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Abstract

Coordinated Autonomy: Pursuit Formations of Multivehicle Systems

Joshua Alexander Marshall

Degree of Doctor of Philosophy, 2005

Graduate Department of Electrical and Computer Engineering

University of Toronto

Inspired by pursuit problems found in the mathematics and physics literature, this

thesis studies the geometric formations of autonomous agent systems consisting

of individuals programmed to pursue one another. More generally, autonomous

yet coordinated multivehicle systems might find application as distributed sen-

sor arrays in terrestrial, space, or oceanic exploration, enhance the efficiency of

surveillance, search, and rescue missions, or even contribute to the development

of automated transportation systems. Therefore, from an engineering standpoint,

the question of how to prescribe desired global behaviours through the application

of only simple and local interactions is of significant and practical interest.

In the first part of this thesis, the notion of pursuit is introduced by examining

a system of identical linear agents in the plane. This idea is then extended to a

system of wheeled vehicles, each subject to a single nonholonomic constraint,

which is the principal focus of the thesis. It is revealed that the equilibrium

formations of vehicles in cyclic pursuit are generalized regular polygons, and it is

exposed how the multivehicle system’s global behaviour can be shaped through

appropriate controller gain assignments. The local stability of these equilibrium

polygons is subsequently examined, revealing which formations are asymptotically

stable. Finally, the results of multivehicle coordination experiments are reported.

These experiments serve to demonstrate the practicality of the aforementioned

distributed control strategy. The findings of this work not only bode well for

continuing research on pursuit-based coordination techniques, but also for other
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cooperative control strategies employing similar local interactions.

The last part of the thesis explores how structure in the interconnection topol-

ogy among individuals of a multiagent system influences symmetry in its trajec-

tories. More specifically, it is revealed how circulant connectivity preserves cyclic

group symmetries in a formation of simple planar integrators, and to what extent

circulant connectivity is necessary to achieve symmetry invariance.
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Chapter 1

Introduction

Multiagent systems and cooperative control are nowadays becoming research

topics of increasing popularity, especially within the systems and control commu-

nity—and with good reason. There exist numerous potential engineering applica-

tions. For example, teams of cooperating autonomous mobile robots might find

application in terrestrial, space, and oceanic exploration, military surveillance and

rescue missions, or even automated transportation systems, to suggest only a few

possibilities. More generally, an agent may not only be a robot or vehicle, but

might be a space satellite, a computer program, or perhaps even a living organism,

cell, or molecule. In fact, one could argue that such systems pervade almost all of

science. Hence, the question of how to prescribe desired global behaviours for a

system of interconnected agents through the application of only simple and local

interactions is of significant and practical interest.

Consider, for example, a group of autonomous mobile robots, initially placed at

random in a room, and suppose it is desired that they exit the room in a graceful,

orderly fashion. One approach to solving this toy problem involves two steps: (i)

have a supervisor issue a command to all the robots, requesting them to form

a circular arrangement; then, after the robots have accomplished the first task,

(ii) have the supervisor command a robot, which is close to the door, to exit,

whereupon the others should follow in sequence. This example of coordinated

autonomy is illustrated in Figure 1.1 and begs the subproblem: How should the

robots individually behave in order that the group as a whole self-organizes to

form a circle, or other formation?

From a systems engineering perspective, the ultimate objective is that of syn-

thesis. In other words, given an interconnected collection of agents, how might

one design and construct decentralized controllers, with possibly limited and/or

1
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(a) (b) (c)

Figure 1.1: A group of autonomous robots, gracefully exiting a room

dynamic information flow between the agents, that together generate a predictable

and desirable global outcome for the network as a whole? To answer this question,

it must first be understood what makes these kinds of systems work. Given an in-

teragent coupling architecture and individual agent dynamics, how does a network

of interacting dynamical systems collectively behave? This thesis places emphasis

only on particular instances of the latter question, the principal result being a

detailed analysis of the possible emergent steady-state behaviours for a network

of interacting wheeled-vehicles that are subject to a restricted information flow

structure called cyclic pursuit.

Of course, growing interest in the study of multiple agent systems insinuates

they should possess distinct advantages over non-interacting individuals. The ab-

solute best one might hope for is that a level of synergy is achieved in that the

system as a whole is, in some meaningful way, greater than the sum of its indi-

vidual agents’ abilities. For example, it is not hard to imagine how several mobile

robots deployed in a remote and hazardous environment (e.g., in the ocean, outer

space, or on Mars) might, on information retrieval missions, act as an itinerant

and reconfigurable sensor array, able to collect simultaneous data readings from

multiple geographic locations. This information could then be used to influence

the network’s global actions, for instance, to optimize the resolution of measure-

ments by formation reconfiguration. Moreover, if the system is also robust to the

failure of individuals, then the entire mission may not be jeopardized should a

certain acceptable number of agents malfunction.

Indeed, one needs to look no further than the natural environment for inspi-
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ration. Perhaps the most widely cited archetype is that of social insects. Ants

are singly simple creatures, yet as a collective they can perform remarkably com-

plicated tasks. They are able to create intricate systems of roadways leading to

food sources and build living bridges to cross gaps in their way—and all in a de-

centralized fashion. The study of such systems might not only spawn new ideas

for control, but also an understanding of how to systematically mimic the tal-

ents of certain sociobiological systems. An ability such as this could, at least in

some cases, be tremendously advantageous. However, the question of how to do

so brings one back to the problem of understanding the fundamental mechanisms

that govern these types of systems.

As was already implied, the research of this thesis is motivated by the problem

of coordinating, in a decentralized and leaderless way, the motions of multiple

autonomous mobile robots. Studied, in particular, are formation strategies for

wheeled-vehicle systems based on the basic idea that individual vehicles should

locally pursue one-another. Motivated by the above introduction, an extensive

review of the literature on multiple agent systems, which serves to contextualize

the contributions of this thesis, is provided in the section that immediately follows.

Finally, an overview of the thesis is given, which introduces more explicitly the

types of multivehicle formation problems studied in the main body of this thesis.

1.1 Literature Synopsis

Multiagent systems, or networks of systems, are pervasive in a great number of

scientific disciplines, from the study of macro- and micro-biological interactions

to complex physical phenomena, from internet software to networked power sta-

tions, and to the focus of this thesis: multirobot control. So, are there unifying

principles? Surely, there must be; although a grand unifying theory is for cer-

tain a lofty aspiration (and is not within the scope of this thesis). On the other

hand, the following literature synopsis illustrates how researchers from various

scientific fields are now beginning to unravel some fundamental results, many of

which show promise for practical engineering application. Rather than attempt to

be encyclopedic, only a select number of references are provided, the intent being

to represent each discipline through example. A more technical introduction to a

few of the most relevant concepts is provided in Chapter 2.



Chapter 1: Introduction 4

1.1.1 Inspiration from Biology

Aggregate patterns in the spatial distribution of individuals within groups of living

creatures is, according to researchers in the biological sciences, a phenomenon that

occurs in a number of organisms, from bacteria to the higher vertebrates (Parrish,

Viscido, and Grünbaum, 2002). Therefore, what the specific behavioural traits

are of individuals that give rise to these patterns is apparently a topic of particular

and growing interest to those in a number of scientific disciplines.

Flocks and related synchronized group behaviours such as schools of
fish or herds of land animals are both beautiful to watch and intrigu-
ing to contemplate. A flock exhibits many contrasts. It is made up
of discrete birds, yet overall motion seems fluid; it is simple in con-
cept yet is so visually complex; it seems randomly arrayed, and yet is
magnificently synchronized. Perhaps most puzzling is the strong im-
pression of intentional, centralized control. Yet, all evidence indicates
that flock motion must be merely the aggregate result of the actions
of individual animals, each acting solely on the basis of its own local
perception of the world (Reynolds, 1987, p. 25).

For some time now, numerous researchers have contended that mathemat-

ical and/or computational models are required in order to make a connection

between individual and group characteristics, the purpose being to distinguish

“behavioural cause from organizational effect by studying the consequences of

various hypothetical social interaction rules” (Parrish et al., 2002, p. 298). For

example, Breder, Jr. (1954) promoted the view that a typical fish school shows

clear evidence of both attraction and repulsion between individuals. Moreover,

he suggested that repulsion is evidently more effective than attraction at short

distances, otherwise individuals would collide, and that attraction must be larger

than repulsion at greater distances, otherwise a cohesive group would never result.

Breder, Jr. went on to propose that this attractive-repulsive relationship between

individuals could be hypothetically modelled by the equation c = a/dm − r/dn

(with m much smaller than n), where a is an attractive force, r is a repelling

force, d denotes the distance between individuals, and c represents a measure of

the group cohesiveness (combination of attractive and repulsive forces). Thus, in

keeping with his observations of schooling fish, the cohesiveness c < 0 when the

distance d is small and c > 0 when d is large.
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Progress has been made since Breder, Jr.’s 1954 article, and according to Par-

rish et al., the most recent analyses have focused on models involving three basic

parameter categories: behavioural matching, positional reference, and numerical

preference. Behavioural matching refers to the tendency for individuals to match

their behaviour with others nearby (e.g., match speed and/or orientation). Breder,

Jr.’s attractive-repulsive model falls under the category of positional preference,

which is most often expressed as a preferred distance to neighbouring individuals.

Finally, numerical preference describes the propensity for individuals to observe

only a subset of the individuals that form a group. The cardinality of this subset is

sometimes called the rule size (see Parrish et al., 2002, for illustrative examples).

In 1987, Reynolds developed his so-called distributed behavioural model, which

is undoubtedly one of the most widely recognized examples of artificially cre-

ated decentralized and self-organizing group behaviour (Reynolds, 1987). His

so-called boids (or bird-oids) each obey the same local rules of navigation, which

are based on each individual’s local perception of the environment, a strategy

that collectively results in natural and visually appealing aggregate motions1.

Reynolds built his simulated flock by assigning the following behavioural rules

to individuals, stated in order of decreasing precedence: (i) avoid collisions with

nearby flock-mates; (ii) attempt to match the velocity of nearby flock-mates, and;

(iii) attempt to stay close to nearby flock-mates. Notice the similarities between

Reynolds’ rules and the model parameter categories described in Parrish et al.

(2002). Since 1987, extensions consistent with Reynolds’ approach have been

developed for simulated life and computer animation purposes, incorporating de-

tailed artificial world models and reinforcement learning algorithms for locomotion

and other tasks (e.g., Terzopoulous, Tu, and Grzeszczuk, 1994).

Artificial models such as those described by Reynolds (1987) have, in turn,

been recognized as a useful tool for researchers in the biological sciences. By

way of individual-based computer simulations “it has been possible to demon-

strate that group leadership, hierarchical control, and global information are not

necessary for collective behaviour” (Couzin, Krause, James, Ruxton, and Franks,

2002, p. 1). For example, Couzin et al. attempted to simulate aggregate behav-

iour in a more “biologically realistic” fashion, drawing on their own observations

1Reynolds’ application was to computer simulated animation. Interestingly, his contributions
in this field later earned him a Scientific and Engineering Award for “pioneering contributions
to the development of three-dimensional computer animation for motion picture production” at
the 70th Academy Awards in 1997 (Academy of Motion Picture Arts and Sciences, 2004).
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and expertise, and on studies reported in the biology literature. In their model,

each individual attempts to maintain a minimum distance from other individuals

within a spherical zone of repulsion, located around the individual. If there are

no neighbouring individuals within this zone of repulsion, then the individual at-

tempts to align itself with neighbours in its so-called zone of orientation and is

attracted to neighbours in its zone of attraction. These zones were designed so as

to reflect more accurately the true sensory capabilities of real animals (e.g., fish,

birds, ants). As the parameters of their model were varied (e.g., the width of the

behavioural zones), Couzin et al. observed noticeable transitions in the collective

dynamical behaviour of the individuals in their model. They reported three2 ap-

parently distinct global behaviours: (i) swarming occurs when there is little or

no alignment of the individuals (i.e., the individuals are principally influenced by

attractive-repulsive behaviours); (ii) a torus occurs when individuals perpetually

travel around an empty centre, and; (iii) parallel motion occurs when individuals

align themselves and travel in an almost rectilinear fashion. The significance of

these characteristic global traits is in the fact that they also appear in research

described in the literature of various other scientific disciplines.

Couzin et al. (2002) also reported observing a hysteresis phenomenon in the

parameter space. They noted that a change in model parameters that initiates

a particular transition from one global behaviour to another does not necessarily

result in the original collective behaviour when reversed. As a result, they con-

jectured that the animal group must have, in some sense, a collective memory,

despite the fact that individuals within the group have no explicit knowledge of

the group’s history. Although this is an interesting conjecture, from a systems the-

oretic viewpoint, it is possible this result is simply a consequence of dependence

on the initial conditions of the aggregate dynamical system.

For a broad treatment of self organization in biology, one which describes many

examples of collective behaviour observed in nature, the reader is also referred to

the text by Camazine et al. (2001). Of course, biology is also a promising source

of inspiration for engineers.

From [a systems and control] engineering perspective, the high level
of coordination achieved by these [natural] groups, and the idea that
they are the result of a lengthy optimization process (natural selec-

2Couzin et al. (2002) actually reported four (not three) behaviours. However, for the purposes
of this discussion, their distinction between two kinds of parallel motion is unnecessary.
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tion) makes social grouping behaviours interesting candidates for bio-
mimetic, or at least biologically inspired, algorithms that confer on
robotic systems some desirable traits of natural groups (Grünbaum,
Viscido, and Parrish, 2004, p. 103).

In fact, analytical studies of biologically inspired aggregate dynamical sys-

tem models have recently appeared in the systems and control literature. Gazi

and Passino (2002a, 2002b) investigated the stability properties of swarms of

autonomous agents in an m-dimensional Euclidean space under the assumption

that at each instant every agent knows the exact position of every other agent in

the group. For n agents, they modelled the kinematic behaviour of each agent

i ∈ {1, 2, . . . , n}, denoted zi ∈ R
m, by the ordinary differential equation (ODE)

żi =
n∑

j=1

f(zj − zi),

where the function f : R
m → R

m was given by the attractive-repulsive function

f(ζ) = ζ

[

a− bexp

(

−‖ζ‖2
2

c

)]

,

for some constants a, b, c > 0, b > a. Thus, if the distance between individuals is

large (respectively, small), the agents are attracted (respectively, repelled) to one

another. They proved, using Lyapunov techniques, that the collection of individ-

uals will form a cohesive swarm in finite time, showed that its centroid remains

stationary, and explicitly computed a bound for the swarm size that depends only

on the model parameters. Gazi and Passino (2002b) extended their initial swarm

model by further assuming that the individuals evolve in an attractant/repellant

profile (i.e., the agents are attracted/repelled by certain regions in space in order

to simulate, for example, the natural presence of nutrients or toxic substances).

Relevant biologically inspired multiple agent research has also appeared in

the mathematics literature. For example, Bruckstein’s (1993) curiosity about

the evolution of ant trails led him to an interesting mathematical discovery, the

outcome being his answer to “why the ant trails look so straight and nice.”

As a final note, Grünbaum et al. (2004, pp. 103–104) remarked that, while

there exist mathematical methods for characterizing the behaviour of engineered

multiple agent systems, the converse is typically not possible. Evidently, there are
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relatively few techniques for deducing the underlying algorithm(s) responsible for

any specific set of observed animal movements.

1.1.2 Coupled Oscillator Science

Engineers and biologists are not the only scientists interested in understanding

how to characterize the behaviour of potentially large networks of interconnected

systems. Owing to its generality, mathematicians and physicists continue to shed

light on this important topic. According to Strogatz (2001), empirical studies

have contributed to the enhanced comprehension of “food webs, electrical power

grids, cellular and metabolic networks, the World-wide Web,. . . , telephone call

graphs, co-authorship and citation networks of scientists, and the quintessential

‘old-boy’ network: the overlapping boards of directors of the largest companies in

the United States” (Strogatz, 2001, p. 268).

Consider, for instance, an array of semiconductor lasers, where synchronizing

the lasing elements in phase is important to achieve a large output power that is

also appropriately concentrated (Kozyreff, Vladimirov, and Mandel, 2000). Such

an array can be modelled as a system consisting of several coupled oscillator

equations. Similar networks of coupled oscillators occur in biology; for example

in cardiac pacemaker cells, in the intestine, and in the nervous system (Strogatz,

2001). Cole (1991) studied an ant colony as a population of coupled oscillators,

where individual ants oscillate between activity and inactivity and coupling oc-

curs when individuals activate their inactive neighbours. Similarly, Boi, Couzin,

Buono, Franks, and Britton (1999) considered the interaction between spatial

groups of worker ants as a network of coupled oscillators. As a result of its uni-

versality, synchrony in arrays of nonlinear coupled oscillators has been for some

time a subject of particular interest to physicists. One of the most notable works

is by Kuramoto (1975, 1984), who proposed a solvable model for collective syn-

chronization. “Twenty-five years later, the Kuramoto model continues to surprise

us” (Strogatz, 2001, p. 272). For a detailed review, see Strogatz (2000).

The archetypal Kuramoto model describes the behaviour of n oscillators θi

with natural frequencies ωi. Each oscillator is modelled by the ODE

θ̇i = ωi +
k

n

n∑

j=1

sin(θj − θi), (1.1)
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where the gain k prescribes the coupling intensity. Notice that the coupling topol-

ogy between oscillators is all-to-all (i.e., every oscillator is influenced by every

other oscillator). Kuramoto’s principal result showed that as n→ ∞, there exists

a critical gain k1 below which the oscillators are completely unsynchronized and

that there is another gain k2 ≥ k1 above which all the oscillators are synchro-

nized. When the gain k is between k1 and k2, the oscillators exhibit partially

synchronized behaviour. It turns out that the Kuramoto model has wide-ranging

applicability. For example, Watanabe and Strogatz (1994, p. 212) studied a model

for large arrays of superconducting Josephson junctions3, which when averaged is

remarkably similar to the basic coupled oscillator model (1.1). For a finite num-

ber n of coupled oscillators, Watanabe and Strogatz were able to provide a global

stability analysis, proving that the oscillators either synchronize or converge to a

manifold of incoherent (i.e., unsynchronized) states. In other words, for finite n

there is no partial synchronization phenomenon.

New research in the systems and control engineering literature indicates that

this notion of oscillator synchronization may have practical implications in co-

operative control engineering. For instance, motivated by a desire to coordinate

the motions of individuals in groups of underwater vehicles, Sepulchre, Paley,

and Leonard (2004); Paley, Leonard, and Sepulchre (2004) applied the results of

Watanabe and Strogatz (1994) to the development of control laws that generate ei-

ther synchronized circular trajectories or parallel motion; which behaviour ensues

effectively depends on the gain k in (1.1). In only a few words, what Sepulchre

et al. did is identify and exploit the connections between “phase models of cou-

pled oscillators and kinematic models of groups of self-propelled particles.” Yet a

significant limitation of their result is the all-to-all coupling assumption, which in

many engineering applications would require a prohibitively demanding communi-

cation topology. Towards addressing this issue, Jadbabaie, Motee, and Barahona

(2004) studied the finite n Kuramoto model in the case of arbitrary connectivity,

in essence rewriting (1.1) in terms of the incidence matrix of an undirected graph

that describes the oscillator interconnection topology. Their work shows that, for

connected graphs (i.e., those in which there is a path from every vertex to every

other vertex), the oscillators either synchronize or converge to a manifold of in-

coherent states; the limiting state, of course, depends on the gain k. The success

3Each Josephson junction is a kind of superconductor “sandwich,” capable of acting like an
extremely high-frequency electronic switch (Strogatz, 2003, pp. 148–150).
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of their analysis technique undeniably hints at an “advantageous marriage of sys-

tems and control theory and graph theory” (Jadbabaie et al., 2004, p. 4301) when

studying networks of interacting dynamical systems.

As the above examples suggest, this phenomenon of (oscillator) synchrony has

engineering potential and gives the impression of being ubiquitous among many

physical and living systems. The latter idea forms the thesis for a very recent

book by Strogatz (2003), wherein Strogatz explores, in wonderfully colourful nar-

rative, what he simply calls sync. His text provides a vast number of examples

and chronicles the development of coupled oscillator science in the mathematical,

biological, and physics literature. However, Strogatz struggles with the question

of “whether the models describe reality faithfully” (Strogatz, 2003, p. 65). Notice,

this is the very same issue remarked by Grünbaum et al. (2004) (see the end of

Section 1.1.1) concerning the challenge of deducing the underlying algorithm(s)

responsible for the behaviour of real networks of interacting systems.

1.1.3 Heuristic Techniques

Reynolds’ (1987) distributed behavioural model is an example of heuristic or

behaviour-based design, since the emergent flocking behaviour results from the in-

teraction of multiple active component behaviours (i.e., Reynolds’ rules). Brooks

(1986) popularized this type of hierarchical behaviour-based approach to robot

control, defining a new paradigm in artificial intelligence now known as the sub-

sumption architecture (Arkin, 1998, p. 130–141). Although his immediate appli-

cation was to the control of a single mobile robot, its potential for extension to

robot collections is obvious. In fact, until very recently, much of the multiple

agent robotics research had focused on the use of behaviour-based algorithms.

For example, Balch and Arkin (1998) evaluated a reactive strategy designed to

implement multivehicle formations in combination with behaviours for collision

avoidance and other navigational goals. Since this thesis does not focus on hi-

erarchical algorithms of this sort, for more information the reader is referred to

Matarić (1995); Cao, Fukunaga, and Kahng (1997); Arkin (1998); Barfoot, Earon,

and D’Eleuterio (1999); Barfoot (2002); and references therein.

Regardless of its practical engineering appeal, the behaviour-based paradigm

is “thin when it comes to providing controllers with guarantees; and engineers

and theorists want guarantees” (Balch, 2003). Corresponding mathematical re-
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sults are rare, as noted by Matarić (1995); Sugihara and Suzuki (1990). It is

perhaps this very shortcoming that has inspired recent and developing interest in

formally proving the technical completeness of algorithms that might be viewed

as originally heuristic in nature.

1.1.4 Formations and Cooperative Control

Some have gone so far as to suggest that, despite its ability to exhibit complex

outcomes, rigorous analysis of even the most simple behaviour-based algorithms

might be an impractical task (Braitenberg, 1984). However, this has not deterred

researchers in the analysis of certain nearest-neighbour techniques, where individ-

ual agents are designed to move based on the motions of their nearest neighbours.

For example, Wang (1989) analyzed certain formation stability properties for the

case when one mobile robot is provided a reference trajectory and designated the

group leader. Early work by Sugihara and Suzuki (1990) investigated a set of

heuristic algorithms for the generation of geometric patterns in the plane (e.g.,

lines, circles, or polygons). Suzuki and Yamashita (1999) later stressed the need

for rigorous proof of the correctness of these sorts of algorithms.

Leonard and Fiorelli (2001) presented a method for distributed control of mul-

tiple autonomous agents by using artificial potential functions and so-called virtual

leaders. The technique is intuitive in that individual agents behave according to

interaction forces generated by sensing the positions of neighbouring agents. They

were able to prove the stability of certain formations based on the construction

of an appropriate Lyapunov function. Beard, Lawton, and Hadaegh (2001) de-

veloped an architecture for the coordination of multiple spacecraft in formation,

which allows for both centralized and decentralized control. Egerstedt and Hu

(2001) proposed a method for stabilizing rigidly constrained vehicle formations

while moving along a desired common path for the formation. Desai, Ostrowski,

and Kumar (2001) developed a technique for transitioning from one rigid forma-

tion to another while at the same time following a global trajectory for the group.

Tabuada, Pappas, and Lima (2001) constructed a framework for studying the

feasibility of vehicle formations that must satisfy both the formation and vehicle

kinematic constraints. Justh and Krishnaprasad (2002, 2003, 2004) studied lo-

cal unicycle steering laws for generating both rectilinear and circular formations

in the plane, which they have shown are the only possible (relative) equilibrium
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formations for identical fixed speed vehicles. Their approach uses alignment and

separation control terms to determine the formation, which is also based on the

pose of all other vehicles in the group (i.e., it is all-to-all). Tanner, Pappas, and

Kumar (2004) recently introduced the notion of leader-to-state stability, a con-

cept for vehicle formations that is similar in spirit to the notion of string stability

in vehicle platoons (Swaroop and Hedrick, 1996). Recently, Ögren, Fiorelli, and

Leonard (2004) presented a control strategy for a network of autonomous vehicles

to reconfigure cooperatively in response to their sensed environment. Their ap-

proach allows the vehicles to act collectively as, for example, a sensor array that

adapts its resolution in order to optimize measurements. Belta and Kumar (2004)

addressed the problem of controlling a large number of robots required to move as

a group by abstracting the group behaviour as a lower dimensional system. This

abstracted information is subsequently used as feedback for individuals.

As has already been established, a useful and thus increasingly common ap-

proach to the analysis of algorithms similar to Reynolds’ distributed behavioural

model is to employ techniques from mathematical graph theory. Typically, a

graph is used to track the influence of neighbouring agents on an individual. The

vertices of the graph usually represent agents while the edges, which are possibly

directed and/or dynamic, represent the existence (or non-existence if no edge is

present) of explicit or implicit communication between agents. For example, Fax

and Murray (2004) investigated the effect of information flow topology between

agents, modelled using algebraic graph theory, on formation stability. Inspired by

Reynolds’ approach, Jadbabaie, Lin, and Morse (2003) proved convergence results

for a nearest-neighbour type problem, guaranteeing that all n agents eventually

move in an identical fashion, despite the distributed nature of the coordination

law. In the cooperative control systems literature, this result has become com-

monly known as consensus or agreement and is analogous to synchronization (as

discussed in Section 1.1.2). Jadbabaie et al. employed a family of graphs with

n vertices to track the interactions between neighbouring agents. Olfati-Saber

and Murray (2003b) developed a graph theoretic framework for generating simi-

lar flocking behaviours in the presence of obstacles. In fact, Reynolds’ model has

spawned a flurry of papers, too numerous to list, claiming rigorous analysis. See

in addition Tanner, Jadbabaie, and Pappas (2003b, 2003a); Beard and Stepanyan

(2003); Z. Lin, Broucke, and Francis (2004); Olfati-Saber and Murray (2004);

Moreau (2004); Z. Lin, Francis, and Maggiore (2005), and references therein.
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1.2 Overview of the Thesis

This thesis studies the geometric formations of multivehicle systems under a novel

reconfiguration strategy inspired by the mathematical notion of pursuit. Of par-

ticular interest are the stability, invariance, and symmetry of formations. A brief

overview of the thesis is given as follows.

It has already been remarked that this work is principally motivated by the

fundamental question of how to prescribe desired global behaviours for a system

of interconnected agents through the application of only simple and local interac-

tions. The current chapter serves to demonstrate the ubiquity of this problem. It

reveals that relevant work is ongoing in a number of scientific fields, especially in

the biological sciences, in physics, as well as in robotics and control engineering.

Subsequently, to place into context the contributions of this thesis, Chapter

2 introduces the general problem framework by way of a more technical review

of select concepts from the developing theories of multiple agent systems and

cooperative control. To this end, the notions of connectivity and consensus are

studied as an introduction to the remaining central chapters. Furthermore, a

unique historical perspective on the pursuit approach taken here is disclosed.

Chapters 3 and 4 study a particularly intuitive control law for multivehicle

systems that achieves circular pursuit patterns in the plane. By extending the

problem of traditional cyclic pursuit to vehicles that are subject to a single non-

holonomic constraint (i.e., a unicycles), it is shown that the multivehicle system’s

equilibrium formations correspond to stationary generalized regular polygons and

that the system’s global behaviour can be changed through appropriate controller

gain assignments. This type of formation strategy might have, in particular,

potential application in the deployment of distributed sensor arrays, enabling

scientists to collect simultaneous seismological, meteorological, or other pertinent

environmental data on planetary exploration missions (e.g., as described in Earon,

Barfoot, and D’Eleuterio, 2001). In each of Chapters 3 and 4, the details of local

stability analyses reveal exactly which equilibrium formations are asymptotically

stable, the results of which are surprisingly nonintuitive.

Because the theory of Chapters 3 and 4 is based solely on vehicles modelled as

ideal kinematic unicycles, it is important to experimentally validate the proposed

multivehicle pursuit strategy. Chapter 5 summarizes the apparatus and outcomes

of multivehicle coordination experiments conducted at the University of Toronto’s
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Institute for Aerospace Studies. The robots used in these experiments are in many

ways significantly different from kinematic unicycles.

Chapter 6 returns to the linear pursuit problem initially introduced in Chapter

2. In contrast to a current trend in the literature towards arbitrary connectivity,

this chapter studies how structure in the interconnection topology among agents

relates to invariance of symmetries in the overall system’s trajectories. Symmetric

formations are often required to solve practical tasks; for example, as in the multi-

vehicle target tracking problem described by Aranda, Mart́ınez, and Bullo (2005).

In Chapter 6, it is demonstrated that circulant structure plays a fundamental role

when the task is preserving symmetry in multiagent formations.

A detailed summary of contributions can be found in Section 7.1.



Chapter 2

Autonomous Agent Systems

The purpose of this chapter is to provide the reader with a more technical intro-

duction to certain relevant concepts from the developing theories of multiple agent

systems and cooperative control. At the same time, as a preface to the remaining

central chapters of this thesis, the notion of pursuit is formally introduced as a

multivehicle coordination strategy.

2.1 Agents and Interconnections

This thesis focuses solely on agents that move in two dimensions; for example,

recall the group of mobile robots depicted in Figure 1.1. Consider a finite number

n > 1 of agents whose positions are denoted by the vectors zi(t) = (xi(t), yi(t)) ∈
R

2, i = 1, 2, . . . , n, at time t ≥ 0. Suppose, for now, that the agents are identical

and that each one can be modelled as a simple kinematic integrator

żi = ui, (2.1)

where the ui ∈ R
2 are inputs. Consider, for the purpose of illustration, the inputs

ui = a (zi+1 − zi) , (2.2)

where a > 0 is some constant and the agent indices i+ 1 are evaluated modulo n.

Henceforth, all indices i+ j, with i, j ∈ Z, should be evaluated modulo n. At each

instant, agent i moves directly towards agent i+ 1 at a speed proportional to the

distance separating the two agents. What trajectories result? Figure 2.1 shows the

trajectories of n = 6 agents, generated by numerical integration, initially located

at random and subject to the control law (2.2) with a = 1. As t → ∞, the

15
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agents spiral into a fixed point. By repeating the experiment, it can be deduced

that there is always exactly one fixed point, whose location depends on the initial

conditions but not on the positive constant a.

1 2

3

4

5

6

Figure 2.1: Six agents subject to control law (2.2)

Now consider a second example, where the inputs ui of (2.1) are given by

ui = a (zi+2 − zi) , (2.3)

with a > 0. By reusing the initial conditions from Figure 2.1, Figure 2.2 shows

the trajectories of six agents subject to the control law (2.3). In this case, half

of the agents spiral into a fixed point, while the other half spiral into a different

fixed point. Again, by repeating the experiment it can be deduced that there is

(almost) always exactly two fixed points, the locations of which depend on the

initial conditions but not on the positive constant a.

It is not hard to intuitively explain the behavioural differences observed be-

tween the trajectories of Figures 2.1 and 2.2. In the case of Figure 2.2, note how

the agents can be divided into exactly two disjoint subsets, {1, 3, 5} and {2, 4, 6}.
Each subset has the property that no agent in that subset influences, by way of
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6

Figure 2.2: Six agents subject to control law (2.3)

the inputs ui, the motions of any agent in the other subset. Therefore, the transfer

of information between agents occurs only within subsets. No such partitioning

of the set {1, 2, . . . , 6} is possible for the control inputs (2.2).

Interagent information flow, whether by way of local sensing or direct com-

munication, is a topic of fundamental importance in the analysis and design of

distributed multiple agent systems. Numerous researchers have come to realize

that algebraic graph theory might serve as an effective tool for modelling the flow

of information between agents (Jadbabaie et al., 2003; Olfati-Saber and Murray,

2003a; Z. Lin et al., 2004). If the flow is directed (i.e., not necessarily pair-

wise), then it can be modelled as a digraph (short for directed graph), denoted

Γ = (V , E). The digraph Γ consists of a finite set V of |V| = n vertices, one for

each agent, along with a set E of |E| ≥ 0 directed edges eij = (vi, vj) ∈ E , where

vi, vj ∈ V. The existence of an edge eij indicates that the i-th agent receives

information, either directly or indirectly, about the j-th agent. If information is

passed between agents by way of local sensing, then Γ is sometimes referred to as

a sensor graph (Z. Lin et al., 2004). For example, Figure 2.3 depicts the sensor

graphs for n = 6 agents subject to (2.2) and (2.3). Alternatively, one might say
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that agent i is influenced by agent j. In this case, the arrows are reversed and Γ

is referred to as an influence graph (Farina and Rinaldi, 2000).
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(a) Control law (2.2)

5

4

3 2

1

6

(b) Control law (2.3)

Figure 2.3: Example sensor graphs for n = 6 agents

The next two sections supply some relevant terminology and mathematical

background relating to digraphs and their associated matrix theory, further details

of which can be found in Horn and Johnson (1985) and Fiedler (1986).

2.1.1 Some Digraph Terminology

A digraph Γ is called weighted if along with every edge in E there is an associated

number aij 6= 0, called the edge weight. The adjacency matrix A of an n-vertex

weighted digraph is an n× n nonnegative matrix whose ij-th entry is the weight

aij associated with the edge eij ∈ E and is otherwise zero. Alternatively, given

an adjacency matrix A, one can define an associated digraph, denoted Γ(A).

Consider, for example, (2.3) and the digraph of Figure 2.3b. In this case, the

adjacency matrix A corresponding to the graph Γ(A) is given by

A =














0 0 a 0 0 0

0 0 0 a 0 0

0 0 0 0 a 0

0 0 0 0 0 a

a 0 0 0 0 0

0 a 0 0 0 0














. (2.4)

The out-degree of a particular vertex is the sum of the weights of the edges
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in E exiting the vertex. Similarly, the in-degree of a particular vertex is the sum

of the edges in E entering the vertex. A graph is called balanced if the in-degree

and out-degree of all its vertices are equal (Olfati-Saber and Murray, 2003a).

Consequently, the out-degree matrix (respectively, in-degree matrix ) of Γ(A) is

a diagonal matrix D = diag(d1, . . . , dn) with diagonal elements corresponding to

either the out-degree (respectively, in-degree) of each vertex. The Laplacian of a

digraph is defined as L = D − A. A directed path in the digraph is a sequence of

contiguous edges {ei1i2 , ei2i3 , ei3i4 , . . .} in Γ(A). The digraph is said to be strongly

connected if between every pair of vertices (vi, vj) there is a directed path of

finite length that begins at vi and ends at vj. Thus, the associated adjacency

matrix A = [aij] of a strongly connected digraph Γ(A) has the property that for

every pair of distinct integers (p, q), with 1 ≤ p, q ≤ n, there exists a sequence

of distinct integers {p, i1, i2, . . . , im, q}, with 1 ≤ m ≤ n, such that the entries

{api1 , ai1,i2 , . . . , aimq} are nonzero. In particular, the sensor graph of Figure 2.3a

is strongly connected, while the sensor graph of Figure 2.3b is not. This accounts

for the difference in behaviours observed in Figures 2.1 and 2.2, a fact that will

be made more precise later in this chapter.

