEEE Robotics & Automation Magazine, vol 5 no 1, p 36-47, IEEE, 1998.

[13] Jung, D., Zelinsky, A., ”Architecture for distributed cooperative planning in a

behaviour-based multi-robot system”, Robotics and Autonomous Systems, vol 26 no 2-3,

References 172

p 149-174, Elsevier Science B.V., 1999.

[14] Parker, L. E, “ALLIANCE: An architecture for fault tolerant multirobot cooperation”,

IEEE Transactions on Robotics and Automation, vol 14 no 2, p 220-240, IEEE, 1998.

[15] Norberto, J. and Sada Costa, J. M. G., “Object-oriented and distributed approach for

programming robotic manufacturing cells”, Robotics and Computer-Integrated

Manufacturing, vol 16 no 1, p 29-42, Elsevier Science Ltd, 2000.

[16] Rubini, A., Linux Device Drivers, O’Reilly & Associates, Inc., 1998.

[17] Shanley, T., Anderson, D., PCI System Architecture Third Ed., Addison-Wesley

Publishing Company, 1995.

[18] Tundra Semiconductor Company. VMEbus Interface Components Manual, Universe II,

 Tundra Semiconductor Company, Kanata, Canada, 1998.

[19] Wurll, C., Henrich, D., Woern, H., Schloen, J., Damm, M., Meier, W., “ Distributed

planning and control system for industrial robots”, International Workshop on Advanced

Motion Control, p 487-492, IEEE, 1998.

[20] Cavalieri, S., Di Stefano, A., Mirabella, O., “Impact of fieldbus on communication in

robotic systems”, IEEE Transactions on Robotics and Automation, vol 13 no 1, p 30-48,

IEEE, 1997.

[21] QNX Software Systems Ltd., Real-Time Programming under QNX 4: Course Notes, QNX

Software Systems Ltd. Kanata, Canada. 1999.

[22] Reis Machines Inc., Reis Robotstar V15 User’s Manual, Reis Machines Inc., Straussburg,

Germany, 1985.

References 173

[23] Xycom Automation Inc., XVME-655 User’s Manual, Xycom Automation Inc., Saline,

Michigan, USA, 1998.

[24] Fanuc Robotics Inc., Fanuc S-400 Maintenance Manual, Fanuc Robotics Inc., Ann Arbor,

Michigan, USA 1985.

[25] Modular Vision Systems Inc., LaserVision Basic System User’s Documentation, Modular

Vision System Inc., 3195 De Miniac Montreal, Canada, December, 1988.

[26] Bollinger, J. G., Duffie, N. A., Computer Control of Machines and Processes, Addison

Wesley Publishing Company, 1998.

[27] Craig, J. J., Introduction to Robotics Mechanics and Control Second Ed., Addison-

Wesley Publishing Company, 1989.

[28] McKerrow, P. J., Introduction to Robotics, Addison-Wesley Publishing Company, 1991.

[29] Levy, S., Artificial Life: A Report from the Frontier Where Computers Meet Biology,

Vintage Books, 1992.

[30] Crymble, D. J. In Print. M.A.Sc. Thesis, University of Waterloo (In Progress)