2.1.2 Digraphs and Nonnegative Matrices

Digraphs have an important connection to nonnegative matrices. Let N :=

{1, 2, . . . , n}. Given two real n×n matrices A = [aij] and B = [bij], we write that

(i) A ≥ B if aij ≥ bij for all i, j ∈ N ; (ii) A > B if A ≥ B and A 6= B; and (iii)

A≫ B if aij > bij for all i, j ∈ N . An analogous notation applies to vectors. The

matrix A is called nonnegative if A ≥ 0. The incidence matrix of a real n × n

matrix A is defined as the matrix A = [aij], where aij = 1 if aij 6= 0, and aij = 0

if aij = 0. Notice that A is nonnegative.

Given a digraph Γ(A), its connectivity can be algebraically related to its ad-

jacency matrix A. The following lemma has been adapted from Theorem 3 of

Farina and Rinaldi (2000, p. 21),

Theorem 2.1: The number of directed paths of length m from vertex vi to vertex

vj in Γ(A) is equal to the ij-th element of the matrix Am.

Proof (after Farina and Rinaldi, 2000, p. 21): Note that the assertion holds,

by definition, when m = 1. Assume that the ij-th element of Am, denoted amij ,
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coincides with the number of directed paths of length m from vi to vj in Γ(A),

denoted pmij . Therefore, the number of directed paths pm+1
ij of length m + 1 from

vi to vj can be found by considering directed paths that are concatenations of an

edge ekj with a directed path of length m from vi to vk. In other words,

pm+1
ij =

n∑

k=1

pmikakj =
n∑

k=1

amikakj = am+1
ij ,

concluding the proof by induction. �

For example, the incidence matrix A for the digraph Γ(A) of Figure 2.3b is

given by (2.4) with a = 1. The number of directed paths of length m = 2 from

vertex v3 to vertex v1 is given by the (3, 1) entry of

A2 =














0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0














.

This is easily seen in Figure 2.3b.

For the case when the adjacency matrix happens to be nonnegative, Fiedler

(1986, Theorem 4.4) offers the following theorem.

Theorem 2.2: If A is nonnegative, then the ij-th element of Am is nonzero if and

only if there is a directed path of length m from vertex vi to vertex vj in Γ(A).

A square matrix A is said to be reducible if there exists a permutation of its

rows and columns that takes it into the form

[

A1 0

A2 A3

]

.

If not, the matrix is said to be irreducible. The following is a standard result

(Berman and Plemmons, 1994, combining Theorem 2.1.3 and Theorem 2.2.7).

Theorem 2.3: Let A ≥ 0 be an n× n matrix. Then, the following are equivalent:
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(i) A is irreducible;

(ii) Γ(A) is strongly connected; and,

(iii) (In + A)n−1 ≫ 0.

2.1.3 Connectivity, Pursuit, and Consensus

From the point of view of interagent sensing, the agents subject to (2.2) require

no common coordinate system since the information passed between them is only

relative (not absolute). Yet, in Figure 2.1, they eventually come to agree on a

common point by merely having arrived at one. This type of result is frequently

called consensus, and has broad relevance. For instance, achieving parallel motion

in a school of fish, as described in Section 1.1.1, is analogous to the individuals

having reached a consensus with respect to their heading angles. The synchroniza-

tion of coupled oscillators, talked about in Section 1.1.2, constitutes a consensus

among the oscillators with regards to their phase and frequency. As a result, there

has been recent and marked interest in the consensus problem and, in particular,

conditions for the achievability of consensus. Therefore, a short discussion of this

subject is warranted. In this section, a fundamental result about the achievability

of consensus is related to the existing theory of positive systems (see Luenberger,

1979; Farina and Rinaldi, 2000).

Let zi = (xi, yi) such that z = (z1, z2, . . . , zn) is the aggregate vector of agent

positions. Consider a group of kinematic integrators (2.1) subject to linear inter-

connection control laws such that the multiagent system has the form

ẋ = Mx (2.5)

ẏ = My, (2.6)

where M is a real n×n matrix. Each row i of M specifies the local control strategy

to be followed by agent i. Clearly, the xi and yi components of zi = (xi, yi)

evolve independently. Thus, it is sufficient to look at only one coordinate, say

(2.5). Assume that the individual agents are capable of sensing only relative

position information about each other (e.g., as in the examples (2.2) and (2.3)).

Thus, there is no need for a global positioning system nor explicit communication

among agents. By this assumption, the aggregate system matrix M must have

zero row-sums; equivalently, M [1 1 · · · 1]⊤ = 0.
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Now, imagine a potential strategy for achieving consensus based on the simple

notion that individual agents should pursue one-another. Given the observations

regarding (2.2) depicted in Figure 2.1, this seems like a reasonable approach. Note

how this pursuit strategy is equivalent to allowing only attractive relationships

between agents. More specifically, it implies that the off-diagonal entries of the

aggregate system matrix M are all nonnegative. Such matrices are called Metzler

and are intrinsic to the theory of positive linear systems.

Let R
n
+ denote the set of n-tuples for which all components belong to [0,∞).

Generally, with respect to (2.5), a set D is said to be positively invariant if x(0) ∈
D implies that x(t) ∈ D for all t ≥ 0.

Definition 2.1 (Positive System): The linear system (2.5) is called positive if

the set R
n
+ is positively invariant.

This definition applies equally to nonlinear systems. The following is a well

known result (Luenberger, 1979, pp. 204–205).

Proposition 2.1: The linear system (2.5) is positive if and only if M is Metzler.

Consequently, the proposed pursuit strategy implies that the multiagent sys-

tem (2.5) forms a positive system. The following theorem, given without proof,

presents an existing result from the literature on multiagent systems and the

problem of consensus (cf. Moreau, 2003, 2004; Beard and Stepanyan, 2003; Ren,

Beard, and McLain, 2004; Z. Lin et al., 2005). The result holds irrespective of

whether the multiagent system is positive.

Theorem 2.4: A consensus among the agents (2.5) is achievable if and only if:

(C) there exists at least one vertex vj, j ∈ N , with the property that there is a

directed path to vertex vj from every other vertex vi, i ∈ N , i 6= j, in Γ(M).

Finally, the simulation results of Figures 2.1 and 2.2 can be explained: The

strongly connected digraph of Figure 2.3a satisfies condition (C), while the digraph

of Figure 2.3b does not. This graphical condition (C) has a convenient algebraic

equivalent, which is captured by the following proposition.

Proposition 2.2: Let M be an n × n matrix. There exists at least one directed

path to vertex vj from every other vertex vi, i ∈ N , i 6= j, in Γ(M) if and only if

(In +M)n−1bj ≫ 0, where bj is the j-th natural basis vector.
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Proof: (⇒) According to Theorem 2.1, the number of directed paths of length

m from the vertex vi to another vertex vj is equal to the ij-th element of Mm.

Let bj denote the j-th natural basis vector. Then, the number of directed paths

of length m from vi to vj is simply the i-th component of Mmbj. Among all the

possible directed paths from vi to vj there must exist at least one directed path of

length not greater than n − 1. Therefore, since there exists at least one directed

path to vj from every other vertex vi, i ∈ N , i 6= j, the sum of the vectors bj,

Mbj, M
2bj, . . . , Mn−1bj must be strictly positive. Equivalently, for all constants

αi > 0, i = 1, 2, . . . , n, the sum (α1In + α2M + α3M
2 + . . .+ αnM

n−1)bj ≫ 0. In

particular, the binomial theorem yields

(In +M)n−1bj =
n−1∑

m=0

(

n− 1

m

)

In−m−1
n Mmbj ≫ 0.

(⇐) By noting the above construction, the condition (In + M)n−1bj ≫ 0 is

equivalent to bj + Mbj + M2bj + · · · + Mn−1bj ≫ 0. However, by Theorem 2.1,

this implies that there exists at least one path of length not greater than n− 1 to

vj from every other vertex vi, i ∈ N , i 6= j, concluding the proof. �

In other words, the necessary and sufficient condition (C) of Theorem 2.4 is

equivalent to the existence of at least one natural basis vector bj, j ∈ N , such

that (In + M)n−1bj ≫ 0. Note that if (C) holds for all n vertices, then one

has that (In + M)n−1 ≫ 0, which is the well-known condition for irreducibility

of a nonnegative matrix M (cf. Theorem 2.3). Equivalently, the digraph Γ(M)

is strongly connected, as per Theorem 2.3. In this thesis, as in the research of

Z. Lin et al. (2005) and Moreau (2003), sensor graph edges are assigned in the

opposite direction to influence graphs. As a result, consensus is achievable if and

only if there is at least one state that is reachable from all other states. In Z. Lin

et al. (2005), such states are called globally reachable. In Moreau (2003, 2005),

such a digraph is called weakly connected, terminology which does not fit with the

commonly used definition of a weakly connected digraph being one that is strongly

connected when the sense of edge directions is ignored. In Beard and Stepanyan

(2003) and Ren et al. (2004), the graph is said to have a spanning tree. Ren et

al. (2004) and Z. Lin et al. (2005) also report that (C) holds if and only if zero

is a simple eigenvalue of M . In the context of Markov chains and discrete-time

systems, Luenberger (1979, Chapter 7) uses the term accessible to describe this
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very same idea. Similarly, in nonnegative matrix theory (Berman and Plemmons,

1994, cf. Definition 2.3.7), a state xi is said to have access to state xj if there is a

directed path in Γ(M) from vi to vj. If state xj also has access to state xi, then

the states are said to communicate. Thus, for irreducible matrices, every state

communicates with every other state.

The condition (C) is used in the context of positive systems with an input

(i.e., ẋ = Ax + bu, u ∈ R) to distinguish whether the system’s input influences

every state component (Muratori and Rinaldi, 1991; Farina and Rinaldi, 2000;

Piccardi and Rinaldi, 2002). In this case, the system (with A Metzler and vector

b > 0) is said to be excitable if the condition holds for the incidence pair (A, b);

specifically, (In +A)n−1b≫ 0 (cf. Proposition 2.2). For the system (2.5), without

inputs, one might analogously say that (2.5) is excitable if there is at least one

state component that influences every other state component. In the theory of

decentralized systems, the concept known as input reachability describes a similar

system property (Siljak, 1991).

Although this excitability (accessible, globally reachable, spanning tree) prop-

erty can be easily checked graphically, Proposition 2.2 offers a quick and simple

computational algorithm for checking this property, which could very easily be

implemented on a computer. For each j ∈ N , one simply has to check whether

(In +M)n−1bj ≫ 0. If the condition holds, then the j-th agent influences all the

other agents (equivalently, vertex vj is globally reachable), otherwise not.

2.2 Agents in Cyclic Pursuit

The condition (C) of Theorem 2.4 accounts for all possible (time invariant) in-

terconnection topologies that achieve consensus among a group of autonomous

agents, and one might imagine generalizations of this such as the inclusion of sens-

ing/communication delays (e.g., Moreau, 2005) or dynamically changing graphs

(e.g., Tanner et al., 2003b; Ren and Beard, 2005). Contrary to an apparent trend

in the literature towards generalization, the majority of this thesis instead focuses

specifically on agents in cyclic pursuit, for example, as in the control law (2.2) and

as depicted in Figure 2.3a for n = 6 agents. A principal objective of this thesis

is to study pursuit strategies for autonomous agent systems subject to motion

constraints (i.e., wheeled vehicles).
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2.2.1 The History of Pursuit

Problems based on the notion of pursuit have appealed to the curiosity of mathe-

maticians and scientists over a period spanning centuries. These ideas apparently

originated in the mathematics of pursuit curves (c. 1732), first studied by French

scientist Pierre Bouguer (Bernhart, 1959). Simply put, if a point q in space moves

along a known curve, then another point p describes a pursuit curve if the motion

of p is always directed towards q and the two points move with equal speeds.

More than a century later, in 1877, mathematician Edouard Lucas asked, what

trajectories would be generated if three dogs, initially placed at the vertices of

an equilateral triangle, were to run one-after-the-other? In 1880, Henri Brocard

replied with the answer that each dog’s pursuit curve would be that of a logarith-

mic spiral and that the dogs would eventually meet at a common point, known

now as the Brocard point of a triangle (Bernhart, 1959).

In one of his several Scripta Mathematica articles on the subject, Bernhart

(1959) revealed an intriguing history of cyclic pursuit, beginning with Brocard’s

response to Lucas in 1880. Among his findings, Bernhart reported on a Pi Mu

Epsilon talk given by a man named Peterson, who apparently extended the origi-

nal three dogs problem to n ordered “bugs” that start at the vertices of a regular

n-polygon. He is said to have illustrated his results for the square using four

“cannibalistic spiders.” Thus, if each bug pursues the next modulo n (i.e., cyclic

pursuit) at fixed speed, the bugs will trace out logarithmic spirals and eventu-

ally meet at the polygon’s centre. Watton and Kydon (1969) provided their own

solution to this regular n-bugs problem, also noting that the constant speed as-

sumption is not necessary. Interestingly, the bugs problem has been used for

artistic design. For instance, plotting the line-of-sight for each bug at regular

intervals while tracing out the pursuit curves (see Figure 2.4) generates pleasing

geometric patterns (Peterson, 2001).

Now, suppose the n bugs do not start at the vertices of a regular n-polygon.

Klamkin and Newman (1971) showed that, for three bugs, so long as the bugs are

not initially arranged so that they are collinear, they will meet at a common point

and this meeting will be mutual. For n bugs, this problem was later examined

by Behroozi and Gagnon (1979), who proved that “a bug cannot capture a bug

which is not capturing another bug [i.e., mutual capture], except by head-on

collision.” They used their result to show that, specifically for the 4-bugs problem,
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Figure 2.4: Pursuit patterns for the regular 3- and 4-bugs problem

the terminal capture is indeed mutual. Recently, Richardson (2001a) resolved

this issue for the general n-bugs problem, showing that “it is possible for bugs to

capture their prey without all bugs simultaneously doing so, even for non-collinear

initial positions.” However, he proved that, if the initial conditions are chosen at

random, then the probability of a non-mutual capture is zero.

Other variations on the traditional cyclic pursuit problem have also been in-

vestigated. For example, Bruckstein, Cohen, and Efrat (1991) studied both con-

tinuous (ants) and discrete (crickets and frogs) pursuit problems, as well as both

constant and varying speed scenarios. Although intrinsically simple, it is evident

that the cyclic pursuit problem has many rich and interesting facets.

2.2.2 Linear Cyclic Pursuit

A particular version of the classical n-bugs problem has n agents in cyclic pursuit

such that agent i pursues agent i+1 modulo n according to the control law (2.2).

This differential equation model of the n-bugs problem appeared in Bruckstein

et al. (1991). Recall that, since each coordinate of the agent location zi(t) =

(x(t), y(t)) ∈ R
2 evolves independently, the n-agent system (2.1)–(2.2) decouples

into two identical linear systems of the form (2.5).

Bruckstein et al. (1991) proved that for every initial condition, the agents ex-

ponentially converge to a single point. Moreover, they showed that this limit point

is computable from the initial conditions of the agents. A similar version of the

following theorem can also be found in Z. Lin et al. (2004).
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Theorem 2.5: Consider n planar agents with kinematics (2.1)–(2.2). For every

initial condition, the centroid of the agents z1(t), z2(t), . . . , zn(t) remains station-

ary and every agent zi(t), i = 1, 2, . . . , n, exponentially converges to this centroid.

Proof (after Bruckstein et al., 1991, pp. 16–18): As previously noted, one

needs only to study the linear system (2.5), where

M =














−a a 0 · · · · · · 0

0 −a a 0 · · · 0
...

. . . . . .
...

0 · · · 0 −a a 0

0 · · · · · · 0 −a a

a 0 · · · · · · 0 −a














= a(Π − In),

In is n×n identity matrix, and Π contains the off-diagonal elements. This matrix

M has rank n−1, and thus has a zero eigenvalue corresponding to the eigenvector

e = (1, 1, . . . , 1). Its characteristic polynomial is (Bruckstein et al., 1991, p. 17)

pM(λ) = (λ+ a)n − an.

Since a > 0, this polynomial cannot vanish on the closed right-half complex

plane, excluding the origin, implying that all the nonzero eigenvalues must have

negative real parts. Let {e, v1, v2, . . . , vn−1} be a Jordan basis for M and note

that aΠvi = avi + λvi, for λ a nonzero eigenvector of M . Premultiplying by e⊤

and using the fact that e⊤Π = e⊤, one obtains

ae⊤vi = ae⊤vi + λe⊤vi,

implying that e is orthogonal to the vectors {v1, v2, . . . , vn−1}. Factor the ini-

tial state as x(0) = αe +
∑n−1

i=1 βivi, where α is a constant. Owing to sta-

bility of the nonzero eigenvalues, x(t) → αe as t → ∞. On the other hand

e⊤x(t) = αe⊤e = α × n, meaning that α is the centroid of the agents and that

this centroid remains stationary for all t ≥ 0. �
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2.2.3 Circulant Matrices

Prior to offering an alternate proof of Theorem 2.5, this section summarizes some

basic results from the theory of circulant matrices, which will also become funda-

mentally important in subsequent chapters of this thesis. For a detailed treatise,

the reader is referred to the authoritative text by Davis (1994).

A circulant matrix (or circulant for short) of order n is a matrix of the form

C =









c1 c2 · · · cn

cn c1 · · · cn−1

...
...

...

c2 c3 · · · c1









=: circ(c1, c2, . . . , cn).

Each row is simply the row above shifted one element to the right (and wrapped

around; i.e., modulo n). The entire matrix is determined by the first row.

Let Πn denote the fundamental n× n permutation matrix

Πn =









0 1 0 0 · · · 0

0 0 1 0 · · · 0
...

...
...

...
...

1 0 0 0 · · · 0









= circ(0, 1, 0, . . . , 0),

which plays a special role in the theory of circulants. One can then “push forward”

the matrix Πn to form subsequent permutation matrices; for example

Π2
n =









0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...
...

...
...

0 1 0 0 · · · 0









= circ(0, 0, 1, 0, . . . , 0)

and subsequently Π3
n,Π

4
n, . . ., and so on. Note that Πn is itself circulant. Let In =

Π0
n denote the n × n identity matrix. By using the structure of the permutation

matrices Πk
n, with k = 0, 1, . . . , n− 1, every circulant C can be represented by

C = circ(c1, c2, . . . , cn) = c1In + c2Πn + c3Π
2
n + · · · + cnΠ

n−1
n . (2.7)
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Thus, the polynomial

pC(λ) = c1 + c2λ+ c3λ
2 + · · · + cnλ

n−1

is called the circulant’s representer, since C = pC(Πn). Finally, a matrix C is

circulant if and only if it commutes with the fundamental permutation matrix.

Theorem 2.6 (Davis, 1994, Theorem 3.1.1): Let C be an n× n matrix. Then

C is a circulant matrix if and only if ΠnC = CΠn.

Diagonalization of Circulants

Define ω := ej2π/n where j =
√
−1 and let Ωn = diag(1, ω, ω2, . . . , ωn−1), which

are the n roots of unity. Let Fn denote the n× n Fourier matrix given via

F ∗
n =

1√
n












1 1 1 · · · 1

1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)












(2.8)

and note that F ∗
n = (F ∗

n)⊤, and so Fn = F⊤
n . Also, FnF

∗
n = In (i.e., it is unitary).

It is possible to verify the following diagonalization formula for Πn.

Theorem 2.7 (Theorem 3.2.1 of Davis, 1994): Πn = F ∗
nΩnFn.

Theorem 2.8 (after Theorem 3.2.2 of Davis, 1994): If C is an n×n circulant

matrix, then it is diagonalizable by the Fourier matrix Fn. More precisely, the

circulant C = F ∗
nΛCFn, where ΛC = diag(pC(1), pC(ω), . . . , pC(ωn−1)).

This result is easy to check by using Theorem 2.7 and computing

FnCF
∗
n = Fn(pC(Πn))F

∗
n

= c1FnF
∗
n + c2FnΠnF

∗
n + c3FnΠ

2
nF

∗
n + · · · + cnFnΠ

n−1
n F ∗

n

= c1In + c2Ωn + c3Ω
2
n + · · · + cnΩ

n−1
n

= diag(pC(1), pC(ω), pC(ω2), . . . , pC(ωn−1)).

Corollary 2.1: The eigenvalues of C are λi = pC(ωi−1), where i = 1, 2, . . . , n.
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Block Circulant Matrices

First, let A = [aij] and B = [bij] be m×n and p× q matrices, respectively. Then,

the Kronecker product of A and B is the mp× nq matrix

A⊗B :=







a11B · · · a1nB
...

...

am1B · · · amnB






.

A useful property of the Kronecker product is that AC⊗BD = (A⊗B)(C⊗D).

Let A1, A2, . . . , An be m×m matrices. A block circulant matrix of type (m,n)

is a mn×mn matrix of the form

A =









A1 A2 · · · An

An A1 · · · An−1

...
...

...

A2 A3 · · · A1









=: circ(A1, A2, . . . , An).

Note that A is not necessarily circulant (only block circulant). Let BC(m,n)

designate the set of block circulant matrices of type (m,n). Similar to circulant

matrices, every block circulant A can be represented by

A = circ(A1, A2, . . . , An) =
n−1∑

k=0

(
Πk
n ⊗ Ak+1

)
. (2.9)

Theorem 2.9 (after Theorem 5.6.4 of Davis, 1994): If A ∈ BC(m,n), then it

has the form A = (Fn ⊗ Im)∗diag(D1, D2, . . . , Dn)(Fn ⊗ Im), where









D1

D2

...

Dn









=
(√

nF ∗
n ⊗ Im

)









A1

A2

...

An









. (2.10)

Proof (sketch): We know that A ∈ BC(m,n) if and only if it is of the form
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(2.9). Each element of this sum can be written as

Πk
n ⊗ Ak+1 = (F ∗

nΩk
nFn) ⊗ I∗mAk+1Im

= (Fn ⊗ Im)∗(Ωk
n ⊗ Ak+1)(Fn ⊗ Im),

which yields

A = (Fn ⊗ Im)∗

(
n−1∑

k=0

Ωk
n ⊗ Ak+1

)

(Fn ⊗ Im).

It can be shown by explicit computation (Davis, 1994, p. 180) that

n−1∑

k=0

Ωk
n ⊗ Ak+1 = diag(D1, D2, . . . , Dn)

where the diagonal blocks are given by (2.10). �

Theorem 2.9 furnishes a way to block diagonalize block circulant matrices. By

using the fact that (Fn ⊗ Im)∗(Fn ⊗ Im) = Imn, one obtains

ΛM = diag(D1, D2, . . . , Dn) = (Fn ⊗ Im)A(Fn ⊗ Im)∗.

2.2.4 Invariant Subspaces

With reference to Halmos (1958), this section reviews the notion of an invariant

subspace. Consider a linear transformation A : R
n → R

n. Then a subspace S ⊂
R
n is said to be invariant under A (or A-invariant for short) if x ∈ S implies that

Ax ∈ S. An A-invariant subspace S induces a linear transformation AS : S → S
called the restriction of A to S. Moreover, the same subspace S induces a linear

transformation in the quotient space R
n/S, denoted A⋆S : R

n/S → R
n/S.

Suppose S ⊂ R
n has dimension m < n. Then, there exists a canonical basis

that gives A the upper-triangular matrix form

[

AS ∗
0(n−m)×m A⋆S

]

.

This form can be obtained by choosing a basis {x1, x2, . . . , xn} for R
n so that the
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elements {x1, x2, . . . , xm} are in S, while {xm+1, xm+2, . . . , xn} are not.

2.2.5 Proper Changes of Coordinates

Let ξ and ϕ be vectors in R
n. Consider a proper change of coordinates given

by ϕ = Φ(ξ), which transforms a set of state equations from ξ-coordinates to

ϕ-coordinates. By the phrase “proper change of coordinates” it is meant that

the map Φ : D → R
n, where D is an open set of R

n, is a diffeomorphism (i.e.,

a continuously differentiable map with a continuously differentiable inverse; or

more explicitly, Φ is bijective and both Φ and Φ−1 are of class C1). The following

standard theorem gives a sufficient condition for a map Φ to be a diffeomorphism

(this version has been adapted from Isidori, 1995, Appendix A).

Theorem 2.10 (Inverse Function Theorem): Let D be an open set of R
n and

Φ : D → R
n be a C∞ mapping. If the Jacobian [∂Φ/∂ξ]ξ̄ is nonsingular at some

ξ̄ ∈ D, then there exists an open neighbourhood U of ξ̄ ∈ D such that V = Φ(U)

is open in R
n and the restriction of Φ to U is a diffeomorphism onto V.

2.2.6 Alternate Proof of Theorem 2.5

Finally, this section offers an alternate proof of Theorem 2.5. This alternate proof

may not be as direct as the one of Section 2.2.2, originally given by Bruckstein et

al. (1991). Moreover, there may be other approaches that are more efficient than

the one offered here. Rather, the purpose of this section is to introduce a specific

perspective that will prove useful in Chapters 3 and 4.

As previously noted, one needs only to study the linear system (2.5). Notice

that M is a circulant matrix of the form

M = circ(−a, a, 0, . . . , 0).

Therefore, the system’s equilibrium point x̄ = (x̄1, x̄2, . . . , x̄n) must satisfy x̄1 =

x̄2 = · · · = x̄n. Moreover, due to cyclic pursuit

n∑

i=1

ẋi(t) = 0 =⇒
n∑

i=1

xi(t) ≡ c for all t ≥ 0, (2.11)
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where the constant c is determined by the initial locations via c =
∑n

i=1 xi(0). In

other words, the equilibrium point x̄ must be the centroid; that is

x̄i =
1

n

n∑

i=1

xi(0).

The centroid is also stationary, by (2.11).

Hence, for every initial condition x(0), the system (2.5) is constrained to evolve

on an M -invariant affine subspace Sc ⊂ R
n defined by

Sc =
{

x ∈ R
n :
[

1 1 · · · 1
]

x = c
}

.

This affine subspace Sc has dimension n − 1. Consider a change of coordinates

given by x̂ = x − c/n × (1, 1, . . . , 1). In these coordinates, the dynamics (2.5)

remain the same but the centroid of the points x̂1(0), x̂2(0), . . . , x̂n(0) is the origin.

Moreover, in these coordinates Sc is a subspace of R
n. Therefore, there exists an

induced linear transformation in the quotient space M⋆
Sc

: R
n/Sc → R

n/Sc whose

eigenvalues do not influence the stability of the origin for x̂(0) ∈ Sc. Hence, there

exists a change of basis that transforms M into the form

[

MSc
∗

01×(n−1) M⋆
Sc

]

.

Consider another change of coordinates x̃ = Px̂, given by

x̃1 = x̂1, x̃2 = x̂2, . . . , x̃n−1 = x̂n−1, x̃n =
n∑

i=1

x̂i,

which yields

˙̃x =












1 0 · · · · · · 0

0 1 0 · · · 0

0 0
. . . 0 0

0 · · · 0 1 0

1 1 · · · · · · 1












MP−1x̃,
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and subsequently

˙̃x =














−a a 0 · · · · · · 0

0 −a a 0 · · · 0

0 0
. . . . . . 0 0

0 · · · 0 −a a 0

0 · · · · · · 0 −a a

0 · · · · · · · · · · · · 0

























1 0 · · · · · · 0

0 1 0 · · · 0

0 0
. . . 0 0

0 · · · 0 1 0

−1 −1 · · · −1 1












x̃

=














−a a 0 · · · · · · 0

0 −a a 0 · · · 0

0 0
. . . . . . 0 0

0 · · · 0 −a a 0

−a · · · · · · −a −2a a

0 · · · · · · · · · 0 0














x̃ =

[

MSc
∗

01×(n−1) M⋆
Sc

]

x̃.

Therefore, when determining the stability of x̄ we can disregard exactly one zero

eigenvalue and conclude stability based on the remaining n− 1 eigenvalues of M .

M is circulant and its representer is pM(λ) = a(λ−1). And so, by Corollary 2.1,

the eigenvalues of M must be given by λi = pM(ωi−1); in particular

λ1 = a(ω0 − 1) = 0

λ2 = a(ω1 − 1) = a
(
ej2π/n − 1

)

λ3 = a(ω2 − 1) = a
(
ej4π/n − 1

)

...

λn = a
(
ωn−1 − 1

)
= a

(
ej2(n−1)π/n − 1

)
.

Alternatively, in complex number form

λi = a

[

cos

(
2π(i− 1)

n

)

− 1

]

+ ja sin

(
2π(i− 1)

n

)

,

with i = 1, 2, . . . , n. Thus, for all a > 0, M always has exactly one zero eigenvalue,

while the remaining n− 1 eigenvalues lie strictly in the left-half complex plane.

Indeed, the fixed point in Figure 2.1 to which the six agents converge corre-

sponds to the centroid of the agents z1(t), z2(t), . . . , z6(t), for all t ≥ 0.
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2.3 Vehicles in Pursuit

The linear pursuit problem is itself quite interesting and has some beautiful ex-

tensions (e.g., see Bruckstein et al., 1991; Bruckstein, Sapiro, and Shaked, 1995).

However, the principal focus of this thesis is on a nonlinear analog involving

wheeled vehicles. Suppose the above linear cyclic pursuit scenario is extended

to one in which each agent is instead a single-wheeled vehicle called a kinematic

unicycle, as illustrated in Figure 2.5, with nonlinear state model






ẋi

ẏi

θ̇i




 =






cos θi 0

sin θi 0

0 1






[

vi

ωi

]

= G(θi)ui, (2.12)

where (xi, yi) ∈ R
2 denotes the i-th vehicle’s position, θi ∈ S

1 is the vehicle’s

orientation, and ui = (vi, ωi) ∈ R
2 are control inputs.

θ

Y

X

(x, y)

Figure 2.5: Top view of a unicycle

The unicycle in Figure 2.5 is constrained to move in the direction θ (i.e., there

is no lateral slipping of the wheel). This constraint happens to be nonholonomic

in nature, meaning that the associated constraint equation cannot be integrated

so as to reduce the dimension of the state-space. A more detailed review of

nonholonomic systems can be found in Appendix B.1.

In the aforementioned scenario, the unicycles will not generally be able to

head towards their designated targets at each instant. Instead, depending on the

allowed control energy, each vehicle will require some finite time to steer itself

towards its preassigned leader. What trajectories can be generated?

Let ri denote the distance between vehicle i and vehicle i + 1, and let αi be

the difference between the i-th vehicle’s heading and the heading that would take

it directly towards its prey, vehicle i + 1 (see Figure 3.1 on page 38). In analogy
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with the linear control law (2.2), an intuitive pursuit law for (2.12) is to assign

vehicle i’s forward speed vi in proportion to the distance error ri, while at the

same time assigning its angular speed ωi in proportion to the heading error αi. In

the next three central chapters of this thesis, the possible equilibrium formations

for multivehicle systems of this sort are studied in detail.



Chapter 3

Fixed-speed Pursuit Formations

Following the introduction given in Section 2.3 to vehicles in cyclic pursuit, the

simplest case is perhaps when the vehicles all travel at the same constant speed.

Hence, the purpose of this chapter is to study the achievable behaviours for fixed-

speed unicycles in cyclic pursuit. The chapter begins by revealing the complete

set of possible equilibrium formations and their geometry. Next, a technique for

local stability analysis is presented that works for any number of vehicles. Finally,

limit cycle behaviours are briefly discussed.

3.1 Nonlinear Equations of Pursuit

With reference to the kinematic unicycle model (2.12) on page 35, recall that ri

denotes the distance between vehicle i and vehicle i+1, and that αi is the difference

between the i-th vehicle’s heading and the one that would take it directly towards

its prey, vehicle i+ 1. These variables are graphically depicted in Figure 3.1.

As in the previous chapter, and henceforth, all indices i + j, with i, j ∈ Z,

should be evaluated modulo n.

3.1.1 Transformation to Relative Coordinates

Firstly, it is useful to consider a transformation to coordinates involving the vari-

ables ri and αi, which shall be referred to as relative coordinates. Let qi =

(xi, yi, θi) and define q̃i := R(θi+1)(qi − qi+1), where R(θ) is the rotation matrix

R(θ) =






cos θ sin θ 0

− sin θ cos θ 0

0 0 1




 ,

37
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i

ri

αi + βi

i+ 1

αi

βi

Figure 3.1: Relative coordinates with vehicle i in pursuit of i+ 1; see (3.2)

which yields dynamics

˙̃qi = G(θ̃i)ui −






1 0

0 0

0 1




ui+1 +






ωi+1ỹi

−ωi+1x̃i

0




 . (3.1)

In these coordinates, vehicle i views itself in a coordinate frame centred at

vehicle i+ 1 and aligned with vehicle i+ 1’s heading. As per Figure 3.1, define

ri =
√

x̃2
i + ỹ2

i (3.2a)

αi = arctan

(
ỹi
x̃i

)

+ π − θ̃i (3.2b)

βi = θ̃i − π, (3.2c)

with ri ∈ R+ − {0} and αi, βi ∈ R. When x̃i = 0, it is assumed that arctan(ỹi/0)

evaluates to ±π/2, depending on the sign of ỹi. By taking the derivative of (3.2a),

ṙi =
x̃i ˙̃xi + ỹi ˙̃yi
√

x̃2
i + ỹ2

i

.

By substituting (3.1), this yields

ṙi =
1

ri

(

vi

(

x̃i cos θ̃i + ỹi sin θ̃i

)

− x̃ivi+1

)

.

But, from Figure 3.1 and (3.2c) one has that x̃i/ri = cos(αi+βi), ỹi/ri = sin(αi+
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βi), and θ̃i = βi + π. Thus, one obtains

ṙi = −vi (cos(αi + βi) cos βi + sin(αi + βi) sin βi) − vi+1 cos(αi + βi)

= −vi cosαi − vi+1 cos(αi + βi).

The derivative with respect to time of (3.2c) is β̇i = ωi−ωi+1. Finally, by taking

the derivative with respect to time of (3.2b), it holds that

α̇i =
x̃i ˙̃yi − ỹi ˙̃xi
x̃2
i + ỹ2

i

− ˙̃θi.

By substituting (3.1) and the derivative in time of (3.2c), this yields

α̇i =
1

r2
i

(

vi

(

x̃i sin θ̃i − ỹi cos θ̃i

)

+ vi+1ỹi − ωi+1

(
x̃2
i + ỹ2

i

))

− β̇i

=
1

ri
(vi (sin(αi + βi) cos βi − cos(αi + βi) sin βi) + vi+1 sin(αi + βi)) − ωi

=
1

ri
(vi sinαi + vi+1 sin(αi + βi)) − ωi.

Therefore, in the relative coordinates (3.2) one obtains n vehicle subsystems with

kinematic equations of motion

ṙi = −vi cosαi − vi+1 cos(αi + βi) (3.3a)

α̇i =
1

ri
(vi sinαi + vi+1 sin(αi + βi)) − ωi (3.3b)

β̇i = ωi − ωi+1, (3.3c)

for i = 1, 2, . . . , n, where the indices i+1 are evaluated modulo n, and with states

ri ∈ R+ − {0} and αi, βi ∈ R, and inputs vi, ωi ∈ R.

System (3.3) describes the relationship between vehicle i and the one that it

is pursuing, i + 1, in relative coordinates. Observe that the transformation from

qi, i = 1, 2, . . . , n, into ξi := (ri, αi, βi) is not proper, which is not surprising since

any reference to a global coordinate frame has been removed. Analytically, an

immediate example of why this coordinates transformation is not proper lies in the

fact that, from (3.2c), the relative coordinates are constrained by
∑n

i=1 βi = −nπ.

A more detailed discussion about coordinate constraints is offered in Section 3.1.3.
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3.1.2 Fixed-speed Pursuit

Once more, in analogy with the linear control law (2.2), an intuitive fixed-speed

pursuit law for (2.12) is to assign vehicle i’s angular speed ωi in proportion to its

heading error αi. In other words, consider n unicycles, each with control inputs

vi = vR and ωi = kαi, (3.4)

where k, vR > 0 are constants. Substituting these controls into (3.3) gives a system

of n cyclically interconnected and identical subsystems

ṙi = −vR (cosαi + cos(αi + βi)) (3.5a)

α̇i =
vR
ri

(sinαi + sin(αi + βi)) − kαi (3.5b)

β̇i = k(αi − αi+1), (3.5c)

which is examined in the remaining sections of this chapter.

3.1.3 Pursuit Graphs and Coordinate Constraints

At each instant, regardless of the control law, the multivehicle system’s geometric

configuration in R
2 can be described by a special digraph called a pursuit graph.

Definition 3.1: A pursuit graph Γt at time t ≥ 0 is a pair (Vt, Et) such that

(i) Vt is a finite set of vertices, |Vt| = n, where each vertex zi(t) = (xi(t), yi(t)) ∈
R

2, i ∈ {1, . . . , n}, represents the position of vehicle i in the plane; and,

(ii) Et is a finite set of directed edges, |Et| = n, where each edge ei(t) : Vt×Vt →
R

2, i ∈ {1, . . . , n}, is the vector connecting zi(t) to its prey, zi+1(t).

Note that ri(t) = ‖ei(t)‖2, where ‖·‖2 denotes the standard Euclidean norm.

Furthermore, note that pursuit graphs store within their vertices each vehicle’s po-

sition in the plane. In other words, ei(t) = zi+1(t)−zi(t) such that
∑n

i=1 ei(t) ≡ 0.

Let ξ := (ξ1, ξ2, . . . , ξn), where ξi = (ri, αi, βi). Then, by choosing a coordinate

frame attached to, say, vehicle 1 and oriented with vehicle 1’s heading, this con-
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dition corresponds to constraints on the system described by the equations

g1(ξ) = r1 sinα1+r2 sin(α2 + π − β1) + r3 sin(α3 + 2π − β1 − β2) + · · ·
· · · + rn sin(αn + (n− 1)π − β1 − β2 − · · · − βn−1) = 0

g2(ξ) = r1 cosα1+r2 cos(α2 + π − β1) + r3 cos(α3 + 2π − β1 − β2) + · · ·
· · · + rn cos(αn + (n− 1)π − β1 − β2 − · · · − βn−1) = 0.

For vehicles numbered 1 and 2, Figure 3.2 helps to illustrate how these constraint

equations arise. Moreover, one has the constraint

n∑

i=1

β̇i(t) = 0 =⇒
n∑

i=1

βi(t) ≡ c

for all t ≥ 0, where the constant c = −nπ by the definition (3.2) for βi. This

yields a final constraint equation

g3(ξ) =
n∑

i=1

βi + nπ = 0 mod 2π.

α2

r1

1

α1

2

α1

π − α1 − β1

3

α1 + β1

r2

Figure 3.2: Depiction of coordinates for vehicles 1 and 2

These constraints are essential to the equilibrium and stability analyses that

follow in Sections 3.2 and 3.3, respectively.
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3.1.4 Sample Simulations

Preliminary computer simulations suggest the possibility of achieving circular tra-

jectories in the plane. Figure 3.3a shows simulation results for a system of n = 5

vehicles, initially positioned at random, subject to the control law (3.4) with

k = 1. Notice how the vehicles converge to equally spaced motion around a circle

of fixed radius with a pursuit graph that is similar to a regular pentagon. Figure

3.3b illustrates what happens if the gain k is increased from 1 to 2, suggesting

that the circle’s radius may be inversely proportional to the gain k > 0.

3.2 Generalized Equilibria

In this section, the term equilibria is used to describe the set of configurations for

which the vehicles have fixed relative pose. Thus, to an observer aboard any one

of the vehicles, all the other vehicles would appear stationary. These equilibria

are the equilibrium points of the n interconnected subsystems (3.5).

In order to characterize the possible equilibrium formations for the multivehicle

system (3.5), an adequate description of the system’s pursuit graph at equilibrium

is required. The following definition for a regular polygon with coplanar vertices

has been adapted from Coxeter (1948) to allow for vertices that are not necessarily

distinct and for the directed edges of a pursuit graph.

Definition 3.2 (after Coxeter, 1948, p. 93): Let n and d < n be positive integers

so that p := n/d > 1 is a rational number. Let R be the positive rotation in the

plane, about the origin, through angle 2π/p and let z1 6= 0 be a point in the plane.

Then, the points zi+1 = Rzi, i = 1, . . . , n− 1, and edges ei = zi+1−zi, i = 1, . . . , n,

define a generalized regular polygon, which is denoted {p}.

By this definition, {p} can be interpreted as a directed graph with vertices

zi (not necessarily distinct) connected by edges ei as determined by the ordering

of points. The planar figure {p} is called positively oriented if d ≤ n/2 and,

conversely, negatively oriented if d > n/2.

Since p is rational, the period1 of R is finite and, when n and d are coprime,

this definition is equivalent to the well known definition of a regular polygon as a

1Of course, the period of R, call it l, is merely the number of times R must be applied to a
point z1 6= 0 before one obtains zl = Rlz1 = z1.
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1

1

2

2

3

3

4

4

5 5

(a) Gain k = 1

1

1

2

2

3

3

4

4

5

5

(b) Gain k = 2

Figure 3.3: Five unit-speed vehicles subject to control law (3.4)



Chapter 3: Fixed-speed Pursuit Formations 44

polygon that is both equilateral and equiangular. Moreover, when d = 1, {p = n}
is an ordinary regular polygon (i.e., its edges do not cross one another). However,

when d > 1 is coprime to n, {p} is a star polygon since its sides intersect at certain

extraneous points, which are not included among the vertices (Coxeter, 1948, pp.

93–94). If n and d have a common factor m > 1, then {p} has ñ = n/m distinct

vertices and ñ edges traversed m times. The trivial case when d = n has not been

included because it corresponds to the geometrically uninteresting situation when

the vehicles are all coincident.

Figure 3.4 illustrates some example possibilities for {p} when n = 9. In the

first instance, {9/1} is an ordinary polygon. In the second instance, {9/2} is a

star polygon since 9 and 2 are coprime. In the third instance, the edges of {9/3}
traverse a {3/1} polygon 3 times, since m = 3 is a common factor of 9 and 3.

{9/3}

1
2

7

9

5 6

4

1

3

56

8

3 8 2 9{9/2}{9/1}

47
2,5,8 3,6,9

1,4,7

Figure 3.4: Example generalized regular polygons

Lemma 3.1 (Coxeter, 1948, p. 94): The internal angle ψ at each vertex of a

generalized regular polygon {n/d} is

ψ = π

(

1 − 2d

n

)

.

Note that the sign of ψ determines whether {p} is positively or negatively ori-

ented. The following important result reveals the possible equilibrium formations

for n kinematic unicycles in cyclic pursuit, subject to (3.4).

Theorem 3.1: The 3n-dimensional system (3.5) has 2(n− 1) equilibrium points,

described as follows: the ri are all equal, ri = r̄; likewise, αi = ᾱ and βi = β̄ for
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all i ∈ {1, 2, . . . , n}. The 2(n− 1) values of r̄, ᾱ, and β̄ are given by

ᾱ = ±πd
n
, d = 1, 2, . . . , n− 1

β̄ = π − 2ᾱ

r̄ =
2vR
kᾱ

sin ᾱ.

Finally, at each equilibrium point, the related pursuit graph is a generalized regular

polygon {n/d}, with d ∈ {1, 2, . . . , n− 1}.

Proof: For β̇i = 0, (3.5c) yields αi = αi+1. Let ᾱ ≡ αi at equilibrium. From the

equilibrium condition ṙi = 0 of (3.5a), cos ᾱ = − cos(ᾱ + βi), which implies that

either βi = π or βi = π − 2ᾱ. However, at equilibrium (3.5b) yields ᾱ = 0 when

βi = π. Therefore, it is not simultaneously possible that βi = π and βi+1 = π−2ᾱ

for some ᾱ 6= 0 at equilibrium, implying that βi = βi+1 for all i. Let β̄ ≡ βi at

equilibrium. Again, from the condition α̇i = 0 of (3.5b),

ri =
vR
kᾱ

(
sin ᾱ+ sin(ᾱ+ β̄)

)
for all i ∈ {1, 2, . . . , n}. (3.6)

Therefore, ri = ri+1. Let r̄ ≡ ri at equilibrium.

For vehicles in cyclic pursuit, the system’s pursuit graph Γt = (Vt, Et) has
∑n

i=1 e(t) ≡ 0. In particular, the constraint

g2(ξ̄) = r̄(cos ᾱ+ cos(ᾱ+ π − β̄) + · · ·
· · · + cos(ᾱ+ (n− 1)(π − β̄))) = 0

(3.7)

of Section 3.1.3 must hold. However, when β̄ = π, (3.5b) implies that ᾱ = 0,

which subsequently implies that the left-hand side of (3.7) equals r̄n 6= 0. Thus,

β̄ = π (with ᾱ = 0) is not feasible for vehicles in cyclic pursuit.

Suppose ᾱ > 0. Since ri = ri+1, the system’s pursuit graph Γt is equilateral

(i.e., ‖ei‖2 = ‖ei+1‖2). Let ψi be the internal angle at each vertex of the pursuit

graph. The pursuit graph is equiangular (i.e., ψi = ψi+1) since it can be checked

using the geometry of Figure 3.2 that the internal angle at each vertex is given

by ψ̄ ≡ ψi = αi−1 + βi−1 − αi = β̄ at equilibrium. Therefore, by Definition

3.2, the pursuit graph must correspond to a generalized regular polygon {p}. By

Lemma 3.1, the internal angle ψ̄ = β̄ at each vertex of the polygon {p} gives

β̄ = π (1 − 2d/n), which together with β̄ = π − 2ᾱ implies that ᾱ = πd/n, where
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d ∈ {1, 2, . . . , n− 1}. Repetition of the above argument for the case when ᾱ < 0

yields the remaining n − 1 equilibrium points. By Definition 3.2, these 2(n − 1)

equilibrium points must satisfy the coordinate constraints of Section 3.1.3. �

To clarify why there are 2(n − 1) equilibria and only n − 1 pursuit graphs,

note that ᾱ > 0 and ᾱ < 0 correspond to counterclockwise and clockwise rotation

of the system’s pursuit graph at equilibrium, respectively. Also, notice that there

are only n− 1 distinct values of r̄, since sin ᾱ/ᾱ is an even function.

The case when n and d of Theorem 3.1 are not coprime is physically undesirable

(e.g., as in the polygon {9/3} of Figure 3.4) since it requires that multiple vehicles

occupy the same point in space. From geometry, it is clear that, for each possible

{n/d} formation, the equilibrium angle ᾱ = ±πd/n corresponds to a relative

heading angle for each vehicle that points it in a direction that is tangent to the

circle circumscribed by the vertices of the corresponding equilibrium polygon.

Corollary 3.1: At equilibrium, the vehicles traverse a circle of radius

ρ =
vRn

kπd
.

Proof: This result can be shown by employing Lemma 3.1, and the fact that,

by elementary geometry (Coxeter, 1948, pp. 3, 94), r̄ = 2ρ cos(ψ̄/2). By solving

for the radius ρ, one obtains the stated result. �

Observe that the possible equilibrium formations depend only on one’s choice

of gain k and fixed reference speed vR; in fact, only on the ratio vR : k. Therefore,

in what follows it is assumed that vR = 1, without loss of generality. Consequently,

following Corollary 3.1, the radius about which the vehicles travel is determined

by the designable parameter k > 0.

3.3 Local Stability Analysis

In general, for a given number of vehicles n ≥ 2, which {n/d} equilibrium poly-

gons are asymptotically stable, and for what values of k? The contributions of

this section include a local stability answer to this question, arrived at through lin-

earization about a general {n/d} formation. The solution follows a procedure that
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is similar to the alternate proof of Theorem 2.5, given in Section 2.2.6, concerning

linear agents, although the details are significantly more involved.

To facilitate notation, define ξ̃i := ξi− (r̄, ᾱ, β̄) and let q := p−1 = d/n so that

0 < q < 1 and is rational. Write the kinematics of each vehicle subsystem (3.5)

more compactly as ξ̇i = f(ξi, ξi+1). Linearizing each ξi model about an equilibrium

point (r̄, ᾱ, β̄) gives n identical subsystems of the form ˙̃ξi = Aξ̃i +Bξ̃i+1 where

A =
∂f(ξi, ξi+1)

∂ξi

∣
∣
∣
∣
(r̄,ᾱ,β̄)

=






0 2 sin(qπ) sin(qπ)

−1
2
(kqπ)2 csc(qπ) −k −1

2
kqπ cot(qπ)

0 k 0






B =






0 0 0

0 0 0

0 −k 0




 .

If one views the aggregate multivehicle system as

ξ̇ = f̂(ξ), (3.8)

then its linearization about ξ̄ has the form ˙̃ξ = Âξ̃, where

Â = circ(A,B, 03×3, . . . , 03×3). (3.9)

3.3.1 Submanifolds of R
n

Prior to continuing, some fundamental concepts from differential geometry are

briefly reviewed. Upon a first reading, this section may be skipped and referred

back to as needed. Firstly, a smooth n-dimensional manifold has a precise math-

ematical definition, which necessitates something of a build-up. For the purposes

of this thesis, one may adopt a somewhat abridged, perhaps informal, view of the

subject. For a more rigorous treatment, the reader is referred to Abraham and

Marsden (1977) or the appendix of Isidori (1995).

The differential of a real-valued function gi(x), with x ∈ R
n, is often written
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using the condensed notation

dgi(x) =
∂gi(x)

∂x
=

[
∂gi(x)

∂x1

∂gi(x)

∂x2

· · · ∂gi(x)

∂xn

]

.

If the vector function g(x) has dimension n−m, then the Jacobian matrix of g(x)

evaluated at a point x̄ ∈ R
n is given by

∂g(x)

∂x

∣
∣
∣
∣
x̄

=









∂g1(x)/∂x1 ∂g1(x)/∂x2 · · · ∂g1(x)/∂xn

∂g2(x)/∂x1 ∂g2(x)/∂x2 · · · ∂g2(x)/∂xn
...

...
...

∂gn−m(x)/∂x1 ∂gn−m(x)/∂x2 · · · ∂gn−m(x)/∂xn









x̄

.

The focus here is on smooth m-dimensional submanifolds of R
n, where 0 <

m < n. For the current purposes, one can merely interpret these mathematical

objects to be hypersurfaces in R
n, or equivalently, as solutions of a vector equation

g(x) = 0,

where the map g : R
n → R

n−m is smooth (i.e., C∞) and the Jacobian matrix of

g(x) has rank n−m for all x ∈ R
n. In other words,

M = {x ∈ R
n : g(x) = 0} ⊂ R

n (3.10)

is a smooth m-dimensional submanifold of R
n.

If M is a smooth submanifold of R
n, then the tangent space to M at a point

x̄ ∈ M is the set of all tangent vectors at x̄, which is a linear subspace of dimension

m and is denoted Tx̄M. Although it has not explicitly been defined what is meant

by a tangent vector, the notion of a tangent space is clear if it is simply identified

as the m-dimensional hyperplane in R
n that is tangent to M at the point x̄ ∈ M.

Consider an autonomous nonlinear system

ẋ = f(x), (3.11)

where f : U → R
n is a smooth vector field defined on an open subset U of R

n.

Definition 3.3 (Abraham and Marsden, 1977, Definition 3.4.13): A submani-

fold M of R
n is said to be invariant under (3.11) if for all x ∈ M, f(x) ∈ TxM.
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This definition is equivalent to the condition (cf. Abraham and Marsden, 1977,

Proposition 3.4.14) that

x(0) ∈ M =⇒ x(t) ∈ M for every t ∈ [0, t1),

where x(t) is the solution to (3.11) starting at x(0) and [0, t1) is any time interval

over which the solution x(t) is uniquely defined.

Lemma 3.2: A submanifold (3.10) of R
n is invariant under (3.11) if and only if

∂g(x)

∂x
f(x) = 0 for every x ∈ M.

Proof: At every point x ∈ M one can define a (n−m)-dimensional plane that

is orthogonal to the tangent plane TxM (Isidori, 1995, Appendix A.5) by

(TxM)⊥ = span {dg1(x), dg2(x), . . . , dgn−m(x)} .

Therefore, the inner product

〈
dg⊤i (x), f(x)

〉
= 0 for every i ∈ {1, 2, . . . , n−m}, x ∈ M

is equivalent to f(x) ∈ TxM for every x ∈ M. �

In the linear case, M = {x ∈ R
n : Cx = 0} is a subspace of R

n and the

autonomous system becomes ẋ = Ax. Lemma 3.2 is therefore equivalent to saying

that M is invariant under A if and only if CAx = 0 for every x ∈ M. By

following the proof of Lemma 3.2, at every point x ∈ M = Ker(C) one can define

a subspace M⊥ = Img(C⊤), which is orthogonal to M. Therefore, A-invariance

of M is equivalent to Ax ⊥ M⊥ for all x ∈ M⇐⇒ Ax ⊥ Img(C⊤) ⇐⇒ CAx = 0.

Lemma 3.3: Assume x̄ ∈ M is the origin in R
n and an equilibrium point of

(3.11). Let A be the n × n Jacobian of f(x) evaluated at x̄ ∈ M. If M, defined

by (3.10), is invariant under (3.11), then Tx̄M is an A-invariant subspace of R
n.

Proof: Since the submanifold M is invariant under f , by Lemma 3.2

∂g(x)

∂x
f(x) = 0 for every x ∈ M.
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Therefore, by differentiating, one obtains

f⊤(x)
∂

∂x

(
∂g⊤i (x)

∂x

)

+
∂gi(x)

∂x

∂f(x)

∂x
= 0

for i = 1, 2, . . . , n−m. By assumption, f(0) = 0, which implies that

∂g(x)

∂x

∣
∣
∣
∣
0

A = 0.

In other words, at the origin, the columns of A must lie in the tangent space T0M,

so T0M must be an A-invariant subspace of R
n. �

3.3.2 Coordinate Constraints

As in the linear agents problem, for every initial condition, the system (3.8) is

constrained to evolve on a f̂ -invariant submanifold M of R
3n. To see why this

is the case, recall that under cyclic pursuit the system’s pursuit graph Γt at each

instant satisfies
∑n

i=1 ei(t) ≡ 0, resulting in the constraints of Section 3.1.3. These

constraints are essential with regards to understanding how the spectrum of Â

relates to the stability of a given {n/d} equilibrium polygon.

Let g(ξ) = (g1(ξ), g2(ξ), g3(ξ)). Then

M =
{
ξ ∈ R

3n : g(ξ) = 0
}
⊂ R

3n (3.12)

defines a submanifold M of R
3n.

Lemma 3.4: The submanifold M is invariant under f̂ .

Proof: By Lemma 3.2, M is invariant under f̂ if and only if

∂g(ξ)

∂ξ
f̂(ξ) = 0 for every ξ ∈ M.

It is shown in Appendix A.2 that this identity holds for all ξ ∈ M. �

Corollary 3.2: Since the submanifold M is invariant under f̂ , the tangent space

Tξ̄M at every equilibrium point ξ̄ ∈ M is invariant under Â.
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Proof: The proof follows as a direct consequence of Lemmas 3.3 and 3.4. �

Therefore, by Corollary 3.2, there exists a change of basis for R
3n that trans-

forms Â into the upper-triangular form

[

ÂTξ̄M
∗

03×(3n−3) Â⋆Tξ̄M

]

=: Ã. (3.13)

Next, in Lemma 3.5, the eigenvalues of Â⋆Tξ̄M
are computed. A natural way to

compute Â⋆Tξ̄M
would be to transform Â into the aforementioned upper triangular

form by converting to the canonical basis described in Section 2.2.4 (also exempli-

fied in Section 2.2.6). Let ϕ = Pξ denote this local change of coordinates, about

ξ̄ ∈ M. In this canonical basis, the last three coordinates must be identically zero

for points in Tξ̄M. Therefore, an appropriate choice for P is

P =
∂Φ(ξ)

∂ξ

∣
∣
∣
∣
ξ̄

,

where ϕ = Φ(ξ) is the change of coordinates

ϕ1 = r1, ϕ2 = α1, . . . , ϕ3n−3 = βn−1,

ϕ3n−2 = g1(ξ), ϕ3n−1 = g2(ξ), ϕ3n = g3(ξ).
(3.14)

By definition of the constraints gi(ξ), the last three coordinates ϕ3n−2, ϕ3n−1, ϕ3n

are identically zero on M. A verification that Φ is proper (local) change of

coordinates is provided in Appendix A.1.1.

Therefore, the upper triangular form (3.13) can be achieved by computing

PÂP−1. However, this is not a trivial task for general n > 1 and it is only Â⋆Tξ̄M

that is of interest here. A more tractable approach is used in the proof of Lemma

3.5, which is to first perform the coordinates transformation Φ on f̂ and then

linearize to find Â⋆Tξ̄M
. The relationship between these different approaches is

illustrated by the commutative diagram below, where Ã is defined in (3.13).

ξ̇ = f̂(ξ) −−−→ ˙̃ξ = Âξ̃

Φ



y



yP

ϕ̇ = f̃(ϕ) −−−→ ˙̃ϕ = Ãϕ̃
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To demonstrate the validity of this commutative diagram, one can compute

the nonlinear dynamics in the new coordinates,

ϕ̇ =
∂Φ(ξ)

∂ξ
f(ξ)

∣
∣
∣
∣
ξ=Φ−1(ϕ)

=: f̃(ϕ).

Thus, it must be shown that the Jacobian of f̃ about ϕ̄ = Φ(ξ̄) equals PÂP−1.

By taking the Jacobian of f̃ one obtains

∂f̃(ϕ)

∂ϕ

∣
∣
∣
∣
∣
ϕ̄

=
∂

∂ϕ

(

∂Φ(ξ)

∂ξ
f(ξ)

∣
∣
∣
∣
ξ=Φ−1(ϕ)

)∣
∣
∣
∣
∣
ϕ̄

.

By using the product and chain rules, and by the fact that f̂(ξ̄) = 0,

∂f̃(ϕ)

∂ϕ

∣
∣
∣
∣
∣
ϕ̄

=
∂Φ(ξ)

∂ξ

∣
∣
∣
∣
ξ̄

· ∂f̂(Φ−1(ϕ))

∂ϕ

∣
∣
∣
∣
∣
ϕ̄

+
∂

∂ϕ

(

∂Φ(ξ)

∂ξ

∣
∣
∣
∣
ξ=Φ−1(ϕ)

)∣
∣
∣
∣
∣
ϕ̄

· f̂(ξ)
∣
∣
∣
ξ̄

=
∂Φ(ξ)

∂ξ

∣
∣
∣
∣
ξ̄

· ∂f̂(ξ)

∂ξ

∣
∣
∣
∣
∣
ξ̄

· ∂Φ−1(ϕ)

∂ϕ

∣
∣
∣
∣
ϕ̄

= PÂP−1.

The above arguments are useful in proving the following important lemma.

Lemma 3.5: In the quotient space R
3n/Tξ̄M, the induced linear transformation

Â⋆Tξ̄M
: R

3n/Tξ̄M → R
3n/Tξ̄M has (solely imaginary axis) eigenvalues

λ1 = 0 and λ2,3 = ±jkπd
n
.

Proof: Let ϕ = Φ(ξ) be the change of coordinates (3.14). Partition these

new coordinates into ϕ = (ϕI, ϕII) where ϕI = (ϕ1, ϕ2, . . . , ϕ3n−3) and ϕII =

(ϕ3n−2, ϕ3n−1, ϕ3n). Notice that the set of coordinates in ϕII are precisely the

functions that define M. Thus, in the new coordinates

ϕ̇I =
[

I3n−3 0(3n−3)×3

]

f̂(ξ)
∣
∣
∣
ξ=Φ−1(ϕ)

ϕ̇II =
∂g(ξ)

∂ξ
f̂(ξ)

∣
∣
∣
∣
ξ=Φ−1(ϕ)

.

Moreover, the equilibrium ϕ̄ = Φ(ξ̄) is equal to ξ̄, except that the last three com-
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ponents are instead zero. By computing the linearization about this equilibrium,

ϕ̇I =
[

I3n−3 0(3n−3)×3

]

Âϕ

ϕ̇II =
∂

∂ϕ

(

∂g(ξ)

∂ξ
f̂(ξ)

∣
∣
∣
∣
ξ=Φ−1(ϕ)

)∣
∣
∣
∣
∣
ϕ̄

ϕ

(A)
=

∂

∂ϕ






−kα1g2(ξ) − sin(g3(ξ))

kα1g1(ξ) + cos(g3(ξ)) − 1

0






ξ=Φ−1(ϕ)

∣
∣
∣
∣
∣
∣
∣
∣
ϕ̄

ϕ

=
∂

∂ϕ






−kϕ2ϕ3n−1 − sinϕ3n

kϕ2ϕ3n−2 + cosϕ3n − 1

0






∣
∣
∣
∣
∣
∣
∣
ϕ̄

ϕ

=






0 · · · 0 0 −kᾱ −1

0 · · · 0 kᾱ 0 0

0 · · · 0 0 0 0




ϕ =

[

03×(3n−3) Â⋆Tξ̄M

]

ϕ,

where the lengthy derivation of equivalence (A) can be found in Appendix A.2.

The 3 × 3 block Â⋆Tξ̄M
has eigenvalues λ1,2,3 = {0,±jkᾱ}, with ᾱ = ±πd/n from

Theorem 3.1, concluding the proof. �

Therefore, just as in the linear agents problem, these three imaginary axis

eigenvalues of Â can be ignored when determining the stability of a given {n/d}
formation and stability can be assessed based on its remaining 3n−3 eigenvalues.

3.3.3 Spectral Analysis

Recall that the 3n × 3n matrix Â, the linearization of f̂ , has the block circulant

form (3.9). The present section exploits this fact and the background material of

Section 2.2.3 to further isolate the eigenvalues of Â.
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Lemma 3.6: The eigenvalues of Â are the collection of all eigenvalues of

A+B

A+ ωB

A+ ω2B

...

A+ ωn−1B,

where ωi−1 := ej2(i−1)π/n ∈ C is the i-th of n roots of unity.

Proof: By Theorem 2.9, since Â is block circulant it can be diagonalized using

the Fourier matrix Fn; specifically

diag(D1, D2, . . . , Dn) = (Fn ⊗ I3)Â(Fn ⊗ I3)
∗,

where the n diagonal blocks Di of dimension 3 × 3 are given by









D1

D2

...

Dn









=
(√

nF ∗
n ⊗ I3

)









M1

M2

...

Mn









with M1 = A, M2 = B, and Mi = 03×3 for i = {3, 4, . . . , n}. By expanding the

above for each block Di one obtains

D1 = A+B

D2 = A+ ωB

D3 = A+ ω2B

...

Dn = A+ ωn−1B

as the diagonal blocks for diagonalized Â. This implies that the eigenvalues of Â

must be the collection of all eigenvalues of A+ ωi−1B, i = 1, 2, . . . , n. �
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Therefore, each diagonal block in the diagonalization has the same form Di =

A+ ωi−1B, i ∈ {1, 2, . . . , n}, given by

Di =






0 2 sin(qπ) sin(qπ)

−1
2
(kqπ)2 csc(qπ) −k −1

2
kqπ cot(qπ)

0 k(1 − ωi−1) 0




 .

From Lemma 3.6, one can observe two facts. The first is that the eigenvalues

of D1 = A + B are among the eigenvalues of Â for every n. The characteristic

polynomial of D1 is

pD1
(λ) = λ3 + kλ2 + (kqπ)2λ

= λ
(
λ2 + kλ+ (kqπ)2

)
,

so the eigenvalues of D1 are always

λ1 = 0

λ2,3 = −k
2
± j

k

2

√

4(qπ)2 − 1.
(3.15)

As predicted by Lemma 3.5, one zero eigenvalue has been unveiled, while the

remaining eigenvalues have Re(λ2,3) < 0 for every 0 < q < 1 and k > 0.

The second fact is that, when the number of vehicles n is even, the eigenvalues

of the matrix Di⋆ = A − B, with i⋆ := 1 + n/2, are among the eigenvalues of Â.

The characteristic polynomial of Di⋆ is

pDi⋆
(λ) = λ3 + kλ2 + k2

(
(qπ)2 + qπ cot(qπ)

)
λ+ k3(qπ)2,

for which one can construct the Routh array

λ3 1 k2((qπ)2 + qπ cot(qπ))

λ2 k k3(qπ)2

λ1 k2qπ cot(qπ) 0

λ0 k3(qπ)2 0

(3.16)

By the Routh-Hurwitz criterion, for stability one would need that cot(qπ) > 0 (due

to the λ1 element of the first column), or equivalently 0 < q < 1/2. Moreover, in



Chapter 3: Fixed-speed Pursuit Formations 56

the special case when q = 1/2 the characteristic polynomial factors as

pDi⋆
(λ) =

(

λ+ j
kπ

2

)(

λ− j
kπ

2

)

(λ+ k), (3.17)

which yields two imaginary axis eigenvalues of the form predicted by Lemma 3.5,

and one stable eigenvalue. To illustrate, consider the simplest case, when n = 2.

Proposition 3.1: The {2/1} equilibrium polygon is locally asymptotically stable.

Proof: When n = 2 the matrix Â has the form

Â =

[

A B

B A

]

.

By Lemma 3.6, the eigenvalues (3.15) of D1 = A+B must be among those of Â.

Moreover, i⋆ = 2 and so the eigenvalues of D2 = A − B, which are the roots of

(3.17), must be the remaining eigenvalues of Â. By disregarding the imaginary

axis eigenvalues according to Lemma 3.5, one can directly conclude that the {2/1}
polygon formation is locally asymptotically stable. �

Return now to the general case, when n ≥ 2.

Lemma 3.7: The stability of Â is independent of k > 0.

Proof: Suppose Â has been block diagonalized into n diagonal blocks Di = A+

ωi−1B according to Lemma 3.6. The claim of Lemma 3.7 becomes obvious when

each block Di is factored as Di = kTD̃iT
−1, where T = diag((1/k) sin(qπ), 1, 1)

(recall 0 < q < 1) and

D̃i =






0 2 1

−1
2
(qπ)2 −1 −1

2
qπ cot(qπ)

0 1 − ωi−1 0






so that σ(Di) = kσ(D̃i), where σ(·) denotes the spectrum of a matrix. Since

k > 0, the stability of the matrix D̃i implies the stability of Di. �

Therefore, whether a specific {n/d} polygon formation is locally asymptoti-

cally stable or not is independent of the chosen gain k > 0, and one can proceed
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by studying only the transformed blocks D̃i. In other words, for a given n, only

the polygon density d influences the stability of Â.

3.3.4 Stable Pursuit Formations

Recapitulating, about a given {n/d} equilibrium polygon, the linearized multive-

hicle system has the form ξ̇ = Âξ, where Â is a block circulant matrix. It has

been shown (in Lemma 3.5) that Â has exactly three imaginary axis eigenvalues

that do not influence the stability of a given {n/d} formation. By capitalizing on

its block circulant structure, Â was block diagonalized into n 3× 3 blocks, Di. It

was then shown (in Lemma 3.7) that the stability of each matrix Di, and hence

the stability of Â, is independent of k > 0, leaving that stability is dependent only

on the density d for a given n via the 3 × 3 transformed matrices D̃i.

Thus, modulo the imaginary axis eigenvalues of Lemma 3.5, when are these

matrices D̃i, i = 1, 2, . . . , n, asymptotically stable? The answer to this question

will expose which formations of Theorem 3.1 are locally asymptotically stable.

Unfortunately, the blocks D̃i are, in general, complex matrices. To be explicit

about this fact, one can write the n roots of unity ωi−1 = wi + jzi ∈ C, where

wi = cos

(

2π
i− 1

n

)

and zi = sin

(

2π
i− 1

n

)

.

In this general case, the characteristic polynomial of D̃i is

pD̃i
(λ) = λ3 + λ2 + (a2 + jb2)λ+ (a3 + jb3) (3.18)

with coefficients

a2 = (qπ)2 + 1
2
qπ(1 − wi) cot(qπ)

b2 = −1
2
qπzi cot(qπ)

a3 = 1
2
(1 − wi)(qπ)2

b3 = −1
2
zi(qπ)2.

(3.19)

For c ∈ C, let c̄ denote the complex conjugate of c.

Theorem 3.2 (after Barnett, 1983, Theorem 3.16): Consider a complex poly-
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nomial of the third degree

p(λ) = λ3 + c1λ
2 + c2λ+ c3,

where c1, c2, c3 ∈ C. Define the Hermitian matrix

H =






c1 + c̄1 c2 − c̄2 c3 + c̄3

−c2 + c̄2 c̄2 + c2 − c̄3 − c3 c3 − c̄3

c3 + c̄3 −c3 + c̄3 c2c̄3 + c̄2c3




 . (3.20)

The polynomial p(λ) is asymptotically stable if and only if H is positive definite.

This theorem is equivalent to a variation of the Routh-Hurwitz criterion for

complex polynomials (Barnett, 1983, p. 179). A Hermitian matrix H is positive

definite if and only if its leading principal minors, denoted h1, h2, and h3, are

positive. Apply Theorem 3.2 to the characteristic polynomial (3.18) of D̃i. By

computing the leading principal minors of the corresponding H, one obtains

h1 = 2

h2 = 4(a2 − a3 − b22)

h3 = 8(a2
2a3 + a2b2b3 − 2a2a

2
3 − 3a3b2b3 − b23 − a3b

2
2a2 − b32b3 + a3

3).

Clearly h1 > 0. Stability of a given D̃i matrix, therefore, depends on the signs

of h2 and h3. For stability, substituting (3.19) and using z2
i = 1 − w2

i , one would

need for the second leading principal minor that

h2(q, wi) = 2(1 + wi)qπ + 2(1 − wi) cot(qπ)

− (1 − w2
i )qπ cot2(qπ) > 0,

(3.21)

and for the third leading principal minor that

h3(q, wi) = (1 + wi − w2
i − w3

i )((qπ)2 + qπ cot(qπ))

− (1 − wi − w2
i + w3

i )((qπ)2 cot2(qπ) + qπ cot3(qπ))

+ 2(1 − 2wi + w2
i ) cot2(qπ) − 2(1 − w2

i ) > 0. (3.22)

The decision to write h2 and h3 as functions of the real component wi rather than

the imaginary component zi was arbitrary. In what follows, these functions h2
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and h3 will be used to determine which {n/d} equilibrium polygons are stable

and which are not. For a given n, define the set

Wn =
{
wi = Re(ωi−1) : i = 1, 2, . . . , n

}
.

Lemma 3.8: Every {n/d} equilibrium polygon with n/2 < d < n is unstable.

Proof: When n is even, it has already been shown that the eigenvalues of A−B
(a real matrix) are among the eigenvalues of Â (i.e., if i⋆ := 1 + n/2, wi⋆ = −1 is

always a root of unity). By the Routh array (3.16) on page 55, Di⋆ = A − B is

unstable when 1/2 < d/n < 1, or equivalently n/2 < d < n.

When n is odd, look at h2 and consider the set of points that are not stable

H2 = {(µ,w) : h2(µ,w) ≤ 0, µ ∈ (0, 1), w ∈ (−1, 1)} ,

which is illustrated by region U of Figure 3.5a. Note that µ and w are taken on

a continuum, whereas the arguments of h2 in (3.21), q and wi ∈ Wn, take on

rational and discrete values, respectively.

Let intH2 denote the interior of H2. It is a fact that the pair (µ, cos(2πµ)) ∈
intH2 for every µ ∈ (1/2, 2/3], as illustrated by the dotted line in Figure 3.5a.

This fact, which is most easily checked numerically, will be useful in what follows.

Let d⋆ := (n+ 1)/2, the smallest integer satisfying the condition n/2 < d < n

of the lemma. Let i⋆ := d⋆ + 1, which gives

wi⋆ = Re(ωd
⋆

) = cos

(
2πd⋆

n

)

∈ Wn.

Note that 1/2 < d⋆/n ≤ 2/3 for every n ≥ 3, which (by the previously stated fact)

implies that for every n ≥ 3 there exists a wi⋆ ∈ Wn such that (d⋆/n, wi⋆) ∈ intH2,

i.e., every {n/d⋆} polygon is unstable.

It is left to show that the remaining densities d⋆ < d < n satisfying the con-

dition n/2 < d < n of the lemma are also unstable. Since d⋆/n < d/n < 1, the

point (d/n, wi⋆) ∈ intH2 also lives in the region U . This is because it lies directly

to the right of the unstable point (d⋆/n, wi⋆) ∈ intH2 in Figure 3.5a. �

Before stating the principal result of this chapter, consider the set of points
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Figure 3.5: Parameter w as a function of µ for h2 and h3
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that are not stable

H3 = {(µ, w) : h3(µ, w) ≤ 0, µ ∈ (0, 1/2], w ∈ (−1, 1)} , (3.23)

which is illustrated by the region U of Figure 3.5b. Define the following functions

w(µ) :=
2 tan(µπ)

µπ(1 + µπ tan(µπ))
− 1

w(µ) := cos(2πµ),

which describe the upper and lower boundaries of the region U in Figure 3.5b.

These functions were obtained by solving, with the aid of computer algebra

software, the equation h3(µ,w) = 0 on the relevant domain µ = (0, 1/2] and

w ∈ (−1, 1) and numerically checking that the region U indeed corresponds to the

set H3. As a result, the definition (3.23) is equivalent to

H3 = {(µ,w) : µ ∈ (0, 1/2], w ∈ [w(µ), w(µ)]} .

Theorem 3.3 (Main Stability Result): A given {n/d} equilibrium polygon is

locally asymptotically stable if and only if 0 < d ≤ n/2 and

w

(
d− 1

n

)

> w

(
d

n

)

. (3.24)

Proof: According to the proof of Lemma 3.8, h2 < 0 for every {n/d} polygon

with n/2 < d < n. Thus, a necessary condition for stability is that 0 < d ≤ n/2.

Notice that h2 > 0 for every 0 < d < n/2 (see Figure 3.5a). Proceed by assuming

that this condition holds for the given {n/d} polygon. The special case when

d = n/2 will be considered separately. Moreover, observe that every matrix Di

has a complex conjugate matrix Dn−i+2, hence the spectrum of Di and that of its

conjugate are also complex conjugates.

Define i⋆ := d + 1 so that wi⋆ = cos(2πd/n) ≡ w(d/n). Thus, the point

(d/n, wi⋆) lies exactly on the lower boundary of H3 in Figure 3.5b. Together, the

matrix Di⋆ and its conjugate Dn−i⋆+2 have two imaginary axis eigenvalues (one

each) of the form λ = ±jkπd/n, while the remaining eigenvalues have Re(λ) 6= 0.

These facts were verified with the assistance of computer algebra software. The

eigenvalues with Re(λ) 6= 0 cannot be unstable, otherwise the point (d/n, wi⋆)
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would not lie on the boundary of H3. According to Lemma 3.5, the two imaginary

axis eigenvalues can be disregarded, together with the zero eigenvalue of D1, since

they have no connection to the stability of the given {n/d} polygon. Since the

point (d/n, wi⋆) lies on the lower boundary of H3, all points (d/n, wi), wi ∈ Wn

with wi < wi⋆ lie outside the unstable set H3. Therefore, look at the points

(d/n, wi), wi ∈ Wn with wi > wi⋆ .

Define the index i′ := i⋆ − 1 = d, corresponding to wi′ ∈ Wn, wi′ > wi⋆ that is

closest to wi⋆ . This new value is given by wi′ = cos(2π(d− 1)/n) ≡ w((d− 1)/n).

If wi′ > w(d/n), then the point (d/n, wi) /∈ H3 for all wi ∈ Wn, wi > wi⋆ .

Therefore, by Theorem 3.2, stability is equivalent to w((d− 1)/n) > w(d/n).

In the special case when d = n/2, the matrix Di⋆ is real and has eigenvalues

according to the roots of (3.17), as shown on page 56. Therefore, one is stable

and the remaining two imaginary axis eigenvalues should be ignored according to

Lemma 3.5. The rest of the proof follows as for 0 < d < n/2. �

The following sequence of corollaries employs this main stability result to ex-

plicitly disclose which {n/d} equilibrium polygons are stable and which are not.

Corollary 3.3: Every {n/1} polygon is locally asymptotically stable.

Proof: Let d = 1 and n ≥ 2. Then, from Figure 3.5b, w(0) = 1 and w(d/n) < 1

for every n ∈ {2, 3, . . .} so that the conditions of Theorem 3.3 are satisfied. �

Recall that the variable µ is intended to represent d/n. Thus, with reference

to Figure 3.5b, for some fixed density d the condition (3.24) is equivalent to

w (µ− µ/d) > w(µ). (3.25)

The graphs of w(µ − µ/d) versus µ for d ∈ {2, 3, 4, 5, 6} are illustrated by the

dotted curves in Figure 3.6. These curves are shown superimposed on Figure 3.5b

and the three small circles in Figure 3.6 indicate intersection with the boundary

w(µ). Notice that only when d ∈ {3, 4, 5} does w(µ − µ/d) intersect the curve

w(µ) on the real interval µ ∈ (0, 1/2].

Corollary 3.4: Every {n/2} polygon with n ≥ 4 is locally asymptotically stable.

Proof: When d = 2, the necessary condition 0 < d ≤ n/2 of Theorem 3.3

dictates that n ≥ 4. Moreover, from Figure 3.6, the inequality (3.24) is satisfied
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for every n ∈ {4, 5, . . .}. �

Corollary 3.5: Every {n/d} polygon with d ≥ 6 is unstable.

Proof: When d ≥ 6, from Figure 3.6, (3.24) is never satisfied; i.e.,

w

(
d− 1

n

)

< w

(
d

n

)

for every 6 ≤ d ≤ n/2. �

Using Theorem 3.3 and Figure 3.6, the stability of the remaining polygons

{n/d}, d ∈ {3, 4, 5} can now be determined by replacing (3.25) with an equality.

Corollary 3.6: For some {n/d} with d ∈ {3, 4, 5}, let µ̄ be the unique solution to

w
(

µ− µ

d

)

= w(µ).

Then {n/d} is locally asymptotically stable if and only if d < µ̄n.

Proof: For d ∈ {3, 4, 5} the graphs of w(µ − µ/d) and w(µ) intersect exactly

once in the domain µ ∈ (0, 1/2] (see the circles in Figure 3.6). Let µ̄ be this point

of intersection and note that d/n < µ̄ results in stability, while d/n > µ̄ gives

instability as per the condition (3.25) and Theorem 3.3. �

These points of intersection µ̄ (solved for numerically) are listed in Table 3.1

and are shown as circles in Figure 3.6. Employing these values, it can be shown

that polygon {10/3} is stable, while {9/3} is not. Similarly, {21/4} is stable,

while {20/4} is not, and finally {54/5} is stable, while {53/5} is not. Table 3.2

lists all possible equilibrium formations and gives their stability.

Table 3.1: Table of µ̄ values for polygon densities d ∈ {3, 4, 5}
d µ̄ (approx.)
3 0.3318678173
4 0.1999447110
5 0.0942114573
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Table 3.2: Equilibrium formations with stable formations shaded

d = 1 2 3 4 5 6
{2/1} {3/2} {4/3} {5/4} {6/5} {7/6}
{3/1} {4/2} {5/3} {6/4} {7/5} {8/6}

...
...

...
...

...
...

{7/1} {8/2} {9/3} {10/4} {11/5} {12/6}
{8/1} {9/2} {10/3} {11/4} {12/5} {13/6}

...
...

...
...

...
...

{17/1} {18/2} {19/3} {20/4} {21/5} {22/6}
{18/1} {19/2} {20/3} {21/4} {22/5} {23/6}

...
...

...
...

...
...

{49/1} {50/2} {51/3} {52/4} {53/5} {54/6}
{50/1} {51/2} {52/3} {53/4} {54/5} {55/6}

...
...

...
...

...
...

3.3.5 Additional Sample Simulations

Figures 3.7a and 3.7b show computer simulation results for n = 7 vehicles, where

in each case the forward speed vR = 1 and gain k = 1. However, due to differing

initial conditions, the vehicles of Figure 3.7a form a {7/1} polygon at equilibrium,

whereas the vehicles of Figure 3.7b converge to a {7/2}-polygon formation.

3.4 Stationary Polygons

Notice that in the simulation examples of Figures 3.3 and 3.7 the resulting for-

mations appear stationary in the plane (i.e., the circles do not drift over time).

Although it has been shown that the equilibrium formations for fixed-speed uni-

cycles in cyclic pursuit are generalized regular polygons and that only some of

these formations are locally asymptotically stable, it has not yet been established

that these equilibria are stationary. This matter is resolved in this section.

To this end, it is useful to view each vehicle’s position in the plane as a point

in the complex plane; specifically, zi = xi + jyi ∈ C. Thus, the centroid of

the vehicles is given by zc = (1/n)
∑n

i=1 zi and the velocity of the centroid is
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Figure 3.7: Fixed-speed pursuit generating {7/1} and {7/2} formations
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żc = (1/n)
∑n

i=1 żi. By substituting the unicycle model (2.12), one obtains

żc =
1

n

n∑

i=1

vie
jθi .

The control law (3.4) has the property that vi = vR, i = 1, 2, . . . , n. Therefore,

żc =
vR
n

n∑

i=1

ejθi .

Moreover, it is clear that the centroid of the vehicles equals the centroid of the

generalized regular polygon {n/d} at equilibrium. The definition of the relative

coordinate βi is βi = θi − θi+1 − π, which has a constant value β̄ for all i =

1, 2, . . . , n at equilibrium. In other words, θi+1 = θi − β̄ − π at equilibrium. But,

consequent to Theorem 3.1 it holds that β̄ = ±π(1 − 2d/n), which implies that

θi+1 = θi ± 2πd/n mod 2π. Consequently, every heading angle θi can be written

as a function of the first; namely

θ2 = θ1 ± 2πd/n

θ3 = θ2 ± 2πd/n = θ1 ± 4πd/n

...

θn = θn−1 ± 2πd/n = θ1 ± (n− 1)2πd/n.

Using this, the velocity of the centroid can be written as

żc =
vR
n

n∑

i=1

eθ1±j2π(i−1)d/n

=
vR
n
eθ1

n∑

i=1

e±j2π(i−1)d/n.

If d and n are coprime, then
∑n

i=1 e
±j2π(i−1)d/n ≡ 0 because these are the n roots of

unity. If d and n have a common factor m > 1 then
∑n

i=1 e
±j2π(i−1)d/n ≡ 0 because

these are the n/m roots of unity (traversed m times). Together, these facts imply

that żc ≡ 0. This, in turn, implies that every {n/d} generalized regular polygon

formation is stationary at equilibrium, despite the motion of the vehicles.
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3.5 On the n-vehicle Weave

The focus of this chapter has been on equilibrium formations of the multivehicle

system (3.5). These correspond to configurations for which the vehicles have fixed

relative pose. However, it turns out that these regular formations are not the only

stable behaviours of (3.5). Repeated simulations indicate that when the vehicles

do not converge to a generalized regular polygon formation, they instead fall into

a different kind of order: one in which the relative coordinates (3.2) follow periodic

trajectories. What is more, in this new mode of organization each vehicle’s motion

is identical to that of the next, only 1/n-th of a cycle out of step in time. This

purely nonlinear phenomenon shall be referred to as the n-vehicle weave.

It is not within the scope of this thesis to provide a complete analysis of the

weave. Instead, based on simulation results, some qualitative observations are

made that might serve as a starting point for analysis.

3.5.1 Simulating the Weave

Figure 3.8a depicts a system of n = 6 unicycles subject to the fixed-speed pursuit

law (3.4) with vR = 1 and k = 1. Rather than converging to one of the equi-

librium formations of Theorem 3.1, the vehicles “weave” in and out, while the

formation as a whole moves along a linear trajectory (in the direction indicated

by the dashed arrow in Figure 3.8a). In this case, it can be verified that the

vehicles’ centroid always lies on the centre line defined by the arrow in the figure.

Simulations indicate that this average formation trajectory travels at a constant

speed. However, its steady-state heading depends on the initial conditions. Figure

3.8b shows the steady-state trajectories of the vehicles in Figure 3.8a, but with

the motion of their centroid subtracted from the motion of each vehicle.

Furthermore, the weaving pattern converges to a steady-state amplitude, or

width wk, as indicated in Figure 3.8a. The steady-state width of the weave pre-

sented in Figure 3.8a is approximately w1 = 4.3668 units in the figure (each tick

mark indicates a unit). If one increases the gain k from 1 to 2, the width drops

to w2 = 2.1832 ≈ w1/2. Likewise, if the gain is decreased to k = 0.5, then the

width increases to w0.5 = 8.7334 ≈ 2w1. Thus, one might infer from simulation

that the width wk of the weave is inversely proportional to the gain k. Moreover,

simulations indicate that the width wk is independent of the initial conditions that

generate the weave. Notice how this behaviour is similar to the inverse relationship
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Figure 3.8: Weaving trajectories for n = 6 vehicles
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between k and the equilibrium radius ρ in Corollary 3.1.

In Figure 3.8, observe how the trajectories repeatedly intersect along the line

followed by the centroid of the formation. Repeated simulations indicate that

fixed pairs of vehicles regularly collide at points along this line. Specifically, in

Figure 3.8, the vehicle pairs (i, i + 3), i = 1, 2, 3, always collide. No other col-

lisions occur during the weave. Another potentially useful observation is that,

during the weave, the configuration of vehicles (including their orientations) ap-

pears to exhibit dihedral symmetry. The dihedral symmetry group of order 1,

denoted D1, consists of the (identity) rotation through angle 2π and exactly one

reflection symmetry about a unique line in the plane (see Chapter 6). Such a

line of symmetry clearly exists in Figure 3.8, and is given by the dashed arrow

representing the overall motion of the formation.

However, the dihedral symmetry described above exists only when the number

of vehicles is even. What happens when n is odd? Figure 3.9 shows a system of

n = 5 vehicles subject to the fixed-speed pursuit law (3.4) with vR = 1 and k = 1.

The inverse relationship between the width wk and gain k, observed in the case

of n = 6 vehicles, still holds. However, the trajectory of the vehicles’ centroid, in

this case, is not confined to a line. Instead, it follows a periodic trajectory (not

shown) whose average, in time, represents the general motion of the formation.
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Figure 3.9: Weaving trajectories for n = 5 vehicles

Another observation in the case when n is odd is that no collisions occur during

the weave. The five vehicles in Figure 3.9 may arrive “close” to one-another at
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times, but they never occupy the same point at any instant (unlike the six vehicles

in Figure 3.8). Moreover, if the weave is widened (by decreasing k) the minimum

distance between vehicles, denoted dk, increases linearly. Figure 3.10 shows the

relative distances from vehicle 1 to vehicles i = 2, 3, 4, 5 corresponding to the

simulation depicted in Figure 3.9. The closest any other vehicle comes to vehicle

1 is approximately d1 = 0.3841 units when k = 1. Repeating the simulation with

k = 2 yields d2 = 0.1921 ≈ d1/2; likewise, k = 0.5 yields d0.5 = 0.7682 ≈ 2d1.

Thus, for some real vehicle size, one could in practise compute the maximum k

(alternatively, minimum wk) allowable in order that collisions do not occur.
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Figure 3.10: Relative distances from vehicle 1 to vehicle i = 2, 3, 4, 5

Finally, so as to gain some further understanding of the underlying order that is

the weave, consider Figure 3.11a, which depicts the coordinates αi, i = 1, 2, 3, 4, 5,

of (3.5) as a function of time. Obviously the solutions are periodic; let the period

be T seconds. Furthermore, the behaviour of each vehicle is identical to that of

the next, only shifted T/5 seconds in time. More generally,

αi(t) = α1(t+ (n− i+ 1)T/n), (3.26)
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for i = 1, 2, . . . , n. The same phenomenon occurs in the coordinates ri and βi. In

other words, in analyzing the periodic solution ξ(t) ∈ R
3n that is the weave, it

may be possible to reduce the problem to one in R
3 by exploiting (3.26). Figure

3.11b shows this periodic orbit in the (ri, αi, βi)-space when n = 5. Although

the data used to generate Figure 3.11b corresponds to vehicle i = 1, the orbit is

identical in the case of i = 2, 3, 4, 5 (merely shifted 1/5-th of a cycle in time).

3.5.2 An Invariant Subspace

In this section, the potential for the existence of steady-state solutions other than

the equilibrium solutions of Theorem 3.1 is conjectured by defining an invariant

subspace W ⊂ R
3n in which no fixed points exist. Let m := ⌈n/2⌉ and define

W :=
{
ξ ∈ R

3n : ri = ri+m, αi = −αi+m, βi = −βi+m for i = 1, 2, . . . ,m
}
.

For example, the initial conditions in Figures 3.8 and 3.9 each belong to this

subspace. For the n = 5 vehicles in Figure 3.9, m = ⌈5/2⌉ = 3. Specifically,

ri(0) = 1, i = 1, 2, . . . , 6, α1(0) = −α4(0) = −π/2, α2(0) = −α5(0) = −π/2, and

α3(0) = −α1 = π/2. Similar relationships hold for the βi(0) coordinates.

For convenience, define the constraint functions

g1(ξ) = r1 − r1+m

g2(ξ) = α1 + α1+m

g3(ξ) = β1 + β1+m

g4(ξ) = r2 − r2+m
...

g3m−1(ξ) = αm + α2m

g3m(ξ) = βm + β2m.

Therefore, W = {ξ ∈ R
3n : gi(ξ) = 0, i = 1, 2, . . . , 3m}.

Proposition 3.2: The subspace W is invariant under the dynamics (3.8).

Proof: By Lemma 3.2, the subspace W is invariant under (3.8) if and only if

∂g(ξ)

∂ξ
f̂(ξ) = 0,
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for all ξ ∈ W. Therefore, for every i ∈ {1, 2, . . . , 3m}, it needs to be shown that

∂gi(ξ)/∂ξ · f̂(ξ) = 0 when ξ ∈ W. Hence, compute

∂

∂ξ
(ri − ri+m) · f̂(ξ)

∣
∣
∣
∣
ξ∈W

= −vR (cosαi + cos(αi + βi)) + vR (cosαi+m + cos(αi+m + βi+m))

= −vR (cosαi + cos(αi + βi)) + vR (cosαi + cos(αi + βi))

= 0.

One also has that

∂

∂ξ
(αi + αi+m) · f̂(ξ)

∣
∣
∣
∣
ξ∈W

=
vR
ri

(sinαi + sin(αi + βi)) − kαi +
vR
ri+m

(sinαi+m + sin(αi+m + βi+m))

− kαi+m

= 0.

And finally,

∂

∂ξ
(βi + βi+m) · f̂(ξ)

∣
∣
∣
∣
ξ∈W

= k(αi − αi+1) + k(αi+m − αi+m+1)

= k(αi + αi+m) − k(αi+1 + αi+1+m)

= 0,

which concludes the verification. �

What is exceptional about W is that, not only is it invariant under the system’s

dynamics, it also contains no equilibrium points, following Theorem 3.1 (save the

origin, which is the degenerate case). Therefore, any “stable” solution ξ(t) must

either flow towards a limit-cycle or be chaotic in nature. On the other hand,

simulations that begin with initial conditions ξ(0) ∈ W consistently converge to

the weave (e.g., as in Figures 3.8 and 3.9), suggesting the former.



Chapter 4

Varying-speed Pursuit Formations

Equilibrium pursuit formations for fixed-speed vehicles were studied in Chapter

3. However, in Section 2.3 a coordination strategy was described in which each

vehicle i’s forward speed vi is assigned in proportion to the distance error ri. This

is in addition to assigning the angular speed ωi in proportion to the heading error

αi. Consequently, the aim of this chapter is to extend the fixed-speed pursuit

scenario to the case of varying-speed vehicles.

4.1 Nonlinear Equations of Pursuit

The transformation from interconnected unicycles to relative coordinates ξi =

(ri, αi, βi), described by (3.2)–(3.3) on page 38 and detailed in Section 3.1.1, is

useful in this chapter as it was in the last. However, the varying-speed pursuit

scenario described above corresponds to n unicycles, each with control inputs

vi = krri and ωi = kααi, (4.1)

where kr, kα > 0 are constant gains. Substituting these controls into (3.3) gives a

system of n cyclically interconnected and identical subsystems

ṙi = −kr (ri cosαi + ri+1 cos(αi + βi)) (4.2a)

α̇i = kr

(

sinαi +
ri+1

ri
sin(αi + βi)

)

− kααi (4.2b)

β̇i = kα(αi − αi+1), (4.2c)

for i = 1, 2, . . . , n, and where the indices i + 1 are evaluated modulo n. This

system (4.2) of n cyclically interconnected vehicles is examined in the remaining

75
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sections of this chapter.

4.1.1 Sample Simulations

Preliminary computer simulations indicate the possibility of achieving circular

pursuit trajectories similar to those observed in Chapter 3 for fixed-speed vehi-

cles. Figure 4.1 shows the trajectories for a system of n = 6 unicycles, initially

positioned at random, where the gain kα = 1 and gain kr = (π/12) csc(π/6) = k⋆.

This specific choice of gains corresponds to (4.3), to be discussed in the next

section. In this case, the unicycles converge to equally spaced motion around a

circle of fixed radius with a pursuit graph similar to a regular hexagon. However,

in contrast to the outcomes observed in Chapter 3, Figures 4.2a and 4.2b show

unicycles converging to a point and diverging, respectively, while simultaneously

approaching equally spaced motion that resembles a regular hexagon.

1 1

2

2

3

3 4
4

5

5

6
6

Figure 4.1: Six vehicles subject to control law (4.1) with kα = 1 and kr = k⋆



Chapter 4: Varying-speed Pursuit Formations 77

1

1

2

2

3

3

4

4

5

5

6

6

(a) kα = 1 and kr < k⋆
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(b) kα = 1 and kr > k⋆

Figure 4.2: Six vehicles subject to control law (4.1) with kr 6= k⋆
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4.2 Generalized Equilibria

This section mirrors the analysis of Section 3.2 by revealing the set of possible

equilibrium formations for multivehicle systems subject to (4.1).

Theorem 4.1: The 3n-dimensional system (4.2) has 2(n− 1) equilibrium points,

described as follows: the ri are all equal, ri = r̄ > 0; likewise, αi = ᾱ and βi = β̄

for all i ∈ {1, 2, . . . , n}. The equilibrium values of ᾱ and β̄ are given by

ᾱ = ±πd
n
, d = 1, 2, . . . , n− 1

β̄ = π − 2ᾱ.

At each equilibrium point, the related pursuit graph is a generalized regular polygon

{n/d}, with d ∈ {1, 2, . . . , n − 1}. Finally, such an {n/d}-polygon equilibrium

formation for (4.2) exists if and only if

kr/kα =
πd

2n
csc

(
πd

n

)

=: k⋆. (4.3)

Proof: When β̇i = 0, (4.2) yields αi = αi+1. Let ᾱ ≡ αi at equilibrium.

Moreover, when ṙi = 0,

− cos ᾱ

cos(ᾱ+ βi)
=
ri+1

ri
> 0. (4.4)

Finally, when α̇i = 0,

kαᾱ = kr (sin ᾱ− cos ᾱ tan(ᾱ+ βi)) (4.5)

by substituting (4.4). The left-hand side of (4.5) is constant, thus βi should satisfy

βi = βi+1 +πa, with a ∈ Z. But since, by assumption, the right-hand side of (4.4)

is strictly positive, its left-hand side cannot change sign, which implies a is even.

Consequently, by (4.4), ri+1/ri = c, i = 1, 2, . . . , n, where c is some real and

positive constant. Therefore, compute

r2 = cr1 ⇒ r3 = c2r1 ⇒ · · · ⇒ rn = cn−1r1 ⇒ rn+1 = cnr1.

But, since rn+1 = r1, r1 = cnr1, which implies that cn = 1. Because c is real

and positive, c = 1, implying that ri = ri+1 for all i. Let r̄ ≡ ri at equilibrium.
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Moreover, following the proof of Theorem 3.1 on page 44, (4.4) implies that either

βi = π or βi = π − 2ᾱ. At equilibrium (4.2b) yields ᾱ = 0 when βi = π, implying

that βi = βi+1 for all i. However, the constraint (3.7), which also holds for varying

speed vehicles, implies (see the proof of Theorem 3.1) that β = π (with ᾱ = 0) is

not feasible for vehicles in cyclic pursuit.

The remainder of the proof that equilibrium formations are generalized regular

polygons follows from the proof of Theorem 3.1 on page 44.

Finally, at equilibrium, (4.2b) is equivalent to

kr/kα = ᾱ
(
sin ᾱ+ sin(ᾱ+ β̄)

)−1

= ±πd
n

(

sin

(

±πd
n

)

+ sin

(

±πd
n

))−1

=
πd

2n
csc

(
πd

n

)

=: k⋆(n).

In other words, the ratio k⋆ must be defined in order that an equilibrium (with

equilibrium distance r̄ > 0) exists, concluding the proof. �

Therefore, without loss of generality, one can choose kα = 1 and kr = k⋆ to

ensure the existence of generalized regular polygon equilibria. For example, an

equilibrium formation {6/1} has k⋆ = (π/12) csc(π/6), which is precisely the gain

used to generate the simulation results of Figure 4.1.

4.3 Global Stability Analysis for Two Vehicles

In general, a stability analysis of the multivehicle system (4.2) is not a simple task.

As has just been proved, equilibria in relative coordinates exist only for a certain

gain ratio k⋆. This critical gain, in turn, depends on the number of vehicles,

n. This section investigates the special case when n = 2, since the analysis is

simplified in that r1 = r2, α2 = α1 + β1, and α1 = α2 + β2 (see Figure 4.3).
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Consequently, choosing kα = 1 and kr = k > 0, the system (4.2) reduces to

ṙ1 = −kr1 (cosα1 + cos(α1 + β1)) (4.6a)

α̇1 = k (sinα1 + sin(α1 + β1)) − α1 (4.6b)

β̇1 = −β1 (4.6c)

ṙ2 = −kr2 (cosα2 + cos(α2 + β2))

α̇2 = k (sinα2 + sin(α2 + β2)) − α2

β̇2 = −β2,

where k = kr. Since the vehicle equations are decoupled, the indices are, hereafter,

dropped to simplify notation. One may then proceed by analyzing (4.6).

β2

α1

r1 = r2

α2

β11

2

Figure 4.3: Coordinates for n = 2 vehicles

The behaviour of this two-vehicle system depends on the selected gain k. How-

ever, note that when β(0) = −2α(0), subsystems (4.6b) and (4.6c) respectively

reduce to α̇ = −α and β̇ = −β for all t ≥ 0, independent of any particular k.

Theorem 4.2: Consider n = 2 unicycles subject to (4.1), each with kinematics

(4.6). Let W = {ξ = (α, β) : β = −2α} and k⋆ = π/4 after (4.3). Then,

(i) if 0 < k < k⋆ or if ξ(0) ∈ W and 0 < k < 5π/4, the vehicles converge to a

common point;

(ii) if k⋆ < k < 5π/4 and ξ(0) /∈ W, the vehicles diverge, or;

(iii) if k = k⋆ and ξ(0) /∈ W, the vehicles converge to equally spaced motion

around a circle.

When k ≥ 5π/4, the analysis is further complicated, as will become clear in

the proof. In proving Theorem 4.2, the following theorem is useful.
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Theorem 4.3 (cf. Isidori, 1999, Theorem 10.3.1): Consider a composite system

α̇ = fα(α, β)

β̇ = fβ(β).

Suppose the origin of α̇ = fα(α, 0) is locally asymptotically stable. Let S be a set

with the property that for any α̃(0) ∈ S, the solution α̃(t) of ˙̃α = fα(α̃, 0) with

initial condition α̃(0) is defined for all t ≥ 0 and such that

lim
t→∞

α̃(t) = 0.

Pick any β(0) and let β(t) be the solution of β̇ = fβ(β) with initial condition β(0).

Suppose β(t) is defined for all t ≥ 0 and such that

lim
t→∞

β(t) = 0.

Pick any α(0) ∈ S and let α(t) be the solution of α̇ = fα(α, β(t)) with initial

condition α(0). Suppose α(t) is defined for all t ≥ 0, is bounded, and is such that

α(t) ∈ S for all t ≥ 0. Then, it is also true that

lim
t→∞

α(t) = 0.

Proof of Theorem 4.2: Since (4.6b) and (4.6c) do not depend on r, they can

be viewed as an autonomous system in ξ = (α, β). Let (ᾱ, β̄ = 0) denote an

equilibrium point of (4.6b,c). From (4.6b), ᾱ must satisfy

2k sin ᾱ− ᾱ = 0 (4.7)

at equilibrium. If k ≤ 1/2, (4.6b,c) has only one equilibrium point, namely (0, 0),

since ᾱ = 0 is the only solution to (4.7). However, when the gain k is increased to

1/2 < k < 5π/4, a bifurcation occurs so that the system acquires two equilibrium

points (locations dependent on k) in addition to the origin.

In general, the following four cases exist.
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Case I: 0 < k ≤ 1/2

In this case, as already noted, (0, 0) is the sole equilibrium point. System (4.6b,c)

can be viewed as a pair of cascade connected subsystems (cf. Theorem 4.3)

α̇ = fα(α, β)

β̇ = fβ(β)

where β is an input to (4.6b). First, it will be shown that the origin of

α̇ = fα(α, 0) (4.8)

is globally asymptotically stable (GAS).

Let V : R → R be the continuously differentiable function

V (α) =
1

2
α2,

which has the derivative along (4.8) given by

V̇ (α) = −α(α− 2k sinα).

But α > 0 ⇒ α > 2k sinα ⇒ V̇ < 0 and α < 0 ⇒ α < 2k sinα ⇒ V̇ < 0. Since

V (0) = 0, V (α) > 0 in R − {0}, V (α) is radially unbounded, and V̇ (α) < 0 in

R − {0}, the origin of (4.8) must be GAS by the Barbashin-Krasovskii theorem

(Khalil, 2002, Theorem 4.2). Choose S = R.

It is clear that the origin of β̇ = −β is GAS.

Next, it is proved that trajectories of α̇ = fα(α, β(t)) are bounded for all t ≥ 0

and for every α(0) ∈ S by showing that trajectories of the full system (4.6b,c) are

bounded for all trajectories starting at ξ(0) ∈ R
2. Consider the positive definite

function VΩ : R
2 → R

VΩ(ξ) =
1

2

(

α2 +
β2

2

)
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which has a derivative along the solutions of (4.6b,c) given by

V̇Ω = αg(ξ) − α2 − β2

2

≤ −1

2

(
α2 + β2

)
+

1

2
g2(ξ)

≤ −1

2
‖ξ‖2

2 + k2

< 0

for all ‖ξ‖2 >
√

2k, where g(ξ) = k[sinα+sin(α+β)]. Let Ω = {ξ ∈ R
2 : VΩ ≤ c}

with c > k2, which corresponds to a ball of radius ρ >
√

2c so that Ω defines

a compact, positively invariant set with respect to (4.6b,c). Since one can take

ρ→ ∞, it follows that solutions to α̇ = fα(α, β(t)) are bounded for all t ≥ 0 and

for all α(0) ∈ S. Having satisfied the conditions of Theorem 4.3, it holds that

lim
t→∞

α(t) = 0

for all α(0) ∈ R, which implies that the origin of the full system (4.6b,c) is GAS

when 0 < k ≤ 1/2. Interestingly, when k = 1/2, the linearization of (4.6b,c)

cannot determine the origin’s stability. In a neighbourhood of the origin, (cosα+

cos(α+β)) > 0, which by (4.6a) implies that, after some finite time t⋆ > 0, r → 0

as t→ ∞ (i.e., the vehicles converge to a common point).

Case II: 1/2 < k < π/4

In the cases that remain, the origin of (4.6b,c) is a saddle point and two equilibrium

solutions to (4.7) exist, namely ± |ᾱ| (see Figure 4.4). It can be checked that

W = {ξ : β = −2α} is invariant, making it a stable manifold of the origin. Thus,

following the conclusion of Case I, for every ξ(0) ∈ W, r → 0 as t→ ∞ for all k.

Consider a proper change of coordinates from (α, β) to new coordinates (χ, β),

where χ = 2α+ β and χ̇ = fχ(χ, β) with

fχ(χ, β) = 2k sin
(χ

2

)

cos

(
β

2

)

− χ− β

2
.

Let S = {χ̃ : χ̃ > 0} ⊂ R. Define V : R → R by V (χ̃) = 1/2 (χ̃− 2 |ᾱ|)2, which
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Figure 4.4: Phase portrait for (4.6b,c) with k = k⋆
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has a derivative along the solutions of ˙̃χ = f(χ̃, 0) given by

V̇ (χ̃) = (χ̃− 2 |ᾱ|)
︸ ︷︷ ︸

(∗)

(

2k sin

(
χ̃

2

)

− χ̃

2

)

︸ ︷︷ ︸

(∗∗)

.

It is easy to see that the term denoted (∗) < 0 for all χ̃ < 2 |ᾱ| and (∗) > 0 for all

χ̃ > 2 |ᾱ|, where χ̃ ∈ S. Moreover, for χ̃ ∈ S

(∗∗) < 0 ⇐⇒ 2k sin

(
χ̃

2

)

<
χ̃

2

(a)⇐⇒ sin (χ̃/2)

χ̃/2
<

sin |ᾱ|
|ᾱ|

(b)⇐⇒ χ̃ > 2 |ᾱ| .

The equivalence (a) comes from (4.7) and the equivalence (b) follows from the

fact that |ᾱ| < π for k < 5π/4 and the function sinx/x is strictly positive and

monotone decreasing on [0, π). It follows that (∗∗) > 0 for χ̃ < 2 |ᾱ| when χ̃ ∈ S.

Since V (0) = 0, V (χ̃) > 0 in S − {2 |ᾱ|}, and V̇ (χ̃) < 0 in S − {2 |ᾱ|}, the

equilibrium point χ̃ = 2 |ᾱ| of ˙̃χ = fχ(χ̃, 0) is asymptotically stable (AS) by

Lyapunov’s stability theorem (Khalil, 2002, Theorem 4.1). Moreover, it can be

checked (using the same argument given for (∗∗) above) that the set S is invariant

with respect to ˙̃χ = fχ(χ̃, 0), which implies that

lim
t→∞

χ̃(t) = 2 |ᾱ|

for every trajectory starting in S.

Again, it is clear that the origin of β̇ = −β is GAS, and that trajectories of

the full system are bounded (see Case I).

It remains to show that trajectories of χ̇ = fχ(χ, β(t)) that start in S, remain

in S for all t ≥ 0. Suppose the converse is true and that for some χ(0) ∈ S it

happens that χ(t1) = 0 at some time t1 > 0. Then ξ(t1) ∈ W. Since it has already

been established that W is itself an invariant set, it must have been that χ(t) = 0

for all future and past times. But this is a contradiction. Hence, trajectories of

χ̇ = fχ(χ, β(t)) starting in S must remain in S for all t ≥ 0.
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Therefore, the conditions of Theorem 4.3 have been satisfied and so

lim
t→∞

χ(t) = 2 |ᾱ|

for every α(0) ∈ S, where χ(t) is the solution of χ̇ = fχ(χ, β(t)). In the original

(α, β) coordinates, χ > 0 corresponds to the condition that β > −2α. Thus,

together with the GAS of β = 0, this implies that all solutions starting in the

set S+ = {ξ : β > −2α} converge to the equilibrium point (|ᾱ| , 0). An identical

argument can be used to show that all solutions starting in the set S− = {ξ :

β < −2α} converge to the equilibrium point (− |ᾱ| , 0). For 1/2 < k < π/4 this

corresponds to ᾱ ∈ (−π/2, 0) ∪ (0, π/2), wherein (4.6a) yields r → 0 as t→ ∞.

Case III: k = π/4

In this case, after Theorem 4.1, the nonzero equilibria correspond to a {2/1}
polygon and are (±π/2, 0) since k⋆ = π/4 according to (4.3). Indeed, these

equilibria are AS following the technique of Case II. However, as t → ∞, ṙ → 0,

thus r → r̄, where r̄ > 0 is some diameter of encirclement.

Still, as noted in Case II, if ξ(0) ∈ W, r → 0 as t→ ∞ for all k.

Case IV: π/4 < k < 5π/4

When k ≥ 5π/4, (4.7) has more than three equilibria, further complicating the

analysis. Therefore, gains equal to or exceeding 5π/4 are disallowed.

Again, following the technique of Case II, for every ξ(0) /∈ W, the two equi-

libria ᾱ ∈ (−π,−π/2)∪ (π/2, π) are AS, which by (4.6a) yields r → ∞ as t→ ∞
(i.e., the vehicles diverge). �

Whether the vehicles circle each other in the counterclockwise or clockwise

direction depends on whether they start in the region of attraction of the positive

(S+) or negative (S−) equilibrium point respectively.

Also, the set of initial conditions ξ(0) ∈ W, for which changes in k have no

effect, corresponds to vehicles that start with α1(0) = α2(0)+β2(0) = −α2(0) (see

Figure 4.5a). Figure 4.5b shows the special case when α1(0) = α2(0) = 0. Figure

4.5c illustrates the case when α1(0) = π and α2(0) = −π. Note that the same

geometric arrangement can be described by α1(0) = α2(0) = π. However, in this

case the vehicle’s behaviour depends on k.
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Figure 4.5: Possible configurations for ξ(0) ∈ W

4.4 Geometry of Pursuit

In the general case, when n ≥ 2, the number of {n/d}-polygon formations, in-

creases with n, making a global analysis difficult. On the other hand, by employing

the techniques developed in Chapter 3, it is possible to study the local stability

of these formations through linearization. What is more, it is of interest to un-

derstand how the gains kr and kα influence the system’s steady-state behaviour.

Several of the ideas (and the notational conventions) introduced in Section 3.3

are also useful in the varying-speed case. For example, one can view the aggregate

multivehicle system (4.2) as an the autonomous nonlinear system

ξ̇ = f̂(ξ), (4.9)

where ξ = (ξ1, ξ2, . . . , ξn). Again, let Â denote the Jacobian of f̂ . Prior to

linearizing (4.9) about a given equilibrium formation, it is helpful to make two

fundamental geometric observations about the possible trajectories of (4.9).

4.4.1 Pursuit Constraints

Firstly, the constraints g(ξ) = 0 defined in Section 3.1.3 on pages 40–42 apply

equally to varying-speed unicycles. Recall that these three real-valued constraints

define a submanifold M = {ξ ∈ R
3n : g(ξ) = 0} ⊂ R

3n.

Lemma 4.1: The submanifold M is invariant under the flow of (4.9).

Proof: By Lemma 3.2 on page 49, M is invariant under f̂ if and only if

∂g(ξ)

∂ξ
f̂(ξ) = 0 for every ξ ∈ M.
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It is shown in Appendix A.3 that this identity holds for all ξ ∈ M. �

Corollary 4.1: Given ξ̄ ∈ M, the tangent space Tξ̄M is an invariant subspace of

the linearization at ξ̄ of (4.9).

Proof: The proof is a direct consequence of Lemmas 3.3 (page 49) and 4.1. �

Therefore, by Corollary 4.1, there exists a change of basis for R
3n that trans-

forms the linearized system matrix Â into the upper-triangular form

[

ÂTξ̄M
∗

03×(3n−3) Â⋆Tξ̄M

]

.

By employing the approach discussed in Section 3.3.2, the following lemma reveals

three imaginary axis eigenvalues that do not influence the formation stability.

Lemma 4.2: In the quotient space R
3n/Tξ̄M, the induced linear transformation

Â⋆Tξ̄M
: R

3n/Tξ̄M → R
3n/Tξ̄M has (solely imaginary axis) eigenvalues

λ1 = 0 and λ2,3 = ±jkπd
n
.

Proof: The proof is almost identical to the proof of Lemma 3.5 on page 52;

only the dynamics have changed. Let ϕ = Φ(ξ) be the change of coordinates

ϕ1 = r1, ϕ2 = α1, . . . , ϕ3n−3 = βn−1,

ϕ3n−2 = g1(ξ), ϕ3n−1 = g2(ξ), ϕ3n = g3(ξ).

Partition these new coordinates into ϕ = (ϕI, ϕII) where ϕI = (ϕ1, ϕ2, . . . , ϕ3n−3)

and ϕII = (ϕ3n−2, ϕ3n−1, ϕ3n). Notice that the set of coordinates in ϕII are precisely

the functions that define M. Thus, in the new coordinates

ϕ̇I =
[

I3n−3 0(3n−3)×3

]

f̂(ξ)
∣
∣
∣
ξ=Φ−1(ϕ)

ϕ̇II =
∂g(ξ)

∂ξ
f̂(ξ)

∣
∣
∣
∣
ξ=Φ−1(ϕ)

.
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Moreover, the equilibrium ϕ̄ = Φ(ξ̄) is equal to ξ̄, except that the last 3 compo-

nents are instead zero. By computing the linearization about this equilibrium,

ϕ̇I =
[

I3n−3 0(3n−3)×3

]

Âϕ

ϕ̇II =
∂

∂ϕ

(

∂g(ξ)

∂ξ
f̂(ξ)

∣
∣
∣
∣
ξ=Φ−1(ϕ)

)∣
∣
∣
∣
∣
ϕ̄

ϕ

(B)
=

∂

∂ϕ






−α1g2(ξ) − kr1 sin(g3(ξ))

α1g1(ξ) + kr1 cos(g3(ξ)) − k⋆r1

0






ξ=Φ−1(ϕ)

∣
∣
∣
∣
∣
∣
∣
∣
ϕ̄

ϕ

=
∂

∂ϕ






−ϕ2ϕ3n−1 − kϕ1 sinϕ3n

ϕ2ϕ3n−2 + kϕ1 cosϕ3n − k⋆ϕ1

0






∣
∣
∣
∣
∣
∣
∣
ϕ̄

ϕ

=






0 · · · 0 0 −ᾱ −kr̄
0 · · · 0 ᾱ 0 0

0 · · · 0 0 0 0




ϕ =

[

03×(3n−3) Â⋆Tξ̄M

]

ϕ,

where the lengthy derivation of equivalence (B) can be found in Appendix A.3.

The 3 × 3 block Â⋆Tξ̄M
has eigenvalues λ1,2,3 = {0,±jkᾱ}, with ᾱ = ±πd/n from

Theorem 4.1, concluding the proof. �

Therefore, just as in Chapter 3, when determining the stability of a given

{n/d} formation, three imaginary axis eigenvalues of Â may be ignored and the

formation’s stability can be assessed based on the remaining 3n − 3 eigenvalues.

Reiterating, this is because the multivehicle system is constrained to evolve, at

ξ̄ ∈ M, along the tangent space Tξ̄M ⊂ R
3n and not in the quotient space

R
3n/Tξ̄M corresponding to the above mentioned imaginary axis eigenvalues.

4.4.2 Formation Subspace

The second geometric observation about the trajectories of (4.9) is that for every

polygon density d ∈ {1, 2, . . . , n − 1} there exists a set of points in M ⊂ R
3n,

denoted Fd ⊂ M, where the pursuit graph Γt corresponding to (4.9) is a gener-

alized regular polygon of the form {n/d}. Let Fd be called a formation subspace.
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To see this, define a 1-dimensional affine subspace of R
3n

Fd =
{
ξ ∈ R

3n : ri = ri+1 for i = 2, 3, . . . , n, αi = ᾱ = πd/n

and βi = β̄ = π − 2ᾱ for i = 1, 2, . . . , n
}
.

Alternatively, Fd can be defined by 3n− 1 constraint functions

h1(ξ) = α1 − ᾱ, h2(ξ) = β1 − β̄, h3(ξ) = r2 − r3, h4(ξ) = α2 − ᾱ,

h5(ξ) = β2 − β̄, h6(ξ) = r3 − r4, . . . , h3n−1 = βn − β̄.

Thus, each formation subspace Fd, d ∈ {1, 2 . . . , n − 1}, corresponds to the

set of configurations for which the pursuit graph Γt forms a generalized regular

polygon1 {n/d}, parameterized by its radius. This fact will be formalized in

Lemma 4.4. The 3n− 1 constraints h(ξ), given above, leave exactly one degree of

freedom in Fd: namely, the polygon’s radius.

Lemma 4.3: The submanifold Fd is invariant under f̂ .

Proof: By Lemma 3.2 on page 49, Fd is invariant under f̂ if and only if

∂h(ξ)

∂ξ
f̂(ξ) = 0 for all ξ ∈ F .

Therefore, compute

∂(ri − ri+1)

∂ξ
f̂(ξ)

∣
∣
∣
∣
ξ∈Fd

= kr
(
(ri+1 − ri+2) cos(ᾱ+ β̄) − (ri − ri+1) cos ᾱ

)
= 0

∂(αi − ᾱ)

∂ξ
f̂(ξ)

∣
∣
∣
∣
ξ∈Fd

= kr
(
sin ᾱ+ sin(ᾱ+ β̄)

)
− kαᾱ = 0

∂(βi − β̄)

∂ξ
f̂(ξ)

∣
∣
∣
∣
ξ∈Fd

= kα(ᾱ− ᾱ) = 0,

for i = 1, 2, . . . , n, which concludes the proof. �

In Theorem 4.1, it was shown that at equilibrium the pursuit graph Γt corre-

sponding to (4.9) is a generalized regular polygon {n/d}. Next, it is established

that Γt is in fact a generalized regular polygon for every ξ ∈ Fd.

1Recall, from Theorem 4.1, that ᾱ = ±πd/n. The affine subspace Fd is defined here only for
ᾱ = πd/n, since the affine subspace defined for ᾱ = −πd/n has the same properties as Fd.
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Lemma 4.4: For ξ ∈ Fd, the n-unicycle pursuit graph Γt corresponding to (4.9)

is a generalized regular polygon {p}, where p = n/d and d ∈ {1, 2, . . . , n− 1}.

Proof: Since, for ξ ∈ Fd, ri = ri+1, the system’s pursuit graph Γt is equilateral

(i.e., ‖ei‖2 = ‖ei+1‖2). Let ψi be the internal angle at vertex i of the pursuit

graph. The pursuit graph is equiangular (i.e., ψi = ψi+1) since it can be checked

using the geometry of Figure 3.1 that the internal angle at each vertex is given by

ψ̄ ≡ ψi =

{

αi−1 + βi−1 − αi = β̄ for ᾱ > 0

−αi−1 − βi−1 + αi = −β̄ for ᾱ < 0

for ξ ∈ F . Therefore, Γt is a {n/d} polygon. �

From this, it is also possible to conclude that the constant angle β̄ is always

independent of the chosen gains kr and kα.

Corollary 4.2: The angle β̄ = ±π (1 − 2d/n) and is independent of kr and kα.

Proof: By Lemma 3.1 on page 44, the internal angles of {p = n/d} must sum

to nψ̄ = nπ (1 − 2d/n). From Lemma 4.4, for ξ ∈ Fd, the pursuit graph Γt is a

generalized regular polygon {p}. Therefore, the internal angle ψ̄ = ±β̄ at each

vertex gives β̄ = ±π (1 − 2d/n), independent of kr and kα. �

Notice that, for points on Fd the controller gains kr, kα > 0 and the constant

angles ᾱ, β̄ ∈ [−π, π] satisfy

kr/kα = ᾱ
(
sin ᾱ+ sin(ᾱ+ β̄)

)−1
. (4.10)

With β̄ independent of the gains kr and kα, for a given {n/d} formation the

corresponding equilibrium value ᾱ is then determined by equation (4.10). Thus,

the system’s steady-state behaviour depends only on the ratio kr/kα.

In summary, Lemma 4.4 says that for every n > 1 there are associated affine

subspaces, denoted Fd where d ∈ {1, 2, . . . , n− 1}, each one invariant under (4.9)

and in which the pursuit graph Γt corresponding to (4.9) is a generalized polygon

of type {n/d}. The dynamics on each of these affine subspaces may be zero or

varying, as will be shown next, depending on the ratio of controller gains kr/kα.
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4.5 Local Stability Analysis for kr/kα = k⋆

The purpose of this section is to determine, for the case when kr/kα = k⋆, precisely

which {n/d} equilibrium formations are locally asymptotically stable. In this case,

according to Theorem 4.1, every point ξ ∈ Fd is an equilibrium point of (4.9).

Moreover, the equilibrium values for ᾱ and β̄ are those given by Theorem 4.1.

4.5.1 Block Circulant Linearization

As in Chapter 3, linearizing (4.2) about an equilibrium point ξ̄i = (r̄, ᾱ, β̄) gives n

identical linear subsystems, each of the form ˙̃ξi = Aξ̃i + Bξ̃i+1, where ξ̃i = ξi − ξ̄i

and the matrices A and B are given by

A =
∂f(ξi, ξi+1)

∂ξi

∣
∣
∣
∣
(r̄,ᾱ,β̄)

=






−1
2
qπ cot(qπ) qπr̄ 1

2
qπr̄

− 1
2r̄
qπ −1 −1

2
qπ cot(qπ)

0 1 0






B =






1
2
qπ cot(qπ) 0 0

1
2r̄
qπ 0 0

0 −1 0




 .

Therefore, the full system Jacobian of f̂ has the block circulant form

Â = circ(A,B, 03×3, . . . , 03×3).

4.5.2 Spectral Analysis

For a given {n/d}-polygon formation, let F0
d denote the invariant subspace formed

by the affine subspace Fd expressed in ξ̃ coordinates (i.e., shifted so that the origin

is an equilibrium point ξ̄ ∈ Fd).

Lemma 4.5: The restriction of Â to F0
d equals zero.

In other words, there is a zero eigenvalue in Â corresponding to motion along

Fd ⊂ M. This result is rather obvious, since every point in the affine subspace

Fd is an equilibrium point when kr/kα = k⋆ (cf. Theorem 4.1). Therefore, com-

bining the results of Lemmas 4.2 and 4.5, this leaves 3n − 4 eigenvalues of Â,
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which together determine the local stability of a given {n/d} equilibrium forma-

tion. Thus, if a given polygon formation subspace Fd is locally asymptotically

stable, then the formation’s radius at equilibrium depends on the initial vehicle

configurations. Figure 4.6 conceptually illustrates this situation for this case when

the formation in question is locally asymptotically stable.

R
3n

M

Fd

Figure 4.6: Trajectories in M locally approaching Fd with k = k⋆

Naturally, the block circulant structure of Â can be exploited to further isolate

its eigenvalues. As in Chapter 3, this can be accomplished through block diago-

nalization of the system matrix Â. Recall that ωi−1 := ej2π(i−1)/n ∈ C denotes the

i-th of n roots of unity, where j :=
√
−1. Again, let q := p−1 = d/n.

Lemma 4.6: The matrix Â can be block diagonalized into diag(D1, D2, . . . , Dn),

where each 3 × 3 block is given by Di = A+ ωi−1B, i = 1, 2, . . . , n.

The proof of Lemma 4.6 follows from Davis (1994, Theorem 5.6.4) and is

essentially the same as Lemma 3.6 on page 54. Consequently, each diagonal block

has the same form

Di =






π
2
q cot(qπ)(ωi−1 − 1) qπr̄ π

2
qr̄

π
2r̄
q(ωi−1 − 1) −1 −π

2
q cot(qπ)

0 1 − ωi−1 0




 .

Lemma 4.7: The stability of Â is independent of r̄ > 0.
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Proof: Every matrix Di can be factored as Di = TD̃iT
−1, where

T =






r̄ 0 0

0 1 0

0 0 1






(recall 0 < q < 1) and

D̃i =






1
2
qπ cot(qπ)(ωi−1 − 1) qπ 1

2
qπ

1
2
qπ(ωi−1 − 1) −1 −1

2
qπ cot(qπ)

0 1 − ωi−1 0




 ,

This implies that, σ(Di) = σ(D̃i) and, thus, that σ(Di) is independent of r̄ > 0. �

4.5.3 Stable Pursuit Formations

Observe that the eigenvalues of D1 = A + B are among the eigenvalues of Â for

every n. The characteristic polynomial of D1 is pD1
(λ) = λ2(λ+ 1), so the eigen-

values of D1 are λ1,2 = 0 and λ3 = −1. Therefore, as predicted by Lemmas 4.2

and 4.5, two zero eigenvalues have been discovered, while the remaining eigenvalue

of D1 has Re(λ3) = −1 < 0 for every 0 < q < 1.

Proposition 4.1: The {2/1} formation is locally asymptotically stable.

Proof: When n = 2, q = 1/2 and D2 = A − B is the only block to analyze,

apart from D1 = A+B. The eigenvalues of D2 are λ4,5 = ±j π
2

and λ6 = −1 (com-

putations not shown). By disregarding the imaginary axis eigenvalues according

to Lemma 4.2, one may conclude that the {2/1} polygon is stable. �

Of course, this result is already known from Section 4.3. However, the short

proof serves to emphasize the local analysis technique. As in the previous chapter,

the blocks D̃i are in general complex matrices. In this general case, the charac-

teristic polynomial of D̃i is

pD̃i
(λ) = λ3 + c1λ

2 + c2λ+ c3,
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where the complex coefficients c1, c2, c3 ∈ C are

c1 = 1 + 1
2
qπ(1 − ωi−1) cot(qπ)

c2 = 1
2
qπ(1 − ωi−1)(qπ + 2 cot(qπ))

c3 = 1
4
(qπ)2(1 − ωi−1)2(1 + cot2(qπ)).

Therefore, to determine the stability of D̃i one merely needs to check that the

leading principal minors of the Hermitian matrix (3.20) on page 58. The com-

puted expressions for the minors, denoted h1, h2, and h3, are rather lengthy and,

therefore, are not explicitly reproduced here. Instead, these minors are repre-

sented graphically, as in Section 3.3.4. Let ωi−1 = wi + jzi and let −1 < w < 1

and 0 < µ < 1 represent wi and q, respectively, on a continuum.

For a given n, define the set

Wn =
{
wi = Re(ωi−1) : i = 1, 2, . . . , n

}
.

With reference to the leading principal minor h2, consider the set of points

that are not stable H2 = {(µ,w) : h2 ≤ 0, µ ∈ (0, 1), w ∈ (−1, 1)}, illustrated by

the region marked U in Figure 4.7a. Let intH2 denote the interior of H2.

Lemma 4.8: Every {n/d} formation with n/2 < d < n is unstable.

Proof: It will be shown that for all {n/d}, with n/2 < d < n, there exists

an index i⋆ ∈ {1, 2, . . . , n} with associated wi⋆ ∈ Wn such that (q, wi⋆) ∈ intH2,

implying that the block Di⋆ is unstable. It is a fact (most easily checked numeri-

cally) that the pair (µ, cos(2πµ)) ∈ H2 for every µ ∈ (1/2, 1), as illustrated by the

dotted line in Figure 4.7a. Take i⋆ := d + 1. Observe that wi⋆ = cos(2πq) ∈ Wn.

However, by the above stated fact, this implies that (q, wi⋆) ∈ intH2. Hence, Di⋆

is unstable, implying that the formation {n/d} is unstable. �

Now, consider the set of points that are not stable, with reference to the leading

principal minor h3, H3 = {(µ,w) : h2 ≤ 0, µ ∈ (0, 1/2), w ∈ (−1, 1)}, illustrated

by the region marked U in Figure 4.7b. It is a fact that the lower boundary of U
in Figure 4.7b is given by the function w(µ) = cos(2πµ), which was obtained by

solving (with the help of computer algebra software) the equation h3(µ,w) = 0 on

the relevant domain µ = (0, 1/2] and w ∈ (−1, 1). As a result, the above definition
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Figure 4.7: Parameter w as a function of µ for h2 and h3
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for the set H3 is equivalent to H3 = {(µ,w) : µ ∈ (0, 1/2], w ∈ [w(µ), 1)}. Let

∂H3 denote the boundary of H3.

Theorem 4.4 (Main Stability Result): For n ≥ 2, the only locally asymptotically

stable equilibrium polygons are those of the form {n/1}.

Proof: By Lemma 4.8, one needs only to study those polygons with 1 ≤ d ≤
n/2. It will first be shown that for all {n/d}, with 1 ≤ d ≤ n/2, there exists

an index i′ ∈ {1, 2, . . . , n} with associated wi′ ∈ Wn such that (q, wi′) ∈ intH3,

implying the block Di′ is unstable.

Let i′ = d and observe that wi′ = cos(2π(d− 1)/n) ∈ Wn, which implies that

w(q) < wi′ < 1. In other words, wi′ ∈ intH3, implying that every polygon with

1 < d ≤ n/2 is also unstable. Thus, the only remaining polygons are those with

d = 1. To show that these remaining {n/1} polygons are stable for all n, it will

be proved that for all indices i ∈ {1, 2, . . . , n} the blocks Di are indeed stable,

modulo the imaginary axis eigenvalues that can be ignored according to Lemmas

4.2 and 4.5. First, note that h1 = 2 + µπ(1 − w) cos(πµ) > 0 for every (µ,w) on

the relevant domain. Moreover, Figure 4.7a shows the parameter w as a function

of µ for h2, in addition to the boundary of H3. From the figure, it is clear that

every point not in the set H3 also has h2 > 0 on the relevant domain. Thus, to

show stability on this domain it is enough to show that h3 > 0.

Let d = 1. First, check that the blocks Di with i ∈ {3, 4, . . . , n − 1} are

stable (i.e, yield h3 > 0), which is equivalent to verifying that wi < w(µ) for

all i ∈ {3, 4, . . . , n − 1} (see Figure 4.7b). But this is always true since wi =

cos(2π(i− 1)/n) < cos(2π/n) for all i ∈ {3, 4, . . . , n − 1}. Now, choose i = 1. In

this case, D1 = A+B, which is known to have eigenvalues λ1,2 = 0 and λ3 = −1.

Thus, according to Lemmas 4.2 and 4.5, these two zero eigenvalues can be ignored

since they do not influence the stability of a given {n/d} polygon.

For d = 1, i⋆ = d + 1 = 2 and w2 = cos(2π/n). Thus the point (q, w2) ∈ ∂H3

(i.e., it lies exactly on the boundary of H3 in Figure 4.7b). Together, the matrix

D2 and its complex conjugate Dn have two imaginary axis eigenvalues (one each)

of the form λ = ±jπ/n, while the remaining eigenvalues have Re(λ) 6= 0. These

facts were verified with the assistance of computer algebra software. According to

Lemma 4.2, these two imaginary axis eigenvalues can be ignored. Of course, the

eigenvalues with Re(λ) 6= 0 cannot be unstable, otherwise the point (q, w2) would
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lie in intH3, as opposed to in ∂H3, concluding the proof. �

In summary, for unicycles in cyclic pursuit under the control law (4.1), with

kα = 1 and kr = k⋆, equilibrium formations of the type {n/1} with n ≥ 2 are

locally asymptotically stable, while the remaining formations with 2 ≤ d < n are

not. Moreover, the equilibrium distance between unicycles r̄ > 0 depends on the

initial vehicle configurations. Lastly, the findings of this section are consistent

with the observed simulation results of Figure 4.1.

4.6 Local Stability Analysis for kr/kα 6= k⋆

In this section, the ratio of controller gains kr/kα is allowed to take on values other

than k⋆, as in Figure 4.2. Once more, presume that kα = 1 and kr = k without

loss of generality (see Section 4.2). In order to utilize the local stability result of

Theorem 4.4, consider the case when k = k⋆± ǫ, where ǫ > 0. Thus, k remains in

some ǫ-neighbourhood of the critical gain k⋆. The objective is to (locally) explain

the simulation results of Figures 4.2a and 4.2b, where the unicycles converge and

diverge, respectively, but appear to do so in formation. Define ϕ = Φ(ξ) by

ϕ1 = r1, ϕ2 = α1 − ᾱ, ϕ3 = β1 − β̄, ϕ4 = r2/r3 − 1, . . . , ϕ3n−2 = rn/r1 − 1,

ϕ3n−1 = αn − ᾱ, ϕ3n = βn − β̄, (4.11)

so that the last 3n− 1 coordinates are again zero on the affine subspace Fd ⊂ M,

defined in Section 4.4.2. A verification that the above change of coordinates is

proper is provided in Appendix A.1.2. In contrast to the previous section, no

point with ri > 0 in Fd is an equilibrium point because k 6= k⋆. Thus, in the new

coordinates one obtains the dynamics

ϕ̇1 = −k (r1 cosα1 + r2 cos(α1 + β1))ξ=Φ−1(ϕ)

= −kϕ1 (cos(ϕ2 + ᾱ) + (ϕ4 + 1)(ϕ7 + 1) · · ·
· · · (ϕ3n−2 + 1) cos(ϕ2 + ᾱ+ ϕ3 + β̄)

)
,
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while the remaining coordinates are such that, if

ϕI := ϕ1

ϕII := [ϕ2 ϕ3 · · · ϕ3n]
⊤,

one obtains the following upper triangular structure

ϕ̇I = fI(ϕI, ϕII) (4.12a)

ϕ̇II = fII(ϕII). (4.12b)

Notice how the set of points with ϕII = 0 exactly corresponds to a given affine

subspace Fd and that fII(0) = 0. Thus, if ϕII(t) → 0 as t → ∞, the multivehicle

system’s pursuit graph approaches a generalized regular polygon of type {n/d},
whether the distance between unicycles converges to a constant value or not.

Lemma 4.9: For a given {n/d} formation, the equilibrium point ϕII = 0 of

(4.12b) is locally asymptotically stable for all k sufficiently near k⋆ if and only

if d = 1.

The proof of Lemma 4.9 follows immediately from Theorem 4.4. Firstly, recall

that Fd ⊂ M, implying that the Jacobian of fII at ϕII = 0 must possess the three

imaginary axis eigenvalues (which are independent of k) revealed in the proof of

Lemma 4.2. Now, it is well known that the eigenvalues of a matrix are continuous

functions of its elements. Since the elements of AII are also continuous functions of

the parameter k = k⋆± ǫ, any stable eigenvalues of AII will remain in the left-half

complex plane for sufficiently small ǫ. Likewise, any unstable eigenvalues will also

remain in the right-half complex plane, implying by Theorem 4.4 that the only

locally asymptotically stable formations are those of the type {n/1}. In other

words, there exists a sufficiently small neighbourhood of F1 wherein αi → ᾱ,

βi → β̄, and the ratio of distances ri/ri+1 → 1. Equivalently, the unicycles

converge to a generalized regular polygon formation of type {n/1}, as per Lemma

4.4. How this polygon formation’s radius changes with time, as a function of the

chosen controller gain k > 0, is examined next in Theorems 4.5 and 4.6.

The right-hand side of equation (4.10) defines a function k(ᾱ). Differentiating

this with respect to ᾱ (recall that β̄ is constant according to Corollary 4.2) gives

∂k

∂ᾱ
= (sin ᾱ+ sin(ᾱ+ β̄))−2

(
sin ᾱ+ sin(ᾱ+ β̄) − ᾱ(cos ᾱ+ cos(ᾱ+ β̄))

)
,
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which equals (1/2) csc(π/n) for ᾱ = π/n and k = k⋆. Since csc(πµ) > 0 for

µ ∈ (0, 1) and by the continuity of k(ᾱ), the slope of the graph of (4.10) is

positive for k in an ǫ-neighbourhood of k⋆.

Let ᾱ be the solution to (4.10) when k = k⋆ ± ǫ. Thus, when k = k⋆ − ǫ

(respectively, k = k⋆ + ǫ) and for sufficiently small ǫ > 0 it holds that 0 < ᾱ =

π/n− δ(ǫ) < π (respectively, 0 < ᾱ = π/n+ δ(ǫ) < π), where δ(ǫ) = ᾱ−π/n > 0.

Theorem 4.5 (Converging Vehicles): If k = k⋆ − ǫ, for small enough ǫ > 0

and ξ(0) in a sufficiently small neighbourhood of F1, the n-unicycle pursuit graph

corresponding to (4.9) converges to a generalized regular polygon of type {n/1}
while ri(t) → 0 as t→ ∞, i = 1, 2, . . . , n.

Proof: The proof follows by applying Theorem 4.3 on page 81 to the composite

system (4.12). By Lemma 4.9, for a given {n/d} polygon formation, the origin of

(4.12b) is locally asymptotically stable if and only if d = 1. Let ϕII(t) denote the

solution of (4.12b) starting at ϕII(0) and let RA ⊂ R
3n−1 be a sufficiently small

neighbourhood of the origin such limt→∞ ϕII(t) = 0 for every ϕII(0) ∈ RA.

Next, it is shown that the origin of

ϕ̇I = fI(ϕI, 0) (4.13)

is globally asymptotically stable (GAS). Let VI : R+ → R be the continuously

differentiable function VI(ϕI) = ϕ2
I/2, which has the derivative along (4.13)

V̇I(ϕI) = −kϕ2
I

(
cos ᾱ+ cos(ᾱ+ β̄)

)

= −kϕ2
I (cos(π/n− δ(ǫ)) − cos(π/n+ δ(ǫ))) .

Since 0 < π/n < π and δ(ǫ) > 0, it holds that V̇I(ϕI) < 0 on R+ − {0}. This,

together with the facts VI(0) = 0, VI(ϕI) > 0 in R+ − {0}, and VI(ϕI) is radially

unbounded, implies that the origin of (4.13) is GAS by the Barbashin-Krasovskii

theorem (Khalil, 2002, Theorem 4.2). Choose S := R+.

Finally, it must be shown that the trajectories of

ϕ̇I = fI(ϕI, ϕII(t)) (4.14)
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are bounded for all t ≥ 0, ϕI(0) ∈ S, and sufficiently small ϕII(0). This is done

by defining the product set

Ω = {VI(ϕI) ≤ c1} × {VII(ϕII) ≤ c2} ,

where c1, c2 > 0. The solution ϕ(t) starting at ϕ(0) ∈ Ω is bounded for all t ≥ 0 if

Ω is a compact and positively invariant set. Since the origin of (4.12b) is asymp-

totically stable, by a converse Lyapunov theorem (Khalil, 2002, Theorem 4.17)

there exists a positive definite smooth function VII(ϕII) and a continuous positive

definite function W (ϕII), both defined for all ϕII ∈ RA, such that VII(ϕII) → ∞
as ϕII → ∂RA and

∂VII

∂ϕII

fII(ϕII) ≤ −W (ϕII) (4.15)

for all ϕII ∈ RA. Therefore VII is negative on the boundary {VII(ϕII) = c2} for

sufficiently small c2. Now, consider the derivative of VI, yielding

V̇I(ϕ) ≤ −kϕ2
1 (cos(ϕ2 + ᾱ) + (ϕ4 + 1)(ϕ7 + 1) · · ·

· · · (ϕ3n−2 + 1) cos(ϕ2 + ᾱ+ ϕ3 + β̄)
)
.

Let γ := (ϕ4+1)(ϕ7+1) · · · (ϕ3n−2+1). Since 0 < π/n < π and because ϕ2, ϕ3 → 0

and γ → 1 as ϕII → 0, there exists a neighbourhood RN ⊂ RA of ϕII = 0 wherein

cos(ϕ2 + ᾱ) + γ cos(ϕ2 + ᾱ+ ϕ3 + β̄)

= cos(π/n− δ(ǫ) + ϕ2) − γ cos(π/n+ δ(ǫ) − ϕ2 − ϕ3) > 0.

Thus, V̇I is negative on the boundary {VI(ϕI) = c1, VII(ϕII ≤ c2} for any c1 >

0, provided c2 > 0 is chosen small enough. Hence, for any given c1 > 0 and

sufficiently small c2 > 0, Ω is a compact and positively invariant set. Given initial

conditions ϕI(0) ∈ S and ϕII(0) ∈ RN , one can always choose c1, c2 > 0 such that

ϕ(0) ∈ Ω, from which it follows that the trajectories of (4.14) are bounded for all

t ≥ 0 and all ϕI(0) ∈ S.

By having satisfied the conditions of Theorem 4.3, it holds that

lim
t→∞

ϕI(t) = 0
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for every ϕI(0) ∈ R+ and ϕII(0) ∈ RN , where RN is a sufficiently small neigh-

bourhood of ϕII = 0. Equivalently, ri(t) → 0 as t → ∞ for i = 1, 2, . . . , n (i.e.,

the vehicles converge to a point), concluding the proof. �

This situation is conceptually depicted in Figure 4.8.

R
3n

M

F1

Figure 4.8: Trajectories in M locally approaching F1 with k < k⋆

Theorem 4.6 (Diverging Vehicles): If k = k⋆ + ǫ, for small enough ǫ > 0

and ξ(0) in a sufficiently small neighbourhood of F1, the n-unicycle pursuit graph

corresponding to (4.9) converges to a generalized regular polygon of type {n/1}
while ri(t) → ∞ as t→ ∞, i = 1, 2, . . . , n.

Proof (sketch): The proof is the same the proof of Theorem 4.5, but with ϕ1

in the original coordinates transformation (4.11) replaced by ϕ1 = 1/r1. A simple

computation shows that this yields nearly the same dynamics

ϕ̇1 = kϕ1 (cos(ϕ2 + ᾱ) + (ϕ4 + 1)(ϕ7 + 1) · · ·
· · · (ϕ3n−2 + 1) cos(ϕ2 + ᾱ+ ϕ3 + β̄)

)
.

By repeating the arguments given in the proof of Theorem 4.5, one finds that

ri(t) → ∞ as t→ ∞ for i = 1, 2, . . . , n (i.e., the vehicles diverge). �

In both cases, k = k⋆ ± ǫ, repeated computer simulations indicate that the

region of convergence for F1, with respect to variations in the parameter k about

k⋆, is relatively large. Example simulations for k 6= k∗ are provided in Figures 4.2a



Chapter 4: Varying-speed Pursuit Formations 103

and 4.2b, illustrating how the unicycles converge to a {6/1} polygon formation

while, at the same time, either converging or diverging, respectively.

4.7 Stationary Polygons

In Section 3.4 it was confirmed that the stable generalized regular polygon for-

mations for fixed-speed unicycles in cyclic pursuit are stationary. This section

demonstrates that an identical result holds for varying-speed vehicles. Once more,

it is useful to view each vehicle’s position as a point in the complex plane. The

centroid of the vehicles is given by zc = (1/n)
∑n

i=1 zi ∈ C. By differentiating the

centroid’s location and substituting the unicycle model (2.12), one obtains

żc =
1

n

n∑

i=1

vie
jθi .

At equilibrium, after Theorem 4.1, the control law (4.1) has the property that

vi = vi+1 = k⋆r̄, where k⋆, r̄ > 0 are constants. Following Theorem 4.4, it can be

shown that the centroid remains stationary (i.e., żc = 0 at equilibrium) by setting

d = 1 and proceeding in exactly the same manner as in Section 3.4.

Similarly, for the case when k = k⋆± ǫ, Theorems 4.5 and 4.6 say that vi(t) →
vi+1(t) as t → ∞, i = 1, 2, . . . , n, implying by the same arguments given above

that żc → 0 as t→ ∞ (i.e, the centroid approaches a fixed point).

4.8 On the n-vehicle Weave

The so-called n-vehicle weave has already been introduced for the case of fixed-

speed vehicles in Section 3.5. Similar periodic solutions exist for the case of

varying-speed vehicles subject to the control law (4.1), so the discussion in Section

3.5 will not be reproduced here. Instead, this brief section focuses solely on the

qualitative differences between fixed- and varying-speed vehicles. As was remarked

in Section 3.5, it is not within the scope of this thesis to provide a complete analysis

of the weave. Only observations, based on simulation, are offered.

In Section 3.5 it was remarked how, for fixed-speed vehicles, the radius of

any given equilibrium formation and the width of the weave are both inversely

proportional to the selected controller gain k. An analogous result holds in the
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varying-speed case. In this case, let kα = 1 and define k := kr. Only when

k = k⋆ (see Theorem 4.1) do the vehicles converge to an equilibrium formation of

fixed radius. Loosely speaking, if k < k⋆, then the vehicles converge to a point.

Likewise, if k > k⋆, they diverge (see Figures 4.1 and 4.2).

The same is true of the weave. Figure 4.9 shows n = 6 weaving vehicles

subject to the control law (4.1). Notice how the initial conditions belong to

the subspace W defined in Section 3.5.2. In Figure 4.9a, the vehicles converge,

with kr = 0.6, while in Figure 4.9b they diverge, with k = 0.7. Hence, one

might surmise that there exists a weaving pattern of fixed width for some gain

0.6 < k < 0.7. Numerical simulations suggests this value lives in a neighbourhood

of k ≈ 0.65 (see Figure 4.10), which is different from the equilibrium gain k⋆ =

(π/12) csc(π/6) ≈ 0.5236 corresponding to the stable {5/1}-polygon formation.
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Figure 4.9: Trajectories of (4.2) corresponding to the n = 6 weave
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Figure 4.10: Varying-speed n = 6 weave; k = 0.65



Chapter 5

Experiments in Multivehicle

Coordination

In Chapters 3 and 4, cyclic pursuit was studied in a purely theoretical way as

a means for achieving certain regular geometric formations in the plane for a

system of identical kinematic unicycles. In particular, Chapter 3 revealed that,

subject to the unicycle inputs (3.4) on page 40, some generalized regular polygon

formations are locally asymptotically stable, while others are not. Table 3.2 on

page 65 lists all possible equilibrium polygons and gives their stability. From an

engineering perspective, the question that remains is whether the cyclic pursuit

algorithm is sufficiently robust to unmodelled vehicle dynamics and inevitable

delays due to sensing and information processing. Therefore, consequent to the

theory of Chapter 3, this chapter summarizes the apparatus and results of exper-

iments conducted towards evaluating the practicality of fixed speed pursuit as an

implementable multivehicle coordination strategy.

5.1 Experimental Purpose

During recent years, a number of research groups have developed testbeds for

experimentation in multivehicle control. In most cases, multivehicle testbeds are

designed without a specific set of control experiments in mind, thus not for the sole

purpose of validating a particular theory. Some examples are the MIT Multive-

hicle Testbed (King, Kuwata, Alighanbari, Bertucelli, and How, 2004), Caltech’s

MVWT-II Multivehicle Wireless Testbed (Jin et al., 2004), the Brigham Young

Unmanned Air Vehicle Testbed (McLain and Beard, 2004), and the University of

Illinois’s HoTDeC, or Hovercraft Testbed for Decentralized Control (Vladimerou,

107
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Stubbs, Rubel, Fulford, and Dullerud, 2004), to name only a few.

Likewise, a fleet of ten so-called Argo Rovers1 have recently been constructed at

the Space Robotics Laboratory of the University of Toronto Institute for Aerospace

Studies (UTIAS). The robots were designed to be capable of lengthy autonomous

operation and have each been equipped with host of sensing, communication, and

actuation devices (Mirza, Beach, Earon, and D’Eleuterio, 2004).

Since the theoretical results of Chapters 3 and 4 were based on ideal kinematic

unicycles, one might naturally question whether the pursuit control law (3.4) has

more general applicability (e.g., to real vehicles, possessing nontrivial dynamics,

such as the Argo Rovers). Also, despite the growing amount of theoretical research

on coordination control strategies employing local interaction-based techniques,

there are relatively few instances of experimental research validating their worth.

Pursuant to this, the purpose of the experiments described here is twofold:

(i) Determine if the theoretical results of Chapter 3, obtained for kinematic

unicycles, can be observed in practice using the four-wheeled Argo Rovers;

(ii) Investigate the practicality of (3.4) as a multivehicle coordination strategy

given real hardware restrictions (e.g., processing delays, sensor limitations).

A description of the experimental procedure, a detailed summary of the results,

and a discussion of the observations follow in the body of this chapter.

5.2 Overview of the Rovers

One of the Argo Rovers is shown in Figure 5.1, posing in UTIAS’s indoor-outdoor

testing facility called MarsDome. Built using the Tamiya TXT-1 4 × 4 Pick-up

chassis, the rovers were designed to be fully autonomous mobile robots suitable

for outdoor use in reasonable environmental conditions.

5.2.1 Microelectronics and Software

Each rover possesses a 700 MHz Pentiumr III processor-based computer (Cell

Computingr Plug-N-Run) with a 1 GB microdrive, 256 MB of RAM, 2 PCMCIA

slots, 2 USB ports, and runs the Debian-Linux operating system. All Linux-based

1The allusion being to the Greek myth of Jason, the Argonauts, and the Golden Fleece, since
names belonging to the Argonauts have been bestowed on rovers of the fleet.
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Figure 5.1: An Argo Rover in the MarsDome at UTIAS

software is capable of accessing the onboard sensors and actuators by way of a

Siemens C164 20 MHz 16-bit microcontroller (for processing low-level hardware

routines). All custom software for the rovers is developed using the C/C++ lan-

guages in Linux. Furthermore, the rovers are each fitted with a wireless Ethernet

PCMCIA card used for remote software development, operation, and potentially

for direct communication between the rovers.

5.2.2 Power Delivery System

In order to conserve payload space and to lower the rover’s centre of gravity (i.e.,

for improved stability), each rover is powered by 1.2 V Saft Nickel-Metal Hydride

(NiMH) VH F battery cells, ten of which are located (in series) inside each rubber

tire. Current is subsequently delivered to the individual rover systems by way of

a custom designed circular slip-ring within each wheel hub.

5.2.3 Motion Actuators and Encoders

Front and rear wheel steering axis angles are adjustable independently via servo-

motor driven mechanisms (Hitec model HS-300) at each wheel axis. Thus, each

wheel axis angle is directly specifiable (in software) through a servomotor input

command uφ ∈ [−1, 1]. For example, if the rear axis is fixed with a zero steering

angle then a servomotor input of uφ ≈ 0 at the front wheel axis would result in

straight-line driving, while uφ > 0 and uφ < 0 would correspond to right and left
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car-like steering (in the forward direction), respectively.

Moreover, each rover is propelled at all four wheels by a geared throttle motor

(Alan’s Models part number 1105/7; gear ratio 6 : 1), allowing the rover to easily

move forward or backward. The rovers are capable of traveling at speeds of

not much more than 0.5 m/s with a minimum turning radius of approximately

0.65 m. The throttle is specifiable (in software) through a motor input command

uf ∈ [−1, 1]. The vehicle is stopped when uf ≈ 0 and moves forward and backward

for uf > 0 and uf < 0, respectively.

The rovers are all mounted with US Digital Corporation rotary optical en-

coders (generating 512 cycles per shaft turn) in the hub of each wheel.

5.2.4 Camera-based Vision Systems

Each rover is equipped with two CCD array cameras (Logitechr QuickCamr Pro

3000) capable of acquiring up to 640× 480 pixel resolution images at a frequency

of 30 Hz. Furthermore, each camera is fixed to a stereovision head using custom

supports allowing for individual pan and tilt by way of servomotor mechanisms.

5.3 Design and Implementation

This section describes, in detail, the hardware and software engineering designs

used to fulfil the experimental purpose described in Section 5.1.

5.3.1 Rover Dynamics

As a design tool and, perhaps more importantly, to illustrate exactly how different

the Argo Rovers are from ideal kinematic unicycles, a simple model of the rover

dynamics is first developed. In doing so, it is assumed that each wheel rolls without

laterally slipping, thus having similar nonholonomic characteristics to the already

studied kinematic unicycles.

Owing to limited workspace in the laboratory environment, the rovers were op-

erated with their front and rear wheel axes “locked” for tightest turning, meaning

that each rover’s front and rear steering angles are always equal and opposite. Let

φf and φr denote these angles, respectively, as illustrated in Figure 5.2. In prac-

tice, locking of the wheel axes was accomplished in software (not physically) by

assigning the appropriate servomotor inputs uφf
and uφr

so that φf = −φr =: φ.
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Figure 5.2: Top view of a rover with wheel-axes “locked”

Therefore, in this case, each rover’s configuration can be described by the vector

of coordinates q = (x, y, θ, φ). If the front and rear wheel-axis pairs are each

modelled as just a single wheel (see Figure 5.3), then one can use the nonholo-

nomic constraints, which act at each wheel to prevent it from slipping laterally,

to develop the kinematic rover model
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ωφ, (5.1)

where the rover is driven by a forward velocity input vf acting at the front wheel-

axis point pf (or at the axis-point pr — since the wheels are locked it does not

matter) in the direction of the wheel and is steered by an angular steering velocity

input ωφ. In the vehicle dynamics literature, this is known as a body-centred-axis

model (Ellis, 1969). The length l is approximately 0.3 m. A detailed derivation

of the model (5.1) is provided in Appendix B.

l
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φpr pf
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Figure 5.3: Body centred axis model with wheel-axes locked



Chapter 5: Experiments in Multivehicle Coordination 112

The kinematic model (5.1) constitutes a first step in describing the rover as a

mechanical system. In reality, the rovers have mass, and thus dynamics. One can

extend the above kinematic model to include dynamic effects due to translation

and rotation of the rover’s body mass. Let m denote the rover’s mass (approx-

imately 15 kg), Ip its body moment of inertia about the point p in Figure 5.2,

and Is the effective inertia that needs to be overcome by the steering actuator

(assumed constant). Suppose one ignores friction and the (minor) inertial effects

due to rotation of the wheels. Then, the dynamical equations of motion are

ẋ = vf cosφ cos θ (5.2a)

ẏ = vf cosφ sin θ (5.2b)

θ̇ = vf
1
l
sinφ (5.2c)

φ̇ = ωφ (5.2d)

v̇f =
(
m cos2 φ+ 1

l2
Ip sin2 φ

)−1 (
vfωφ(m− 1

l2
Ip) cosφ sinφ+ f

)
(5.2e)

ω̇φ = τ/Is, (5.2f)

where f is the throttle force input, divided evenly between the front and rear

wheels, acting in the direction of the wheels, and τ is the representative steering

torque input. Again, a detailed derivation of the model (5.2) can be found in

Appendix B. Since, on the real rovers, the steering angle φ is directly specifiable

by way of the steering servomotor inputs, the steering torque τ of (5.2f) is not

actually an available input. Instead, the real steering mechanism dynamics are

a function of the unmodelled servomotor characteristics, making f and φ the

assignable inputs (through uf and uφ, respectively).

5.3.2 Speed Regulation

So as to mimic the control law (3.4), it was necessary to equalize the forward speeds

of all the rovers. Because of inevitable differences in the physical characteristics

among the rovers, it was not enough to provide the same input signal to the

throttle motors on each of the rovers. Therefore, a basic speed regulator was

designed for each rover using feedback from its four wheel-encoders. By extending

the Argo Rover dynamic model (5.2) to account for throttle actuator dynamics,

a PI compensator design was selected (see why in Appendix B.4).
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Rolling Speed Estimation

The actual rolling speed vf was estimated by acquiring and differentiating posi-

tion data from the rotary encoders located in each of the four rover wheel hubs.

Rotary encoder counts were sampled at an interval of T = 0.1 s (or 10 Hz) and

differentiated using the backward finite-divided-difference formula (Chapra and

Canale, 1988, page 527)

ḋ(kT ) ≈ 1

2T
(3d(kT ) − 4d(kT − T ) + d(kT − 2T )) .

The distance traveled by each wheel at every time step t = kT , k = 0, 1, 2, . . ., was

determined based on a known translation of approximately 0.53 m/512 encoder

counts. Subsequently, the estimated speed vf (kT ) was computed as the average

vf (kT ) =
1

4

(

ḋfl(kT ) + ḋfr(kT ) + ḋrl(kT ) + ḋrr(kT )
)

,

where ḋfl, ḋfr, ḋrl, and ḋrr, denote the estimated front-left, front-right, rear-

left, and rear-right wheel velocities, respectively. There may exist more accurate

techniques for computing v̂f (e.g., see Barfoot, 2003), however the above method

was sufficient, especially given the noise present in actual speed estimates.

In fact, there was a great deal of noise present in the speed estimates, which

may have been due to several factors, possibly including: (i) noise amplifica-

tion due to numerical differentiation; (ii) shaking and swaying of the rover body,

transmitted through the suspension; (iii) nonsymmetric placement of rechargeable

batteries inside the tires; (iv) significant play in the transmission and steering

mechanisms. In order to attenuate high frequency noise in the velocity estimates,

the differentiated encoder data was low-pass filtered (LPF) as follows:

v̂f (kT ) =
4∑

i=0

civf (kT − iT ),

where c = (0.3, 0.25, 0.2, 0.15, 0.1) is the vector of employed coefficients, generating

a −3 dB cutoff frequency of approximately 1.35 Hz.
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Digital Implementation

A PI compensator design was implemented digitally on each rover’s computer by

using finite-difference approximations, again at a sampling interval of T = 0.1 s.

Let vR denote the reference forward velocity such that the velocity error at time

t = kT , where k = 0, 1, 2, . . ., is given by

ev(kT ) := vR − v̂f (kT ).

Let uv ∈ [−1, 1] be the servomotor input command, specifiable in software, where

−1 and 1 denote full throttle reverse and forward, respectively. Thus, the discrete-

time PI controller is given by

uv(kT ) = uP (kT ) + uI(kT ),

where uP (kT ) = kP e(kT ) and uI(kT ) are the proportional and integral terms,

respectively. A simple trapezoidal integration rule (Chapra and Canale, 1988,

page 479) was used to integrate the error so that uI(kT ) is given by

uI(kT ) = uI(kT − T ) + kI
T

2
(ev(kT ) + ev(kT − T )) , (5.3)

with uI(0) = 0. Through online tuning experiments, proportional and integral

gains of kP = 1.5 and kI = 2.5, respectively, were found to work reasonably well.

An example of the speed regulator response is provided in Figure 5.4, as es-

timated using encoder data. It was found that top speed for the rovers was ap-

proximately 0.5 m/s. Given sufficient time, the steady state response recorded at

vR = 0.1 m/s between the times t = 4 s and 10 s was typical at most speeds. Due

to particularities of the transmission (significant play), chassis (significant sway),

and wheel designs (placement of the batteries), the small fluctuations present and

noticeable in the figure were unavoidable and could be audibly discerned while

the rovers were running, even during open-loop driving.

5.3.3 Multivehicle Pursuit Using Vision

Since the steering angle φ is directly specifiable by way of the rover’s steering

servomotor inputs, the steering torque input τ of (5.2) is not actually an available

input. Instead, the steering mechanism dynamics are set by the fixed servomotor
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Figure 5.4: Sample speed regulator response with changing references
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characteristics. Thus, in order to mimic the pursuit law ωi = kααi from (3.4)

on page 40, the actual steering mechanism dynamics were simply ignored and the

steering angle φ was itself computed so as to approximate θ̇i = kααi on each rover.

In other words, using equation (5.2c) one obtains

φi = arcsin

(
lkααi
vfi

)

,

where αi is the usual heading error, as in Figure 3.1 on page 38, and vfi
is the i-th

rover’s speed. However, due to the noisiness of speed estimates, vfi
was replaced

with the constant reference speed vR so that, incorporating the speed regulator

system described above, the implemented rover pursuit strategy was

vfi
= vR and φi = arcsin

(
lkααi
vR

)

. (5.4)

By using one of the cameras, αi was computed for each rover i, in real time.

Note that computation of the control law (5.4) for each rover was based on

sensing and data processing carried out locally, thus in a completely decentralized

fashion (i.e., no global positioning techniques were used). This differs, for example,

from the overhead camera global positioning system used by Jin et al. (2004).

Target Recognition using Colours

In order for rover i to estimate the angle αi to its target at each instant, the

rovers were each fitted with a cylinder of different coloured cardboard. Therefore,

ordering of the vehicles was accomplished by ordering the colours (e.g., for three

rovers in cyclic pursuit, green was predesignated to pursue orange, orange to

pursue red, and red to pursue green). The right camera on each rover (although

it matters not which one) was used to acquire 160 × 120 pixel (low resolution)

images every T = 0.1 s. An example image is provided in Figure 5.5a. Note

that the cameras were not always in perfect (manual) focus, however this did not

appear to adversely influence the effectiveness of the target recognition technique.

Colour detection was done by scanning the pixels in an acquired image and

comparing each pixel’s hue colour value with a preset target hue2 value. For

2The the algorithm used to convert RGB values to hue values is based on sample code from
Eugene Vishnevsky’s colour conversion algorithms, which could be found on the world-wide-web
at the time of printing at http://www.cs.rit.edu/~ncs/color/t_convert.html.
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example, the green cylinder in Figure 5.5a was found to have a nominal hue value

of approximately 115 on a 0–239 hue value scale. Hue values, rather than raw red-

green-blue (RGB) values, were used since hue is a known measure of the colour of

a pixel and is thus less susceptible to changes in lighting conditions. The nominal

hue values for the orange and red cylinders used were 19 and 1, respectively.

(a) Sample 160×120 pixel resolution image
acquired by one of the rovers

optic axis

heading

optic
centre

target

f

image plane

∆

γ β

rover

(b) Camera image plane geometry

Figure 5.5: Acquired camera image and image plane geometry

Computation of the Heading Error

The location of pixels within a tolerance of ±5 hue value units from the nominal

were subsequently recorded and their horizontal positions averaged to compute the

horizontal centroid of the cylinder of desired colour in the image (see the distance

∆ in Figure 5.5b, measured in pixels). Let β denote the angle from the camera’s

optic axis to the point that is ∆ pixels from the optic axis (note that ∆ changes sign

if the target switches sides of the optic axis) such that β = arctan (∆/f), where

f ≈ 200 pixels is the focal length of the camera. Let γ denote the angle between

the camera’s optic axis and the rover’s heading θ, from (5.2). Therefore, simply

ignoring any error due to the fact that the camera’s optic centre did not exactly
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correspond to the rover’s centre point p in Figure 5.2, the overall heading error

was approximated at each time step t = kT using the formula α(kT ) = γ+β(kT ).

Camera Servoing

Because the horizontal field-of-view (FOV) of the onboard cameras was small

(approximately 34 degrees), the rovers lost track of their targets very easily in

initial experiments. On the other hand, recall that the theoretical unicycles of

Chapter 3 are capable of omnidirectional target sensing.

To augment the camera’s FOV its panning servomotor was employed, increas-

ing the FOV to approximately 150 degrees. This was done by adjusting the angle

γ so as to actively centre the target cylinder in the image plane. Let uc ∈ [−1, 1]

denote the panning servomotor input, specifiable in software, where −1 and 1 de-

note full panning left and right, respectively. Similar to what was done for speed

regulation, a PI compensator was used to track the angle β = 0 such that

uc(kT ) = uc(0) − kPβ(kT ) + uI(kT ),

where uc(kT ) is the camera’s panning servomotor input at time t = kT , k =

0, 1, 2, . . ., and uI(kT ) is the same as in (5.3) except with ev(t) replaced by −β(t).

The value uc(0) was included to account for situations when the initial camera

input was not zero. Through online experiments, proportional and integral gains

of kP = 0.9 and kI = 0.5 were found to work reasonably well.

Because there are no position sensors on the camera panning servomotors, the

camera angle was computed at each time step by mapping the current servomotor

input uc(kT ) to its corresponding camera angle γ(kT ). Fortunately, the relation-

ship was found to be approximately linear, at 7 degrees per 0.1 units of change in

the panning servomotor input. Thus, in radians

γ(kT ) =
7π

18
× uc(kT ),

yielding a heading error of α(kT ) = γ(kT ) + β(kT ).

Steering Actuation for Pursuit

Let uφ ∈ [−1, 1] denote the steering angle servomotor input, where −1 and 1

represent full left and full right steering, respectively. Recall that the kinematic
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unicycles of Chapter 3 are capable of steering arbitrarily tightly. At each time

step t = kT , the desired steering angle was computed as per (5.4), yielding

φ(kT ) = arcsin

(
lkαα(kT )

vR

)

.

As for the camera panning servomotors, due to the nonexistence of position sensors

on the steering angle servomotors the appropriate servomotor input was computed

by mapping the current desired steering angle φ(kT ) to the appropriate servomotor

input uφ(kT ). Again, the relationship was found to be approximately linear, at 2

degrees per 0.1 units of change in the steering servomotor. Thus, in radians

uφ(kT ) =
9

π
× φ(kT )

adequately describes this relationship.

5.4 Experiments and Observations

A variety of experiments were conducted using teams of two, three, and four rovers.

Despite the significant physical differences between ideal kinematic unicycles and

the Argo Rover systems, which is a natural conclusion of Section 5.3, the outcome

was positive. Preliminary experiments were done using two rovers. In this case,

the only theoretically possible formation is the {2/1} polygon (i.e., two vehicles

diametrically opposite each other on a circular path). To ensure the two rovers

were within each other’s FOV, it was necessary to rotate their stereovision heads

by 90 degrees (e.g., see the rovers in Figure 5.7). This rotation was accounted for

in software by adding (for rotation left) or subtracting (for rotation right) π/2 to

the angle γ in Figure 5.5b. The inside, body-centred camera was always used for

computing α. It was found that, so long as no rover lost the other from its view,

the vehicles always converged to a {2/1}-polygon formation.

5.4.1 Stability of the {3/1} Formation

In theory, the possible equilibrium formations for three vehicles are the {3/1} and

{3/2} polygons. Although both resemble equilateral triangles, it is the vehicles’

ordering on the circle circumscribed by each polygon that is different. As per

Definition 3.2 on page 42, a {3/1} formation corresponds to the case when the
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i-th vehicle’s target, i + 1, lies at a heading error of αi = ±π/3. Conversely, a

{3/2} formation has αi = ±2π/3. According to Table 3.2, of the two possible

equilibria only the {3/1}-polygon formation is locally asymptotically stable.

Figure 5.6 shows three unit-speed unicycles, subject to the control law (3.4),

converging to a {3/1} formation (the simulation ends after 45 s). On the other

hand, Figure 5.7 presents a sequence of captured images of three Argo Rovers in

cyclic pursuit, subject to (5.4) with red (vehicle 1) in pursuit of green (vehicle

2), green of orange (vehicle 3), and thus, orange of red. Qualitatively speaking,

Figures 5.6 and 5.7 indicate like behaviour in that both the unicycles and rovers

converge to a {3/1} formation.

1

1

2

2

3

3

Figure 5.6: Three unicycles subject to control law (3.4) with kα = 0.6

Figure 5.8 shows the heading errors αi, i = 1, 2, 3, as a function of time for

each of the simulated unicycles in Figure 5.6 (dotted lines) and for the actual

rovers of Figure 5.7. The time axis in Figure 5.8 corresponds (approximately) to

the times noted for each image frame in Figure 5.7. The actual rover heading

errors were recorded only every second, although they were computed every 0.1

s. Clearly, owing to their physical differences, the unicycle and rover trajectories

should not be expected to match in the transient. However, Figure 5.8 shows

that their steady-state behaviours both tend to equally spaced motion around a
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(a) At t = 0 s (initial condition) (b) At t = 2 s

(c) At t = 4 s (d) At t = 6 s

(e) At t = 8 s (f) At t = 10 s

Figure 5.7: Generating a {3/1} formation with kα = 0.2
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stationary circle of fixed radius. Convergence of the real rovers to a stable {3/1}
formation, with αi = −π/3, is clear from Figure 5.7.

Additional experiments were performed where the rovers were first allowed

to achieve a steady-state {3/1} formation. Subsequently, one of the rovers was

deliberately perturbed from this equilibrium by either altering its heading, halting

it temporarily, or slightly changing its location. So long as the rovers were able to

maintain their targets within view, the group always returned to a {3/1}-polygon

configuration, further demonstrating its stability as a formation.
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Figure 5.8: Kinematic unicycle (dotted lines, cf. Figure 5.6) together with actual
rover (solid lines, cf. Figure 5.7) target heading errors

5.4.2 Formation Radius and the {4/1} Polygon

Results equivalent to those described in Section 5.4.1 for the {3/1}-polygon for-

mation were also observed using teams of four vehicles. Figure 5.9 shows four
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rovers maintaining a {4/1}-polygon formation. Furthermore, in Chapter 3 it was

proved that the kinematic unicycles traverse a circle of radius ρ = vRn/kαπd at

equilibrium, where {n/d} is the formation (see Corollary 3.1 on page 3.1). There-

fore, by increasing (resp. decreasing) the gain kα one should have expected to

observe a proportional decrease (resp. increase) in the radius traversed by the

rovers, which was indeed the case. Figure 5.9 shows four rovers in cyclic pursuit,

each with gain kα = 0.3, after having stabilized to a {4/1}-polygon configuration.

At approximately t = 7 s, the gain kα was decreased from 0.3 to 0.1 on all the

rovers. The sequence of images shows how the rovers continued to maintain a

{4/1} formation while, at the same time, the polygon’s radius effectively tripled

in size. Identical results were also observed for groups of two and three rovers.

5.4.3 The {3/2} Formation

In theory, the {3/2} formation for unicycles is unstable (see Table 3.2). However,

computer simulations suggest that, while maintaining the ordering of vehicles,

almost-circular trajectories are achievable for lengthy time periods. Figure 5.10a

shows a simulation of three unit-speed unicycles that start roughly in the {3/2}
configuration (the simulation ends after 45 s). Despite the fact that they do not

converge to a {3/2} polygon, their motion maintains an almost-{3/2} formation.

Interestingly, among the six important eigenvalues associated with the system’s

linearization about the {3/2} polygon (in relative coordinates; see Section 3.3 for

details), there is only one complex-conjugate pair of unstable eigenvalues and these

eigenvalues lie particularly close to the imaginary axis (λ ≈ 0.0419 ± j1.5303). If

the simulation of Figure 5.10a is continued for more than 250 s, the unicycles

eventually break their pattern of motion and rearrange themselves into a stable

{3/1} formation, as illustrated in the extended simulation of Figure 5.10b.

Figure 5.11 presents a sequence of captured images of three rovers in cyclic

pursuit (using the same pursuit order as the rovers in Figure 5.7). Both the

unicycles of Figure 5.10 and the rovers of Figure 5.11 started close to a {3/2}
formation. Consequently, their resulting trajectories appear qualitatively similar,

maintaining the ordering of a {3/2} polygon yet never actually converging to a

stable formation. If allowed to run for long enough, the rover formation was also

seen to “wobble,” as in Figure 5.10a. However, even after several minutes, evo-

lution of the rovers into a {3/1}-polygon formation was never observed, unlike
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(a) At t = 5 s (b) At t = 7 s (kα is changed)

(c) At t = 9 s (d) At t = 11 s

(e) At t = 13 s (f) At t = 15 s

Figure 5.9: A {4/1} formation after kα is changed from 0.3 to 0.1
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(a) After 45 s.
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(b) After 300 s.

Figure 5.10: Unicycles demonstrating an almost-{3/2} formation with kα = 0.2



Chapter 5: Experiments in Multivehicle Coordination 126

what happens in simulation for unicycles (cf. Figure 5.10b). On the other hand,

this type of maneuver was likely not even possible given the rovers’ limited FOV

and the fact that no protocol for collision avoidance among rovers was imple-

mented. Nevertheless, it is clear from Figure 5.11 that the {3/2} polygon is not

asymptotically stable for rovers, as predicted by the theory for unicycles.

Similar to Figure 5.8, in Figure 5.12 the heading errors αi, i = 1, 2, 3, have

been plotted as a function of time for each of the simulated unicycles in Figure

5.10 (dotted lines) and for the actual rovers of Figure 5.11. The time axis in Fig.

5.12 corresponds almost exactly to the times noted for each image frame in Figure

5.11. Again, owing to their physical differences, the unicycle and rover trajectories

should not be expected to match. However, Figure 5.12 shows how their behaviors

are qualitatively consistent, with oscillations appearing in the heading errors of

both the unicycles and the rovers.

5.5 Summary of Findings

In this chapter, details concerning the apparatus and results of multivehicle pur-

suit experiments have been presented. By adapting the hardware and developing

software for the existing Argo Rovers, experiments were conducted using groups

of two, three, and four rovers, the purpose of which was to determine whether

the theoretical results obtained in Chapter 3 could be applied in practice to real

systems distinct from ideal kinematic unicycles. Given the physical differences

between unicycles and the Argo Rovers, and that there were delays in the system

due to sensing and information processing not accounted for in the accompanying

theory of Chapter 3, the presented results are very encouraging.

However, success is not to say there were not limitations. Firstly, owing to

the difficulties in bringing multiple rovers into working order (i.e., free of hard-

ware difficulties), experiments were limited to n ≤ 4 rovers. Although it is likely

that the reported results extend to n > 4 rovers, no experiments were conducted

to confirm this. Secondly, the rovers were severely limited by the FOV of their

cameras. Even with the inclusion of camera servoing, for certain initial conditions

the rovers inevitably lost their target, thus limiting the range of experiments that

could be tried. On the other hand, computation of the control law was based

solely on sensing and data processing carried out locally (i.e., without any ex-

plicit communication, nor the use of an overhead camera system or other GPS).
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(a) At t = 9 s (b) At t = 11 s

(c) At t = 13 s (d) At t = 15 s

(e) At t = 17 s (f) At t = 19 s

Figure 5.11: A {3/2} semi-stable formation with kα = 0.1
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Figure 5.12: Kinematic unicycle (cf. Figure 5.10a, dotted lines) together with
actual rover (cf. Figure 5.11, solid lines) heading errors
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Finally, experiments were further restricted by the fact that no method of col-

lision avoidance was employed, a practical issue not considered in this research.

Experimentation, as such, and the analysis of its limitations also serve to indicate

areas of future theoretical research. For example, under what conditions can it

be analytically proved that the rover model is sufficiently similar to the unicycle

that the stability results of Chapters 3 and 4 always hold?

In conclusion, the cyclic pursuit strategy developed for unicycles in Chapter

3 was found to be practical from the point of view of robustness to unmodelled

dynamics, disturbances in the vehicle velocities, and delays in the system due to

sensing and information processing. These findings not only bode well for contin-

uing research on cooperative control strategies based on the notion of pursuit, but

also for other cooperative control techniques employing similar local interactions.



Chapter 6

Symmetries of Pursuit

“It’s a basic principle: Structure always affects function,” says Steven Strogatz in

his book entitled Sync (Strogatz, 2003, p. 237). “The structure of social networks

affects the spread of information and disease; the structure of the power grid

affects the stability of power transmission. The same must be true for species in

an ecosystem, companies in the global marketplace, cascades of enzyme reactions

in living cells. The layout of the web must profoundly shape its dynamics.”

Surely the same principle must hold for engineered multiagent systems. This

chapter deviates somewhat from the kinematic unicycle research reported in Chap-

ters 3–5. By revisiting the linear integrator model introduced in Chapter 2, it ex-

plores how the interconnection structure among individuals of a multiagent system

influences, in particular, the invariance of discrete symmetries in its trajectories.

6.1 Motivation and Background

As has been discussed in Chapters 1 and 2, a current research emphasis in the

multiagent systems and cooperative control literature is to generalize: What are

the connectivity conditions for achieving consensus (Beard and Stepanyan, 2003;

Moreau, 2003; Z. Lin et al., 2005)? What happens if the interconnection topol-

ogy between agents is dynamic (Tanner et al., 2003b; Olfati-Saber and Murray,

2004; Ren and Beard, 2005)? These are matters of fundamental theoretical sig-

nificance. On the other hand, practical issues arise when designing autonomous

agent systems required to perform specific tasks. For instance, consider the prob-

lem of dynamic target tracking using a team of n > 1 autonomous mobile robots.

This task requires that agents act as a mobile and reconfigurable sensor array.

Suppose each agent is equipped with a target-tracking sensor (e.g., an ultrasonic

130
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sensor, a laser range finder, or a CCD camera) that, when combined with the

sensor readings of other agents, can be utilized by a central observer to estimate

the location of a target. If the sensors measure distances to the target, then it

can be shown that a configuration that optimizes the estimate is one in which the

sensors are uniformly placed in a circular fashion around the target (Aranda et

al., 2005). This optimal sensor placement is “symmetrical,” in the sense that the

configuration remains optimal under rotations by 2π/n about the target.

The problem of achieving and maintaining symmetry in multiagent formations

is not a new endeavour. For example, the work of Sugihara and Suzuki (1990) in-

vestigates distributed heuristic algorithms for the formation of geometric patterns

in the plane (e.g., circles and polygons). Leonard and Fiorelli (2001) use artificial

potentials to generate stable symmetric formations by inserting virtual leaders

among the agents. A method for stabilizing multiple agents to rigidly constrained

formations, while moving along a desired path, is examined by Egerstedt and Hu

(2001). In the work of Fierro, Das, Kumar, and Ostrowski (2001), a hybrid control

strategy is employed to achieve stability for a desired formation, irrespective of its

symmetry. How information flow influences the stability of formations is studied

by Fax and Murray (2004). Of relevance to the current work is that of Pogrom-

sky, Santoboni, and Nijmeijer (2002), which exploits the symmetry in a network of

coupled identical dynamical systems to classify invariant manifolds of the overall

system dynamics with respect to their stability. Hence, “stability in the network

descends from its topology” (Pogromsky et al., 2002, p. 67). Symmetry in the

interconnection structure is also exploited by Recht and D’Andrea (2004), who

study the problem of distributed controller synthesis for large arrays of spatially

interconnected systems. Consider the cyclic pursuit strategy studied in Chap-

ters 3–5. The possible equilibrium formations are generalized regular polygons,

which are distinctly “symmetric” formations. A basic question is: Would such

symmetries have naturally emerged given a different interconnection topology?

The present research is especially influenced by the work of Bruckstein et

al. (1995) and Richardson (2001b), wherein a circulant interconnection structure

among multiple agents is utilized to deduce the overall steady-state behaviour of

the agents. In particular, Bruckstein et al. (1995) study the asymptotic behaviour

of a collection of agents in discrete-time circulant pursuit. Similarly, Richard-

son (2001b) studies the stability of certain geometric patterns for a collection of

continuous-time fixed-speed agents in cyclic pursuit.
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6.1.1 Purpose and Outline of the Chapter

This chapter generalizes the linear agents problem introduced in Chapter 2 and

studies connectivity as it relates to the problem of choosing distributed controllers

that inherently preserve symmetric formations. Designing or studying the stabil-

ity of symmetric formations, as in Egerstedt and Hu (2001); Fierro et al. (2001);

Pogromsky et al. (2002); Leonard and Fiorelli (2001); Fax and Murray (2004),

is not expressly examined here. Rather, as a first step towards a more general

approach to formation stabilization for interconnected systems, this chapter seeks

to identify those interconnection structures that naturally result in invariant man-

ifolds corresponding to formation symmetry. The problem of possibly stabilizing

the system to these invariant manifolds is left as future research.

Thus, for a system of n > 1 identical planar integrators, each endowed with

only relative sensing capabilities, it is revealed how the information flow structure

among agents influences symmetry in the multiagent system’s trajectories. The

principal findings of this chapter are as follows: (i) If the aggregate multiagent

system matrix is circulant, then (under certain technical assumptions) rotation

symmetries of any given formation are preserved under the system’s dynamics;

and, (ii) Circulant connectivity is also necessary if one wishes to make invariant

the rotation group symmetry of order n, together with all its subgroups.

Finally, and in addition to the aforementioned central focus of this chapter, the

evolution of formations generated by way of circulant pursuit is studied as a po-

tentially useful extension to the results of Bruckstein et al. (1995) and Richardson

(2001b). This is done merely as a first step towards understanding the steady-state

behaviour of agents in circulant pursuit.

6.2 Symmetry Groups, Graphs, and Pursuit

This section introduces some basic terminology and useful background material

relating to symmetry groups, for which a reference is Coxeter (1948). Also, details

about the class of multiagent systems studied in this chapter are introduced.

6.2.1 Symmetry Groups in R
2

It is perhaps best to start with a fundamental definition.
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Definition 6.1 (Group): A group, denoted G, is a set of elements together with an

operation called multiplication, which associates with each ordered pair g1, g2 ∈ G

a third element called their product, denoted g1g2, such that: (i) if the elements

g1, g2, g3 ∈ G then g1(g2g3) = (g1g2)g3; (ii) there exists a unique identity element

gI ∈ G such that, for any g ∈ G, ggI = gIg = g; and, (iii) for any element g ∈ G,

there exists a unique inverse element g−1 ∈ G such that gg−1 = g−1g = gI .

If a group G consists of a finite number of elements, then it is called a finite

group, and the number of elements is its order. Otherwise, it is called an infinite

group. A subset of G whose products comprise the whole group is called a set of

generators. A subgroup of G is a group formed by a subset of the elements of G

with the same multiplication operation. A group is said to be trivial if it consists

of only the identity element.

An isometry is a transformation that preserves distances. The set of isometries

in R
2 form a group under composition, denoted I(R2). A subgroup G of I(R2) is

called a symmetry group of a subset U ⊂ R
2 if U remains invariant under every

element of G. A group is called cyclic when all its elements are powers gk of some

one element g. For any element g in a group G, the set {gk : k ∈ Z} is the cyclic

subgroup of G generated by g. If gm = gI for some positive integer m, then the

group generated by g is a finite group. If m is the least positive integer for which

this is true, then m is the group’s order.

Definition 6.2 (Rotation Group): The rotation group of order m, denoted Cm,

is the cyclic group generated by a rotation through 2π/m about the origin.

Therefore, it is said that a subset U ⊂ R
2 has symmetry Cm if the rotation

group Cm is a symmetry group of U . Every finite subgroup of I(R2) leaves at least

one point invariant (Coxeter, 1948, p. 44). In this thesis, it is assumed (without

loss of generality) that this point is always the origin.

6.2.2 Agents in Pursuit

In this chapter, it is useful to view the agents as points in the complex plane, C.

Consider, as in Chapter 2, n > 1 agents, z1(t), z2(t), . . . , zn(t) ∈ C, evolving in

time t. Suppose that each agent is a simple integrator; i.e., żi(t) = ui(t) ∈ C,

i = 1, 2, . . . , n, where ui(t) is the control input. Assume that the agents have only
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relative sensing capabilities (i.e., there is no global reference frame) and, therefore,

that the inputs ui(t) are of the type

ui(t) =
n∑

k 6=i

aik (zk(t) − zi(t)) , i = 1, 2, . . . , n. (6.1)

That is, the aggregate multiagent system is of the form

ż(t) = Az(t), (6.2)

where z(t) = (z1(t), z2(t), . . . , zn(t)) ∈ C
n. A direct consequence of the relative

sensing limitation is the following property (also mentioned in Section 2.1.3):

Property 6.1: The matrix A has zero row-sums (i.e., A[1 1 . . . 1]⊤ = 0).

Hence, if the agents are all collocated, then there is no motion. Recall from

Section 2.1 that the information flow between agents can be modelled as a digraph,

denoted Γ(A) for the system (6.2).

This chapter concerns itself with the trajectories of (6.2), and the following

question is addressed: What fixed interconnection topologies Γ(A) and associated

interconnection weights A = [aik] preserve rotation group symmetries in multia-

gent formations z(t) ∈ C
n for all t ≥ 0?

6.2.3 Circulant Interconnections

It will be shown in Sections 6.3 and 6.4 that of fundamental significance to the

topic of symmetry invariance is a particular structure in the interagent sensing

topology: namely, circulant connectivity. By circulant connectivity it is meant

that, possibly after a relabeling1 of the agents, the multiagent system matrix A

is a circulant matrix (see Section 2.2.3); i.e., A = circ(a0, a1, . . . , an−1). Let κ ≥ 0

denote the cardinality of the set {ai, i = 1, 2, . . . , n−1 : ai 6= 0}. In other words, κ

represents the degree of coupling between vertices of the circulant digraph2 Γ(A).

Following a standard notion, e.g., as in C.-T. Lin (1974); Siljak (1991), a

matrix A1 is said to have the same structure as another matrix A2, of the same

1Strictly speaking, if there exists a relabeling of the agent indices such that A is subsequently
a circulant matrix, then the system is also said to have circulant connectivity. Further details
about relabeling and connectivity are provided in Section 6.3.2.

2Notice that when κ > 0, Γ(A) is a strongly connected digraph. Therefore, the consensus
condition (C) of Theorem 2.4 on page 22 is satisfied for every (nontrivial) circulant digraph.
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dimensions, if for every zero entry of A1 the corresponding entry in A2 is also

zero, and vice versa. Accordingly, if a square matrix A is such that there exists

a circulant matrix Ac of the same order and structure as A, then A is called

structurally circulant. Clearly, the topology of Γ(A) is identical to that of Γ(Ac).

If the degree of coupling between individuals is κ = 1 and the off-diagonal

element of a circulant matrix A is positive, then (6.2) becomes the traditional

cyclic pursuit problem (see Sections 2.2.1 and 2.2.2). If the degree of coupling

κ = n−1, then this corresponds to what is referred to as “all-to-all” coupling, since

every agent can sense every other agent. Although not every all-to-all coupled

matrix A is circulant, every all-to-all coupled A is structurally circulant.

6.2.4 Permutations

Of particular utility when studying formations and symmetry is the theory of

permutations. Let N := {1, 2, . . . , n} and consider a bijection σ : N → N , which

is called a permutation of the set N . In general, one can write

σ(1) = i1

σ(2) = i2
...

σ(n) = in,

or as is often seen in the literature (Davis, 1994, pp. 24–25),

σ :

(

1 2 · · · n

i1 i2 · · · in

)

.

Associated with every permutation σ is a square matrix, denoted Pσ, of order n.

Given an n × n matrix A = [aik], Pσ is such that PσA = [aσ(i),k] and, therefore,

that PσAP
⊤
σ = [aσ(i),σ(k)] (e.g., Πn is the matrix corresponding to σ(i) = i + 1).

Let σl(i) := σ ◦σ ◦ · · · ◦σ(i), the permutation σ applied l times to element i ∈ N .

Every i ∈ N generates a subset of N called a cycle of length l, where l is the least

positive integer such that σl(i) = i. In general, a permutation σ can be factored3

3This commonly used terminology (cf. Coxeter, 1948; Davis, 1994) stems from the more
general theory of permutation groups, which is not discussed here. Here, one can interpret the
process of factorization as equivalent to a partitioning of the index set N .
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into a product of disjoint cycles. This factorization is unique up to the ordering

of factors (which are disjoint cycles). A permutation is called primitive if it has

only one factor (which has full length n).

To illustrate these concepts, consider a permutation of the set N with n = 4.

The permutation σ(i) = i + 1, i = 1, 2, 3, 4, is primitive since it factors into only

one cycle of full length 4, hence denoted as a single factor σ = (1, 2, 3, 4). This

representation says that σ maps 1 7→ 2 7→ 3 7→ 4 7→ 1. The least positive integer

such that σl(i) = i is l = 4 for every i ∈ N . Next, consider a different permutation

σ :

(

1 2 3 4

1 4 2 3

)

.

In this case, σ has two factors, of lengths 1 and 3, and is thus uniquely denoted

as the product of two factors, namely (1) and (2, 4, 3), as follows: σ = (1)(2, 4, 3).

As before, this representation says that σ maps 1 7→ 1 and 2 7→ 4 7→ 3 7→ 2. For

more about permutations, see Davis (1994, Section 2.4).

6.2.5 Formation Graphs

It is often convenient to represent a formation of agents together with their in-

terconnection topology as a graph (cf. Section 2.1). At each instant t, one can

define a set of locations Vt = {z1(t), z2(t), . . . , zn(t)} and a set Et of edge vectors

eik(t) : Vt × Vt → C such that an edge eik(t) := zk(t) − zi(t) exists in Et only if

there exists a corresponding edge in E . Abusing terminology, it is convenient to

refer to the pair (Vt, Et) =: Γ(A, z(t)) as the formation graph (or often just graph

for short). Figure 6.1 provides three example formation graphs. The graphs in

Figures 6.1a and 6.1b have circulant connectivity.

6.3 Symmetric Formations and Invariance

Ignoring the interagent connections, the configuration of points z(t) ∈ C
n at time

t is referred to as a multiagent formation. The principal result of this section is

Theorem 6.2, which states that if a system has circulant connectivity (see Section

6.2.3), then symmetric formations remain symmetric.
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Figure 6.1: Example formation graphs Γ(A, z(t))

6.3.1 Formation Symmetry

Recall that j :=
√
−1.

Definition 6.3 (Formation Symmetry): The formation z(t) ∈ C
n is said to have

symmetry Cm at time t if there exists a permutation σ : N → N such that

ej2π/mz(t) = Pσz(t). (6.3)

That is, by rotating the agents z(t) ∈ C through angle 2π/m one obtains the

same set of points in C, but (generally) with a different labeling.

Henceforth, it will simply be said that a formation z(t) ∈ C
n has symmetry Cm

“with Pσ” if the vector z(t) satisfies Definition 6.3 with associated permutation

matrix Pσ. Following Definition 6.3, several remarks are in order. Let n0 ≥ 0

denote the number of agents located at the origin.

Remark 6.1: If at time t a formation z(t), with n0 = 0, has symmetry Cm, then

m divides n. This can be seen by applying the constraint (6.3) m times, yielding

ej2πm/mz(t) = z(t) = P n
σ z(t)

(i.e., σm(i) = i for every i ∈ N ). Thus, the factorization of σ factors into n/m

disjoint cycles, each of length m. Equivalently, Cm is a subgroup of Cn. �

Remark 6.2: If a formation z(t), with n0 = 0, has symmetry Cn, then the asso-

ciated permutation σ is primitive. For if not (i.e., σ has a cycle of length l < n),
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then one obtains at the l-th iteration (as in Remark 6.1)

ej2πl/nz(t) = P l
σz(t) = z(t),

which can only be true for l < n if z(t) ≡ 0. �

Remark 6.3: Suppose a formation z(t), with n0 = 0, has symmetry Cm, where

m < n. If there are collocated agents, then it is possible that there exist more

than one permutation σ such that (6.3) is satisfied. For instance, the n = 8 agents

in Figure 6.1c have symmetry C4 with the primitive permutation

σ :

(

1 2 · · · 7 8

2 3 · · · 8 1

)

,

or, equivalently, σ = (1, 2, . . . , 8). However, the constraint (6.3) also holds with

σ :

(

1 2 3 4 5 6 7 8

2 3 4 1 6 7 8 5

)

,

which has two factors and can be denoted σ = (1, 2, 3, 4)(5, 6, 7, 8). Following

Remark 6.1, it is clear from the geometry of symmetry Cm that any factors of σ

must have a length that is a multiple of m. �

Consequent to Remark 6.3, it is assumed in this thesis that if a formation z(t)

has symmetry Cm according to Definition 6.3, then its associated permutation σ

is one that factors into exactly n/m cycles of length m. Let gcd(n, q) denote the

greatest common divisor of the integers n and q. The following is a useful fact.

Remark 6.4: If m divides n, then there always exists an integer q ∈ {1, 2, . . . , n−
1} such that gcd(n, q) = n/m since one can always choose q = n/m. �

6.3.2 Canonical Ordering

Before discussing symmetry invariance, this section establishes a connection be-

tween formation symmetry Cm and a canonical ordering of the agents. It is shown

that agents satisfying the formation symmetry constraint (6.3) can always be re-

ordered such that (6.3) holds with Pσ = Πq
n, for an appropriate choice of q. Note

that the permutation corresponding to Pσ = Πq
n is σ(i) = i + q, i = 1, 2, . . . , n.



Chapter 6: Symmetries of Pursuit 139

This choice of ordering is not new; indeed, some textbooks assume it from the

outset when discussing rotation group symmetry (e.g., Coxeter, 1948, 1989). A

proof is offered here, since ordering is crucial to the results that follow.

Theorem 6.1: Consider a formation z̃(t) that has no agents at the origin. Sup-

pose that z̃(t) has symmetry Cm at time t and let q ∈ {1, 2, . . . , n − 1} satisfy

gcd(n, q) = n/m (cf. Remark 6.4). Then, there exists a permutation τ of the

agent locations z(t) = Pτ z̃(t) such that (6.3) holds with Pσ = Πq
n.

Before giving a proof, an example is provided to help clarify.

Example 6.1: Consider the formation of agents in Figure 6.2a, which has sym-

metry C5 since the constraint (6.3) holds with m = 5 and

Pσ =
























0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
























.

In Figure 6.2, the angle between adjacent dotted lines of equal length is 2π/5.

Let q = 4, which satisfies gcd(10, 4) = 10/5 = 2. By Theorem 6.1, there exists

a permutation τ of the agent locations such that the constraint (6.3) holds with the

permutation matrix Π4
10, as is demonstrated by Figure 6.2b. After this relabeling

τ , the new permutation σ̃(i) = i+ 4 factors as σ̃ = (1, 5, 9, 3, 7)(2, 6, 10, 4, 8). ◭

The proof of Theorem 6.1 requires a lemma.

Lemma 6.1: Let σ : N → N be a permutation of the form σ(i) = i+ q, for some

q ∈ {1, 2, . . . , n− 1} and i = 1, 2, . . . , n. Then, the factorization of σ has p cycles

of length n/p if and only if gcd(n, q) = p.
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(a)

Figure 6.2: A formation of n = 10 agents with C5 symmetry

Proof: (⇐) Let gcd(n, q) = p, and define kn := n/p and kq := q/p. It must

be shown that σ has exactly p cycles, each of length kn. Observe that the indices

k = 1, 2, . . . , p generate lists of the form

(1, 1 + q, 1 + 2q, . . . , 1 + (kn − 1)q)

(2, 2 + q, 2 + 2q, . . . , 2 + (kn − 1)q)

...

(p, p+ q, p+ 2q, . . . , p+ (kn − 1)q) .

(6.4)

Notice that i + knq = i + nq/p = i + nkq = i (modulo n), which proves that the

above lists are indeed cycles.

To prove each cycle is of length kn, it must be shown that the indices within

a cycle are distinct. Suppose there exists a cycle i ∈ {1, 2, . . . , p} and integers

k, l ∈ {0, 1, . . . , kn−1}, k > l, such that two indices in cycle i satisfy i+kq = i+ lq

(modulo n). That is, (k− l)q = γn for some integer γ ≥ 1. Then, q = γn/(k− l).

However, one also has that q = kqp. Equating these two expressions for q yields

γkn/kq = k− l. Since gcd(kn, kq) = 1, kq must be a factor of γ. This implies that

k − l is a multiple of kn. But k − l < kn, a contradiction.

To prove that the cycles are disjoint, suppose there exist i, k ∈ {1, 2, . . . , p},
i > k, and li, lk ∈ {0, 1, . . . , kn − 1} such that i + liq = k + lkq. Substituting

q = kqp and rearranging, one has that i−k = kqp(lk− li). Thus, i−k is a multiple

of p. But by definition, i− k < p, a contradiction.



Chapter 6: Symmetries of Pursuit 141

(⇒) Suppose σ factors into p cycles of length n/p. Since every permuta-

tion has a unique factorization, one obtains (by the proof arguments above) that

gcd(n, q) = p, completing the proof. �

Proof of Theorem 6.1: Because z̃(t) has symmetry Cm, it satisfies (6.3) with

some permutation σ : N → N . The proof is accomplished by performing a cyclic

decomposition of σ and then by revealing a new ordering such that (6.3) holds

with Pσ = Πq
n. Firstly, for i = 1, 2, . . . , n, list the m distinct agents generated by

a rotation of each agent through 2π/m: (i, σ(i), σ2(i), . . . , σm−1(i)). Any two of

these lists are either the same, up to an ordering, or they are disjoint. Consider

only the n/m disjoint lists, denoted

(
ik, σ(ik), σ

2(ik), . . . , σ
m−1(ik)

)
, (6.5)

for k = 1, 2, . . . , n/m. By construction, each agent appears in only one of these

lists and all n agents are accounted for. Now, let q ∈ {1, 2, . . . , n−1} be such that

gcd(n, q) = n/m and consider a reordering of the agents to obtain n/m cycles

(1, 1 + q, 1 + 2q, . . . , 1 + (m− 1)q)

(2, 2 + q, 2 + 2q, . . . , 2 + (m− 1)q)

...

(n/m, n/m+ q, n/m+ 2q, . . . , n/m+ (m− 1)q) .

(6.6)

By Lemma 6.1, this new permutation σ(i) = i + q, which is associated with

the matrix Πq
n, has n/m cycles of length m. In other words, the reordering is a

bijection. This implies that the reordering, which brings (6.5) into the form (6.6),

is also a permutation. �

Let τ denote the permutation of Theorem 6.1 that reorders the agents. Notice

that by substituting z̃(t) = P⊤
τ z(t) into (6.3), one obtains

ej2π/mz(t) = PτPσP
⊤
τ z(t) = Πq

nz(t).

Remark 6.5: Clearly, if a formation z(t) has symmetry Cm, then any permutation

of the agent locations does not change this; it only changes the permutation σ

with which (6.3) holds. By simultaneously permuting the rows and columns of A
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(i.e., computing PτAP
⊤
τ ) one can view this as just a transformation of coordinates

given by Pτ or, equivalently, simply a relabeling of the agents. �

Henceforth, it will simply be said that a formation z(t) ∈ C
n has symmetry

Cm “with Pσ = Πq
n” if the vector z(t) satisfies Definition 6.3 with Pσ = Πq

n for

some q ∈ {1, 2, . . . , n− 1} satisfying gcd(n, q) = n/m (cf. Lemma 6.1).

Finally, agents at the origin play no role in symmetry; they merely complicate

the ordering. The following corollary emphasizes this fact.

Corollary 6.1: Suppose the conditions of Theorem 6.1 hold, but that there are

n0 > 0 agents located at the origin. Let q ∈ {1, 2, . . . , n− n0 − 1} satisfy gcd(n−
n0, q) = (n − n0)/m. Then, there exists a permutation τ of the agent locations

z(t) = Pτ z̃(t) such that for all zi(t) 6= 0,

zi+q(t) = ej2π/mzi(t). (6.7)

If zi(t) ≡ 0, then the constraint (6.7) holds with q = n.

Proof: The proof is the same as that of Theorem 6.1, with n replaced every-

where by n − n0. Moreover, if an agent i ∈ N appears more than once in a list

(6.5) it must be that zi(t) = 0. To see this, suppose there exist 0 ≤ α < β < m

such that ej2πα/mzi(t) = zσα(i)(t) = zσβ(i) = ej2πβ/mzi(t). This implies that

(1 − ej2π(β−α)/m)zi(t) = 0, or equivalently that zi(t) ≡ 0. �

Hence, for the sake of simplicity, it is assumed that n0 = 0 throughout the

remainder of this chapter.

6.3.3 Symmetry Invariance

The focus of this chapter is on identifying certain interconnection structures that

inherently result in invariant manifolds corresponding to formation symmetry.

Following Section 6.3.2, this naturally leads to the following definition.

Definition 6.4 (Formation Symmetry Invariance): Let m be a divisor of n. For-

mation symmetry Cm is said to be invariant under the dynamics (6.2) if for every

q ∈ {1, 2, . . . , n − 1} such that gcd(n, q) = n/m and for every initial formation

z(0) ∈ C
n having symmetry Cm with Pσ = Πq

n, the formation z(t) has formation

symmetry Cm with Pσ = Πq
n for all t ≥ 0.
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What follows is the first of two principal results of this chapter. It shows

that given n properly ordered agents, every possible rotation group symmetry of

a formation is invariant when the dynamics are circulant.

Theorem 6.2: If A is a circulant matrix, then formation symmetry Cm is invari-

ant under the dynamics (6.2) for every m that divides n.

Proof: For every m that divides n, associated with the constraint (6.3) at

time t = 0 is a complex linear subspace M = {z ∈ C
n : Mz = 0} ⊂ C

n, where

M = Πq
n − ej2π/mIn. It is well known that the subspace M is A-invariant if

MA = AM . Since A is a circulant matrix, it can be written in the form (2.7) on

page 28, implying that

MA =
(
Πq
n − ej2π/mIn

)
n−1∑

i=0

aiΠ
i
n

=
n−1∑

i=0

aiΠ
i+q
n − ej2π/m

n−1∑

i=0

aiΠ
i
n

=
n−1∑

i=0

aiΠ
i
n

(
Πq − ej2π/mIn

)

= AM.

Therefore, the subspace M is invariant under the dynamics (6.2), which means

that the constraint (6.3) holds with Pσ = Πq
n for all t ≥ 0. �

Example 6.2: Consider the n = 8 agents depicted in Figure 6.3a. This formation

z(0) has symmetry C4 with associated permutation σ = (1, 3, 5, 7)(2, 4, 6, 8). Let

A = circ(−1,−1, 0, 0, 0, 0, 2, 0) (6.8)

be the corresponding multiagent system matrix. Thus, every agent i ∈ V is

repelled from agent i+ 1, but doubly attracted to agent i+ 6. Figure 6.2b shows

the evolution of the formation starting at z(0) under the dynamics (6.2) with

(6.8). The fact that the agents converge to the origin is not of interest. Rather,

the dashed lines connecting agents in the cycle {1, 3, 5, 7} at regular intervals

during the simulation highlight that C4 symmetry is preserved. ◭
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(b) Simulation demonstrating symmetry invariance

Figure 6.3: Initial formation graph and simulation results for Example 6.2
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The following corollary to Theorem 6.2 addresses the more general case when

the formation is not initially ordered.

Corollary 6.2: Given a permutation σ, let τ be such that PτPσP
⊤
τ = Πq

n (cf.

Theorem 6.1). Let m be any divisor of n and suppose z(0) ∈ C
n has symmetry Cm

with permutation matrix Pσ. If PτAP
⊤
τ is a circulant matrix, then the formation

z(t) has symmetry Cm with Pσ for all t ≥ 0.

Proof: If z(0) has symmetry Cm with Pσ, Theorem 6.1 says that there always

exists a relabeling of the agents z̃(0) = Pτz(0) such that

ej2π/mz̃(0) = Πq
nz̃(0), (6.9)

where q ∈ {1, 2, . . . , n− 1} satisfies gcd(n, q) = n/m. Viewing z̃(t) = Pτz(t) as a

transformation of coordinates implies that (6.2) becomes

˙̃z(t) = PτAP
⊤
τ z̃(t). (6.10)

If the new system matrix PτAP
⊤
τ is circulant, then (6.9) and (6.10) satisfy the

conditions of Theorem 6.2. Therefore, the formation z̃(t) has symmetry Cm with

permutation Πq
n for all t ≥ 0. If z̃(t) has symmetry Cm for all t ≥ 0, then

z(t) = P⊤
τ z̃(t) also has symmetry Cm (with Pσ) for all t ≥ 0. This is because the

change of coordinates given by τ is merely a permutation of the agent locations,

which does not alter the symmetry of the formation (cf. Remark 6.5). �

The following example illustrates the previous corollary.

Example 6.3: Consider a system (6.2) of n = 4 agents with

A =









−2 2 1 −1

2 −2 −1 1

−1 1 −2 2

1 −1 2 −2









,

which is not circulant. Suppose the graph Γ(A, z(0)) is the same as in Figure

6.7a, but with agents 2 and 3 having swapped positions. Hence, the relabeling
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that takes Pσ into the form Πn is given by the permutation matrix

Pτ =









1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1









. (6.11)

Moreover, PτAP
⊤
τ = circ(−2, 1, 2,−1). Therefore, following Corollary 6.2, the

formation z(t) has symmetry C4 for all t ≥ 0. ◭

In conclusion, if the multiagent system (6.2) has an underlying circulant struc-

ture (possibly after a change of coordinates), then every rotation group symmetry,

of any initial formation, is invariant under the system’s dynamics.

6.3.4 Decomposition of the Dynamics

Before moving on to necessity, this section explores the complex linear subspace

that corresponds to formation symmetry Cm in the proof of Theorem 6.2.

It has been shown in the previous section that, given a canonical ordering,

circulant systems preserve rotation group symmetries (Theorem 6.2). The com-

plex linear subspace M = {z ∈ C
n : Mz = 0} ⊂ C

n, where M = Πq
n − ej2π/mIn

and which characterizes rotation group symmetries, corresponds to n − n/m in-

dependent complex constraints on the motion of the multiagent system (6.2). In

other words, dimKerM = n/m. One way to see this is graphically. For example,

consider the n = 10 agents with symmetry C5 in Figure 6.2b. The associated per-

mutation factors into two disjoint cycles, namely σ = (1, 5, 8, 3, 7)(2, 6, 10, 4, 8).

By selecting only two agents, one from each cycle, one can determine the locations

of all the remaining agents by performing rotations through 2π/5. More generally,

one can always write out the cycles generated by a given Cm formation of agents

1, 2, . . . , n/m, as in (6.6). These cycles are the disjoint factors of σ(i) = i + q,

where gcd(n, q) = n/m. Since one is allowed to independently specify the loca-

tions of the first n/m agents, one has exactly n/m complex degrees of freedom.

Hence, there exist n− n/m independent complex constraints on the system.

Let p := n/m and define w(t) := (z1(t), z2(t), . . . , zp(t)). For every formation

z(t) ∈ M, z(t) can be written as

z(t) =
[

w⊤(t) ej2π/mw⊤(t)
(
ej2π/m

)2
w⊤(t) · · ·

(
ej2π/m

)m−1
w⊤(t)

]⊤

.
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Observe that if the system matrix A is circulant and of order n = p · m, it can

be partitioned into precisely m2 blocks, each of order p. This partitioning causes

A to become a block circulant matrix, denoted A = circ(A0, A1, . . . , Am−1), where

the blocks A0, A1, . . . , Am−1 are of order p (see Davis, 1994, Section 5.6). This

partitioning allows one to write the n/m-dimensional dynamics on M as

ẇ(t) =
[

A0 A1 · · · Am−1

]

z(t) =
m−1∑

i=0

(
ej2π/m

)i
Aiw(t). (6.12)

Example 6.4: Consider the special case of cyclic pursuit (see Section 2.2.3), with

A = circ(−1, 1, 0, . . . , 0). Suppose z(t) ∈ C
n has symmetry Cn with Pσ = Πn.

Hence, the dimension of the complex dynamics on M is simply 1 (i.e., there are

n− 1 complex constraints). Let w(t) = z1(t), yielding the dynamics on M,

ẇ(t) =
(
ej2π/n − 1

)
w(t).

Next, consider the agents in Figure 6.1a. The formation z(t) of n = 6 agents

has symmetry C2 with Pσ = Π3
n. Suppose the agents are in cyclic pursuit with A =

circ(−1, 1, 0, . . . , 0), which is consistent with the graph Γ(A, z(t)) in the figure. In

this case, w(t) = (z1(t), z2(t), z3(t)). The dynamics on M have dimension 6/2 = 3,

and are given by

ẇ(t) =






−1 1 0

0 −1 1

−1 0 1




w(t).

Using (6.12), the 3 × 3 matrix in the above equation is A0 − A1, where A0 is the

upper-left 3 × 3 block of A and A1 is the upper-right 3 × 3 block of A. ◭

6.4 Circulant Necessity

Thus far, it has been proved that circulant multiagent systems preserve rotation

group symmetries. The question that is addressed in this section is: To what

extent is circulant connectivity also necessary? It is revealed in Theorem 6.3,

which follows, that circulant connectivity is necessary if symmetry Cm is to be

invariant under the multiagent system’s dynamics for every m that divides n.
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6.4.1 A Counterexample

Firstly, the condition of Theorem 6.2 that A be a circulant matrix is not necessary

for any single m dividing n. The following example illustrates this fact.

Example 6.5: Consider a system (6.2) of n = 4 agents, where the inputs (6.1) are

u1(t) = z2(t) − z1(t)

u2(t) = z4(t) − z2(t) − (z1(t) − z2(t))

u3(t) = z4(t) − z3(t)

u4(t) = z1(t) − z4(t).

The corresponding system matrix A is the non-circulant matrix

A =









−1 1 0 0

−1 0 0 1

0 0 −1 1

1 0 0 −1









. (6.13)

Consider the initial formation z(0) and graph Γ(A, z(0)) given in Figure 6.4. The

formation z(0) has symmetry C4 with Pσ = Π4. It can be verified that, under the

dynamics (6.2) with (6.13), the formation z(t) has symmetry C4 for all t ≥ 0.

However, it can also be verified that there exists an initial formation having

symmetry C2 (a subgroup of C4) with Pσ = Π2
4 such that symmetry C2 is not

preserved for all t ≥ 0 (e.g., let z1(0) = z3(0) and z2(0) = z4(0)). ◭

6.4.2 A Special Class of Formations

In studying the necessity of circulant connectivity, it is helpful to employ a special

class of formations z(t); namely, those given by the constraint

ωqz(t) = Πnz(t), (6.14)

for some q ∈ {1, 2, . . . , n−1} and where ω := ej2π/n. Notice that the locations zi(t),

i = 1, 2, . . . , n, generated by the constraint (6.14) all have the same magnitude.

The following lemma associates a formation satisfying (6.14) with its symmetry.



Chapter 6: Symmetries of Pursuit 149

2

13

4

Figure 6.4: Non-circulant figure Γ(A, z(0)) for Example 6.5

Lemma 6.2: Suppose ωqz(t) = Πnz(t) holds for some q ∈ {1, 2, . . . , n − 1} and

z(t) ∈ C
n. Then, the formation z(t) has symmetry Cm, where m = n/ gcd(n, q).

Proof: Let p := gcd(n, q) and define m := n/p and kq := q/p. To show the

formation has symmetry Cm one must show there exists a permutation matrix Pσ

such that (6.3) holds. From ωqz(t) = Πnz(t) one has

(
ej2π/n

)q
z(t) =

(
ej2π/m

)kq
z(t) = Πnz(t). (6.15)

By Bézout’s identity4, there exist integers lq and lm such that 1 = gcd(kq,m) =

lqkq + lmm. This fact together with (6.15) yields

ej2π/mz(t) =
(
ej2π/m

)lqkq
z(t) = Πlq

n z(t). (6.16)

By letting Pσ = Π
lq
n , one obtains the desired result. �

Notice that the proof of Lemma 6.2 also reveals how formations satisfying the

special constraint (6.14) have symmetry Cm with the canonical ordering intro-

duced in Section 6.3.2 (i.e., (6.3) holds with Pσ = Π
lq
n ).

Example 6.6: Consider the example graphs Γ(A, z(0)) with ωqz(0) = Πnz(0)

given in Figure 6.5, where n = 6. In Figure 6.5a, q = 1 and the formation has the

symmetry group C6 since m = 6/ gcd(6, 1) = 6/1 = 6. In Figure 6.5b, q = 2 and

the formation has the symmetry group C3 since m = 6/ gcd(6, 2) = 6/2 = 3. ◭

4Given two nonzero integers a and b, Bézout’s identity says that there exist integers c and d
such that gcd(a, b) = ac + bd (Jones and Jones, 1998, Section 1.2, Theorem 1.7).
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(a) q = 1
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1,4

2,5

(b) q = 2

Figure 6.5: Example graphs Γ(A, z(0)) with ωqz(0) = Π6z(0)

Let vq := (1, ωq, ω2q, . . . , ω(n−1)q), the (q + 1)-th column of the Fourier matrix

F ∗
n multiplied by

√
n (the Fourier matrix defined in (2.8) on page 29).

Lemma 6.3: For every q ∈ {1, 2, . . . , n−1}, the vector z ∈ C
n satisfies ωqz = Πnz

if and only if z = vqz1.

Proof: The statement ωqz = Πnz is equivalent to

z2 = ωqz1

z3 = ωqz2 = ω2qz1

...

zn = ω(n−1)qz1,

with ωnqz1 = z1. Equivalently, z = vqz1. �

6.4.3 Necessary Conditions for Invariance

The aim of this section is to show that circulant connectivity is necessary in order

that symmetry Cm be invariant for every m that divides n. The following result

is the second principal result of this chapter.

Theorem 6.3: If formation symmetry Cm is invariant under the dynamics (6.2)

for every m that divides n, then A is a circulant matrix.
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Proof: Theorem 2.6 (from Davis, 1994) on page 29 says that an n×n matrix A

is circulant if and only if it commutes with the fundamental permutation matrix

Πn. Therefore, it suffices to show that ΠnA− AΠn = 0.

If formation symmetry Cm is invariant for every m that divides n it must be

that, in particular, initially symmetric formations satisfying (6.14) are symmetric

for all t ≥ 0, after Lemma 6.2. Let q ∈ {1, 2, . . . , n − 1} be arbitrary and pick

an initial formation z(0) = vqz1(0) 6= 0. By Lemma 6.3, z(0) satisfies ωqz(0) =

Πnz(0). By Lemma 6.2, z(0) has symmetry Cm with m = n/ gcd(n, q). By

assumption, the formation z(t) has symmetry Cm for all t ≥ 0. By differentiating

the formation constraint ωqz(t) = Πnz(t) in time, one obtains

ωqAz(t) = ΠnAz(t)
(6.14)⇐⇒ (ΠnA− AΠn) z(t) = 0

⇐⇒ (ΠnA− AΠn) vqz1(t) = 0,

for all t ≥ 0. In particular, since z1(0) 6= 0, (ΠnA− AΠn)vq = 0.

By Property 6.1, A has zero row-sums. Thus, Av0 = 0. Also, because v0 is an

eigenvector of Πn with corresponding eigenvector λ = 1, Πnv0 = v0 (Davis, 1994,

pp. 72–73). Therefore, one finds

(ΠnA− AΠn) v0 = ΠnAv0 − AΠnv0 = −Av0 = 0.

Recall that, [v0 v1 · · · vn−1] =
√
nF ∗

n , where Fn is the Fourier matrix. Therefore, it

has been shown that (ΠnA−AΠn)F
∗
n = 0. Since F ∗

n is invertible, ΠnA−AΠn = 0.

Therefore, A is a circulant matrix. �

The following example highlights the significance of the assumption that not

only is symmetry Cn invariant, but also all of its subgroups are invariant under

the system’s dynamics (further to Example 6.5).

Example 6.7: Consider n = 6 agents initially configured such that ωz(0) =

Π6z(0). Suppose Γ(A, z(0)) is coupled in an all-to-all fashion, as in Figure 6.5a.

Let Ã = circ(−5, 1, 1, 1, 1, 1) and let A be the matrix Ã but with its second row

replaced by (1/2,−4, 1/2, 1/2, 2, 1/2). For the initial formation ωz(0) = Π6z(0),

Figure 6.6a shows how the rotation group C6 is invariant under the dynamics (6.2),

despite the fact that A is not circulant . In Figure 6.5a, the dashed lines connect

agents (1, 2, 3, 4, 5, 6), in sequence, at regular intervals during the simulation.
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However, consider a different initial formation ω2z(0) = Π6z(0), which has

symmetry C3 (since gcd(6, 2) = 2, implying that m = 6/2 = 3). C3 is a sub-

group of C6. The associated formation graph is given in Figure 6.5b. Formation

symmetry C3 is not invariant under the dynamics (6.2), as one can see from the

simulation results of Figure 6.6b, where the dashed lines connect agents (1, 2, 3).

As time evolves, the initial equilateral formation becomes only isosceles. ◭

6.4.4 Summary and a Comment on Ordering

Therefore, by combining the sufficiency result of Theorem 6.2 with the necessity

result of Theorem 6.3, one obtains the following necessary and sufficient result,

which summarizes the significance of circulant connectivity.

Corollary 6.3: Formation symmetry Cm is invariant under the dynamics (6.2) for

every m that divides n if and only if A is circulant.

Finally, one might naturally wonder about the necessity of the canonical la-

beling, introduced in Section 6.3.2 and assumed in the definition of invariance

(Definition 6.4). Is this ordering assumption without loss of generality? Do there

exist other classes of ordering for which there is symmetry invariance if and only

if the system matrix is circulant? This remains an open question.

6.4.5 Graph Symmetry and Invariance

It has been shown that multiagent systems with circulant connectivity have the

attractive property that formation symmetry Cn and all of its subgroups are in-

variant under the system’s evolution. Moreover, circulant connectivity among the

agents is also necessary to obtain this invariance property. Although Theorems

6.2 and 6.3 make no mention of graph symmetry, the condition that A is (struc-

turally) circulant implies the graph (see Section 6.2.5) is also symmetric. This

result is offered in Proposition 6.1, but a definition and example are required first.

Definition 6.5 (Graph Symmetry): The graph Γ(A, z(t)) = (Vt, Et) is said to

have the symmetry group G at time t if it has the property that for every element

g ∈ G, if v(t) ∈ Vt, then gv(t) ∈ Vt, and if e(t) ∈ Et, then ge(t) ∈ Et. Moreover,

the induced maps v(t) 7→ gv(t) and e(t) 7→ ge(t) are permutations.
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(b) C3 symmetry not preserved

Figure 6.6: Simulations for Example 6.7
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The requirement that the maps in Definition 6.5 be permutations (or bijec-

tions) guarantees that two agents (respectively, edges), possibly collocated, cannot

be mapped to the same agent (respectively, edge).

Notice that graph symmetry Cm (Definition 6.5) implies formation symmetry

Cm (Definition 6.3), but not the converse. For instance, the formation z(t) in

Figure 6.1b has formation symmetry C4 (the constraint (6.3) holds with σ =

(1, 4, 2, 3)), but the graph Γ(A, z(t)) has only symmetry C1.

Example 6.8: Consider the example formation graphs Γ(A, z(t)) of Figure 6.1.

Figure 6.1a has symmetry C2 but not C4, because a rotation through π/2 does

not map vertices to vertices. Figure 6.1b has symmetry C1 but not C2, because a

rotation through π reverses the edge directions. For the same reason, Figure 6.1c

has only symmetry C1, not symmetry C2. ◭

Proposition 6.1: Suppose z(t) has symmetry Cm with Pσ = Πq
n. If A is a struc-

turally circulant matrix, then the graph Γ(A, z(t)) has symmetry Cm.

Proof: As per Definition 6.5, it is enough to show that the map induced by a

generator of the cyclic group Cm maps vertices in Vt (respectively, edge vectors

in Et) to vertices in Vt (respectively, edge vectors in Et) by a bijection. Rotation

through 2π/m is a generator of the cyclic group Cm (cf. Definition 6.2). Constraint

(6.3) implies the map z(t) 7→ ej2π/mz(t) is a bijection on Vt, which means that

vertices zi(t) ∈ Vt are mapped to vertices in Vt by a bijection. Consider the

rotation of an arbitrary edge vector eik(t) ∈ Et through angle 2π/m, yielding

ej2π/meik(t) = ej2π/m (zk(t) − zi(t)) = zk+q(t) − zi+q(t) = ei+q,k+q(t).

Since eik ∈ E , aik 6= 0. But, since A is structurally circulant, ai+q,k+q 6= 0, imply-

ing that ei+q,k+q ∈ E . Hence, by the constraint (6.3), edge vectors eik(t) ∈ Et are

mapped to edge vectors in Et by a bijection5. �

Example 6.9: Figure 6.7 gives two example graphs, each with a (structurally)

circulant interconnection topology between agents. In each case, one can compare

formation symmetry with graph symmetry. Both the formation and graph in

Figure 6.7a have symmetry C4. In this case, the associated permutation is σ(i) =

5Let σ : N → N be a bijection and define τ : N×N → N×N such that τ(i, j) 7→ (σ(i), σ(j)),
i, j ∈ N . Then, τ must also be a bijection.
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i + 1, which is primitive. In the case of Figure 6.7b, the formation z(t) has

symmetry C4, but the graph has only symmetry C2. In this case, the permutation

associated with C2 symmetry is σ(i) = i + 4 and σ can be factored into exactly

four distinct cycles σ = (1, 5)(2, 6)(3, 7)(4, 8). ◭

2

13

4
(a)

2

6

8

7 3

4
5 1

(b)

Figure 6.7: Circulant formation graphs Γ(A, z(t))

The following example illustrates the fact that graph symmetry is not sufficient

to preserve cyclic group symmetries. It also highlights, once again, the importance

of the canonical agent ordering described in Section 6.3.2.

Example 6.10: Consider a system (6.2) of n = 4 agents with

A =









−2 1 2 −1

−1 −2 1 2

2 −1 −2 1

1 2 −1 −2









= circ(−2, 1, 2,−1).

The information flow between agents together with their locations at time t = 0 is

illustrated by Γ(A, z(0)) in Figure 6.7a. Notice that Γ(A, z(0)) has symmetry C4.

Clearly, (6.3) is satisfied with Pσ = Πn. Following Theorem 6.2, this formation’s

symmetry is invariant under the dynamics (6.2). But, consider a new initial

formation, given by a permutation of the original one, z̃(0) = Pτz(0), where

Pτ is given by (6.11). Since the coupling is all-to-all, the new graph Γ(A, z̃(0))

still has symmetry C4 (any permutation of the agent locations leaves the graph
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unchanged). However, (6.3) does not hold with Pσ = Πq
n for any q, since

PτΠnP
⊤
τ =









0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0









is not of the form Πq
n. It can be shown via simulation that C4 symmetry in

the formation starting at z̃(0) is not invariant under the dynamics ˙̃z(t) = Az̃(t),

despite the fact that the graph Γ(A, z̃(0)) has symmetry C4. ◭

6.5 Shape Evolution for Circulant Pursuit

Conditions for the invariance of rotation group symmetry in multiagent formations

were studied in the previous (main) sections of this chapter. From this work, it

is clear that circulant connectivity plays a fundamental role in symmetry. The

next step is to understand how circulant systems asymptotically behave. This

section takes a first step in this direction by examining multiagent systems that

have a system matrix A which is both circulant and Metzler (i.e., its off-diagonal

elements are nonnegative; see Section 2.1.3). How do the agents evolve? What

basic shapes might emerge and are they symmetric? It should be emphasized

that, strictly speaking, the stability of rotation group symmetries (e.g., whether

the invariant subspace M of Section 6.3.3 is attractive or not) is not studied here.

A common approach to studying the evolution of formations is to formulate

appropriate (nonlinear) shape dynamics that are invariant under rotation, scaling,

and translation (cf. Richardson, 2001b). In contrast, this section exploits the

linearity of (6.2) by developing a continuous-time analog to the discrete-time

ideas of Bruckstein et al. (1995). It is proved that agents in circulant pursuit

exponentially converge to a point that is the centroid of their initial conditions.

At the same time, following the logic originally proposed by Bruckstein et al.

(1995), the formation tends towards an elliptical shape whose radii and orientation

depend only on the initial formation.
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6.5.1 Consensus

To simplify the calculations, it is assumed (without loss of generality) that A =

circ(a0, a1, . . . , an−1) is scaled such that a0 = −1. Recall that it is possible to diag-

onalize every circulant matrix by A = F ∗
nΛFn, where Fn is the n×n Fourier matrix

(see Theorem 2.8 on page 29). The diagonal matrix Λ = diag(λ1, λ2, . . . , λn) are

the eigenvalues of A. The Fourier matrix (2.8) on page 29 can be written as

F ∗
n =

1√
n

[

f1 f2 · · · fn

]

,

fi = vi−1 = (ω0, ωi−1, ω2(i−1), . . . , ω(n−1)(i−1)).

Moreover, the eigenvalues of A are given by (see Corollary 2.1 on page 29) λi =

pA(ωi−1), where pA(λ) = −1 + a1λ + a2λ + · · · + an−1λ
n−1. Recall that the

polynomial pA(λ) is called the circulant’s representer.

The purpose of this section is to study the geometric evolution of the formation

as t→ ∞. To understand how the agents evolve, examine the eigenvalues of A.

Lemma 6.4: Let A be circulant, Metzler, and satisfy Property 6.1 (i.e., have zero

row-sums). Then it has one zero eigenvalue λ1 = 0, and the remaining eigenvalues

have Re(λi) < 0, i = 2, 3, . . . , n.

Proof: The proof is by explicit computation of the eigenvalues:

λi = pA(ωi−1) = −1 +
n−1∑

k=1

ωk(i−1)ak. (6.17)

When i = 1, one obtains λ1 = −1 +
∑n−1

k=1 ak = 0. The real part of the remaining

n− 1 eigenvalues is given by

Re(λi) = −1 +
n−1∑

k=1

ak cos(2πk(i− 1)/n).

Since cos(2πk(i− 1)/n) < 1 for every i ∈ {2, 3, . . . , n},

Re(λi) < −1 +
n−1∑

k=1

ak < 0, i = 2, 3, . . . , n,

concluding the proof. �
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The following result extends Theorem 2.5 on page 27 to the more general case

of circulant systems.

Proposition 6.2: Consider the multiagent system (6.2) and let A be both circu-

lant and Metzler. Then, for every initial formation z(0) ∈ C
n the agents (6.2)

exponentially converge to their centroid.

Proof: First, solve the linear system (6.2):

z(t) = eAtz(0) = eF
∗

nΛFntz(0) = F ∗
ne

ΛtFnz(0). (6.18)

Next, rewrite the solution (6.18) as the sum of its modal elements:

z(t) =
1

n

[

f1 f2 · · · fn

]

eΛt
[

f1 f2 · · · fn

]∗

z(0)

=
1

n

n∑

i=1

eλitfif
∗
i z(0). (6.19)

Given Lemma 6.4, the steady-state behaviour of the multiagent system is deter-

mined by the eigenspace associated with the eigenvalue λ1 = 0. In other words,

this part of the solution dominates as t → ∞ and the remaining modal compo-

nents die away. Therefore, we only need to look at the term i = 1 in (6.19). Define

the function (employing a similar notation to Bruckstein et al., 1995)

z∞(t) :=
1

n
eλ1tf1f

∗
1 z(0) =

1

n
e0t









1

1
...

1









[

1 1 · · · 1
]

z(0)

=
1

n









1 1 · · · 1

1 1 1
...

...
...

1 1 · · · 1









z(0).

Thus, the agents converge their centroid, z̄ := (1/n)
∑n

i=1 zi(0). �
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6.5.2 Ellipses

In light of Proposition 6.2, the question of interest becomes: Do the agents con-

verge to any particular arrangement while at the same time contracting? To this

end, the solution (6.19) can be decomposed as follows:

z(t) = z∞(t) + eγtw(t), where γ := max
i6=1

{Re(λi)} .

Following Proposition 6.2, z∞(t) represents the steady-state behaviour of the

agents. By subtracting z∞(t) from z(t), one is left with the modal elements

of z(t) that determine its behaviour in the transient. However, this collection

of remaining modal elements can itself be decomposed into the slowest modes,

which dominate z(t) as t → ∞, and those that die away more quickly. These

latter slowest modes determine the geometric shape z(t) exponentially takes as

t→ ∞ (Bruckstein et al., 1995). The function w(t) in the above decomposition is

w(t) :=
1

neγt

∑

i6=1

eλitfif
∗
i z(0). (6.20)

Therefore, w(t) represents the aforementioned collection of transient modal ele-

ments of z(t) scaled by the rate of decay of the slowest modes among them.

By the above arguments, it is the behaviour of w(t) as t→ ∞ that determines

the exponentially stable geometric shape assumed by the agents. Define the set

S = {i : Re(λi) = γ}. Since it is the eigenvalues with indices in the set S that

dominate (6.20) as t→ ∞, define

w∞(t) :=
1

neγt

∑

i∈S

eλitfif
∗
i z(0). (6.21)

For simplicity’s sake, the case of cyclic pursuit, with A = circ(−1, 1, 0, . . . , 0),

is first studied. Define the angle ψi := 2π(i− 1)/n. Therefore, the eigenvalues of

A are λi = −1+ejψi , which are simply the n roots of unity shifted by −1 along the

real axis. Moreover, S = {2, n} with corresponding eigenvalues λ2,n = −1 + ω±1.

Let zi(0) = rie
jθi , the initial conditions in polar form. Finally, independent of i,

define the following quantities:

f ∗
2 z(0) =

n∑

i=1

(
ωi−1

)∗
zi(0) =

n∑

i=1

rie
j(θi−ψi) =: aejψa ;
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and, by employing ωn−1 = ω−1,

f ∗
nz(0) =

n∑

i=1

(
ω1−i

)∗
zi(0) =

n∑

i=1

rie
j(θi+ψi) =: bejψb .

Proposition 6.3: For agents in cyclic pursuit with A = circ(−1, 1, 0, . . . , 0), the

points w∞
i (t) belong to an ellipse of radii (a+ b)/n and (a− b)/n.

Proof: In this case, γ = −1 + cos(2π/n) and

w∞(t) =
1

neγt
(
eγtejt sin(2π/n)f2f

∗
2 + eγte−jt sin(2π/n)fnf

∗
n

)
z(0)

=
1

n

(
ejt sin(2π/n)f2f

∗
2 + e−jt sin(2π/n)fnf

∗
n

)
z(0).

Now, for each element of w∞(t) write

w∞
i (t) =

1

n
ejt sin(2π/n)ωi−1aejψa +

1

n
e−jt sin(2π/n)ω1−ibejψb .

Let β := sin(2π/n), constant for a given n. Then,

w∞
i (t) =

a

n
ej(βt+ψa)ωi−1 +

a

n
ej(βt−ψb)ω1−i.

Define φ := (ψa − ψb)/2 and φ̄ := (ψa + ψb)/2. Then, aejψa = aejφejφ̄ and

bejψb = be−jφejφ̄. Simplifying yet again, one obtains

w∞
i (t) =

a

n
ejβtejφejφ̄ωi−1 +

b

n
e−jβte−jφejφ̄ω1−i

= ejφ̄
(
a

n
ej(βt+φ+ψi) +

b

n
e−j(βt+φ+ψi)

)

= ejφ̄
(
a+ b

n
cos(βt+ φ+ ψi) + j

a− b

n
sin(βt+ φ+ ψi)

)

. (6.22)

The fixed rotation ejφ̄ can be ignored (it only depends on the initial formation).

To see that the points (6.22) belong to an ellipse of radii r1 := (a + b)/n and

r2 := (a − b)/n, one needs only to recognize that they satisfy the equation of an

ellipse (in C), given by (Re(ω∞
i )/r1)

2 + (Im(ω∞
i )/r2)

2 = 1, i = 1, 2, . . . , n. �

Note that if a < b, then the points are ordered and travel in the clockwise

(rather than counterclockwise) direction around the steady-state ellipse.
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Remark 6.6: Suppose that the agents are initially positioned on a line. Assume

it is the real axis (without loss of generality). In this case,

f ∗
2 z(0) =

n∑

i=1

e−jψizi(0) =
n∑

i=1

zi(0) (cosψi − j sinψi) =: aejψa .

Likewise,

f ∗
nz(0) =

n∑

i=1

ejψizi(0) =
n∑

i=1

zi(0) (cosψi + j sinψi) = ae−jψa .

Therefore, φ = ψa, φ̄ = 0, and (6.22) reduces to

w∞
i (t) =

2a

n
cos(βt+ φ+ ψi),

suggesting that the agents remain on the real axis for all time. �

The cyclic pursuit result of Proposition 6.2 is now extended to the more general

case of circulant pursuit. Recall that, in this case, the eigenvalues of A are given

by (6.17). Notice that

Re

(
n−1∑

k=1

ake
j2πk(i−1)/n

)

= Re

(
n−1∑

k=1

ake
j2πk(n−i+1)/n

)

.

for every k ∈ {1, 2, . . . , n− 1} and i ∈ {1, 2, . . . , n}. Therefore, the eigenvalues of

A come in complex conjugate pairs λi = λ̄n−i+2, (6.19) and (6.20) still hold, and

the set S = {i : Re(λi) = γ}, where the scalar γ = maxi6=1{Re(λi)}, as before. To

simply notation, define l := n− k + 2 and suppose that S = {k, l}. Thus,

w∞(t) =
1

neγt
(
eγtejIm(λk)tfkf

∗
k + eγte−jIm(λk)tflf

∗
l

)
z(0)

=
1

n

(
ejIm(λk)tfkf

∗
k + e−jIm(λk)tflf

∗
l

)
z(0).

Therefore, as before, compute

f ∗
kz(0) =

n∑

i=1

(
ω(i−1)(k−1)

)∗
zi(0) =: aejψa .
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Likewise, compute

f ∗
l z(0) =

n∑

i=1

(
ω(i−1)(l−1)

)∗
zi(0) := be−jψb .

Proposition 6.4: For agents in pursuit with A = circ(−1, a1, a2, . . . , an−1), the

points w∞
i (t) belong to an ellipse of radii (a+ b)/n and (a− b)/n.

Proof (sketch): Let β := Im(λk) and l := n− k + 2. This yields,

w∞
i (t) =

1

n

(
ejβtω(i−1)(k−1)aejψa + e−jβtω(i−1)(l−1)bejψb

)

=
1

n

(
ejβtejψi(k−1)aejψa + e−jβte−jψi(k−1)bejψb

)
,

which when simplified in the same manner as (6.22) gives

w∞
i (t) = ejφ̄

(
a+ b

n
cos(βt+ φ+ ψi(k − 1)) + j

a− b

n
sin(βt+ φ+ ψi(k − 1))

)

.

By employing the same arguments as in the proof of Proposition 6.3, these points

belong an ellipse of radii (a+ b)/n and (a− b)/n. �

Notice that the ordering of the agents around the steady-state ellipse depends

on the value of k (i.e., on the eigenvalues with magnitude γ). Hence, this ordering

depends on the number of agents being pursued. In the case of cyclic pursuit

k = 2, and thus the agents are ordered contiguously around the ellipse.

In summary, agents in circulant pursuit exponentially converge to a point that

is the centroid of their initial conditions. At the same time, the agents tend

towards elliptical trajectories (but this behaviour is slower than the rate at which

they converge to a point) whose shape and orientation depends only on the initial

formation, z(0). Moreover, as they approach an elliptical shape they become

ordered and equally spaced in a radial sense, since ψi = 2π(i − 1)/n changes as

i is incremented from 1 to n. Also, the ellipse does not rotate with time because

the angle of the ellipse with respect to the real axis is defined by the angle φ̄,

which again depends only on the initial conditions. However, the agents do rotate

around the ellipse at a frequency given by β. Finally, if the agents start on a line,

they stay on a line since one radius of the ellipse is equal to zero.



Chapter 7

Summary and Conclusions

By linking coordination control problems in engineering with pursuit problems

found in the mathematics and physics literature, this thesis studies the geometric

formations of autonomous agent systems consisting of individuals programmed to

locally pursue one another. Broadly speaking, this thesis emphasizes the impor-

tance of structure in the interconnection topology among agents, and illustrates

how structure can be exploited towards analysis. This final chapter contains a

concise summary of the thesis’ primary contributions and ends with a brief dis-

cussion about questions that have arisen over the course of this research, followed

by some closing remarks.

7.1 Summary of Contributions

This section identifies the primary contributions of this work. These contributions

are organized into categories: those pertaining to agents in pursuit, nonlinear ve-

hicles in cyclic pursuit, and the invariance of symmetries in multiagent formations.

Agents in Pursuit

Chapter 2 offers the following principal contributions.

1. The notion of pursuit is proposed as a multiagent coordination technique,

and a connection is drawn between existing literature on positive systems

and the proposed coordination strategy (Section 2.1.3).

2. Details are given of an important connection between multiagent coordina-

tion, the traditional pursuit problem (e.g., see Theorem 2.5), and the theory

of circulant matrices (as in Davis, 1994). This relationship is exemplified by

163



Chapter 7: Summary and Conclusions 164

Section 2.2.6 and its significance is highlighted by the fact that it supplies

the foundation for subsequent contributions in Chapters 3, 4, and 6.

It is worth mentioning that the relevance and utility of this last contribution

has recently been acknowledged by other researchers. For example, Aranda et

al. (2005) use circulant connectivity to stabilize multiagent formations that are

optimal for target tracking. Smith, Broucke, and Francis (2005) study hierarchies

of cyclic pursuit with the aim of improving convergence rates for consensus.

Vehicles in Cyclic Pursuit

An extension of traditional cyclic pursuit (see Section 2.2) to n > 1 nonholonomic

vehicles is carried out in Chapters 3 and 4. Its most important theoretical con-

tributions are summarized below, all of which correspond to the coordination law

(3.4) for fixed-speed vehicles and (4.1) for varying-speed vehicles.

1. In relative coordinates, for both fixed- and varying-speed unicycles, every

equilibrium formation corresponds to a generalized regular polygon, denoted

{n/d}, of density 1 ≤ d < n (Theorems 3.1 and 4.1).

(a) In the case of fixed-speed vehicles, the vehicles traverse a circle of radius

ρ = vRn/(kπd), where vR is the vehicles’ speed (Corollary 3.1).

(b) In the case of varying-speed vehicles, an equilibrium formation exists

only for a specific gain k = k⋆, given by (4.3).

2. Local stability analyses are carried out that reveal, for every n > 1, ex-

actly which equilibrium formations are asymptotically stable. By exploiting

the circulant structure of the control laws (3.4) and (4.1), a technique for

reducing the problem from 3n dimensions to only 3 is developed.

(a) In the case of fixed-speed vehicles Theorem 3.3 and Corollaries 3.3

through 3.6 yield that: (i) every {n/1} formation is locally asymptot-

ically stable; (ii) every {n/d} formation with d ≥ 6 is unstable; and,

(iii) in the remaining possible cases, Table 3.2 identifies all possible

equilibrium formations and gives their stability.

(b) In the case of varying-speed vehicles (with k = k⋆), Theorem 4.4 states

that the only locally asymptotically stable equilibrium formations are

the ordinary regular polygons, {n/1}.
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3. For varying-speed vehicles, when k 6= k⋆ the vehicles do not converge to an

equilibrium formation (see Sections 4.3 and 4.6).

(a) In general, depending on whether k = k⋆−ǫ or k = k⋆+ǫ, for sufficiently

small ǫ, the vehicles converge or diverge, respectively, while at the same

time approaching an {n/1} polygon formation (Theorems 4.5 and 4.6).

(b) In the special case when n = 2, a global stability analysis is offered

(see Section 4.3), revealing for what gains and which initial conditions

the vehicles either converge to a point, diverge, or converge to equally

spaced motion around a circle (Theorem 4.2).

4. For both fixed- and varying-speed vehicles, every equilibrium formation is

stationary, meaning that the formation’s centroid does not drift over time

(see Sections 3.4 and 4.7 for fixed- and varying-speed cases, respectively).

5. For both fixed- and varying-speed vehicles, simulations suggest that sta-

ble periodic solutions also exist for vehicles subject the coordination laws

(3.4) and (4.1). These solutions are collectively referred to as the n-vehicle

“weave” (see Sections 3.5 and 4.8). An invariant subspace is revealed in

Section 3.5.2, which contains no equilibrium points, and it is conjectured

that the periodic solution corresponding to the weave is contained in this

subspace. To the author’s best knowledge, the problem of achieving peri-

odic multivehicle trajectories of this sort has not yet been studied in the

multiagent and cooperative control engineering literature.

Other researchers have already begun to generalize the contributions men-

tioned above. For example, Sinha and Ghose (2005) extend the results of Chapter

3 to the case of vehicles with different speeds and different controller gains. Jeanne,

Leonard, and Paley (2005) utilize the results of Chapter 3 in their study of ring-

coupled planar particles modelled as coupled oscillators (cf. Section 1.1.2). They

prove that the equilibrium formations of their system are also generalized regular

polygons. In their work, the stability of each polygon depends on one’s choice of

controller gain (which they refer to as the “coupling strength parameter”).

Although there is a growing amount of theoretical work on multiagent systems

that employ local interactions, there are at present relatively few instances of

experimental research specifically validating their practicality. In this thesis, the
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theoretical contributions of Chapters 3 were validated experimentally, as reported

in Chapter 5. These contributions are as follows.

1. Experiments using the four-wheeled UTIAS Argo Rovers confirmed that the

theoretical results of Chapter 3 can be applied in practice to real vehicles that

are in many respects different from ideal kinematic unicycles. The proposed

multivehicle pursuit strategy was observed to be robust in the presence of

unmodelled dynamics, disturbances in the vehicle velocities, and delays in

the system due to sensing and information processing.

2. Computation of the control law was based solely on sensing and data process-

ing carried out locally, without explicit communication between the vehicles,

the use of a global positioning system, nor a central supervisor. This is unlike

many cooperative control experiments reported in the literature.

These contributions are, in particular, significant in that the findings are not

only encouraging for pursuit-based coordination strategies, but also for other co-

operative control techniques that employ similar local interaction techniques.

Symmetry and Invariance

Chapter 6 looks at linear multiagent systems of the form (6.1)–(6.2) from a unique

perspective: What fixed decentralized controllers inherently preserve symmetric

formations? Its primary contributions are the following.

1. Of central relevance to the topic of rotation symmetry invariance in multia-

gent formations is circulant structure in the interconnection topology among

agents. It is revealed to what extent structure influences symmetry.

(a) If the system matrix A of (6.2) is circulant (possibly after a permutation

of coordinates), then formation symmetry Cm of any initial formation

is invariant under the system’s dynamics for every m that divides n

(Theorem 6.2 and Corollary 6.2).

(b) When canonically ordered, if formation symmetry Cm is invariant under

the system’s dynamics for every m that divides n, then the system

matrix A is necessarily circulant (Theorem 6.3).
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(c) If the system matrix A of (6.2) has a circulant structure, but is not

necessarily circulant, then the induced information flow graph has sym-

metry Cm (Proposition 6.1).

2. Agents in circulant pursuit converge to a point that is the centroid of the

agents. At the same time, they tend towards an elliptical arrangement whose

shape and orientation depend on the initial conditions (see Section 6.5).

7.2 Questions Arising

The work described in this thesis generates several possible directions for future

research. A few of these ideas are briefly described in this section.

Firstly, complete analysis of the weaving behaviour described in Sections 3.5

and 4.8 remains an open problem. Still, the observations made in this thesis offer

a point of departure. For instance, it is conjectured that the periodic solution

of interest is contained in the subspace W ⊂ R
3n described in Section 3.5.2.

Furthermore, (3.26) and Figure 3.11 suggest that it may be possible to reduce the

problem from 3n dimensions to only three, like in the local stability analyses of

Chapters 3 and 4. Lastly, a similar phenomenon has been noted in the physics

literature on coupled oscillators. Researchers in this field have described a periodic

solution in coupled oscillator equations that they refer to as the “splay-phase”

state, “in which all oscillators have the same waveform, but are shifted by a fixed

fraction of a wavelength” (Tsang, Mirollo, Strogatz, and Wiesenfeld, 1991, p.

105). This very same characteristic is apparent in the trajectories of Figure 3.11a,

hinting that a connection may exist.

A second direction for future research is the design of multivehicle systems with

dynamic gains. In Chapter 3, for every gain k there exist 2(n − 1) equilibrium

formations of fixed radius defined by the value k > 0. But, not every stable

equilibrium formation is desirable (e.g., the {4/2} formation is stable and has

collocated vehicles). On the other hand, in Chapter 4, the only stable formations

are those of the appealing form {n/1}. However, it is proved that an equilibrium

formation exists only when the gain k = k⋆ (see Theorem 4.1), a property which is

not, in theory, robust. What is more, the formation’s radius depends on the initial

vehicle locations. This begs the question: Is it possible to locally and dynamically

choose k, so as to stabilize an {n/1}-polygon formation of a desired radius?
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+
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G(s)

Figure 7.1: Block diagram for a simple dynamic gain ki(t) compensator

Consider, for example, a desired radius ρ̄, which (by simple geometry) corre-

sponds to an equilibrium distance r̄ = 2ρ̄ sin(π/n) between vehicles at equilibrium.

Let ki(t) denote the local gain of vehicle i and define ei(t) := r̄− ri(t). Given the

results of Sections 4.5 and 4.6, an intuitive approach would be to set ki(t) > k⋆

if ei(t) > 0 (i.e., increase the formation radius), and ki(t) < k⋆ if ei(t) < 0 (i.e.,

shrink the formation radius). A block diagram for this simple decentralized design

is given in Figure 7.1. It can be shown that, when the number of vehicles is n = 2,

the analysis is simplified and the linearized system’s transfer function from ui(t)

to ri(t) in Figure 7.1 is given by

G(s) =
πr̄

s(s+ 1)
,

which is a type 1 system. Thus, proportional control is sufficient to locally drive

the error ei(t) to zero. When n > 2, the problem becomes more complicated. How-

ever, some preliminary calculations suggest that, for local formation stabilization,

a dynamic compensator D(s) is required. Further to the local stabilization prob-

lem, is it possible to design a nonlinear compensator that yields results of a more

global nature? Broadly speaking, this idea of designing decentralized dynamic

gain controllers seems worthy of further investigation.

Chapter 6 demonstrates that circulant connectivity plays a fundamental role

when the task is preserving symmetry in multiagent formations. However, it

remains to be determined whether the canonical ordering introduced in Section

6.3.2 is without loss of generality. Do there exist other classes of ordering for

which there is symmetry invariance if and only if the system matrix is circulant?

Additionally, the obvious next step is to study the stabilization of symmetries. The

preliminary investigation of Section 6.5 hints that, for the studied linear system,
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rotation group symmetries are not, in general, asymptotically stable. What kind

of local feedback is necessary to stabilize a given rotation group symmetry?

Multiagent systems design is often presented as the problem of synthesizing

local control strategies that generate desired global behaviours for the system.

Instead, the contributions of this thesis emphasize the importance of structure.

For example, the stability analyses of Chapters 3 and 4 exploit the circulant

structure in cyclic pursuit, thus reducing the problem from one in 3n states to

one in only three states. The relevance of structure is again emphasized in Chapter

6, where symmetric formations are of interest. Naturally, one might wonder: Can

structure be exploited towards design? For instance, given a set of fixed agent

behaviors, is it possible to control a multiagent system’s function (e.g., steady-

state and transient behaviours) by switching the agent interconnection topology?

7.3 Closing Remarks

It is arguable that the systematic (versus heuristic) study of multivehicle systems

is relatively new to engineers, not to mention of recent and growing popularity.

In the nearly four years that have passed since the research reported in this thesis

was first started, the number of papers appearing in the systems and control

literature on this general topic has steadily grown. Today, almost every major

systems and control engineering conference has a full track, sometimes multiple

tracks, dedicated to multiagent systems, or cooperative control, or some variation

thereupon (Spong, 2005). The ability to predict the global outcome of local and

distributed coordination algorithms is certainly of importance to engineers charged

with the task of designing reliable autonomous agent systems. In this sense, it is

hoped that the work of this thesis will serve as a basis for continuing research in

this direction, and that the presented ideas and techniques will augment the set

of tools available to scientists and engineers studying interconnected systems and

problems of coordinated autonomy.
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Appendix A

Supplementary Proofs

This appendix presents the outcome of algebraic computations deemed to lengthly

to be printed in the text of Chapters 3 and 4.

A.1 Verification of Coordinates Transformations

A.1.1 Transformation of Section 3.3.2

In this section, it is shown that the change of coordinates ϕ = Φ(ξ) given by (3.14)

on page 51 is proper by verifying that its Jacobian matrix, evaluated at ξ̄ ∈ M,

is nonsingular (cf. Section 2.2.5). Firstly, compute

∂Φ(ξ)

∂ξ

∣
∣
∣
∣
ξ̄

=

[

I3n−3 0(3n−3)×3

∗ G

]

,

where G is the 3 × 3 block given by

G =
∂g(ξ)

∂ξn

∣
∣
∣
∣
(r̄,ᾱ,β̄)

=






sin(αn + γn) rn cos(αn + γn) 0

cos(αn + γn) −rn sin(αn + γn) 0

0 0 1






(r̄,ᾱ,γ̄n)

,

where

γi := (i− 1)π −
i−1∑

j=1

βj. (A.1)

Hence, Φ is a proper change of coordinates since G is nonsingular for every rn > 0.

180
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A.1.2 Transformation of Section 4.6

In this section, it is shown that the coordinates transformation ϕ = Φ(ξ) given by

(4.11) on page 98 is proper by verifying that its Jacobian matrix is nonsingular in

the domain D = {ξ ∈ R
3n : αi, βi ∈ R, ri > 0, i = 1, 2, . . . , n} ⊂ R

3n. Firstly, it is

useful to strategically reorder the new coordinates so that those involving only αi’s

and βi’s appear as the first 2n coordinates, followed by ϕ1, ϕ4, ϕ7, . . . , ϕ3n−2. Let

this “shuffled” version of the coordinates transformation be denoted Φ̃. Hence,

the Jacobian of Φ̃ has the block diagonal form

∂Φ̃(ξ)

∂ξ

∣
∣
∣
∣
∣
ξ∈D

=

[

I2n 0

0 G

]

,

where G is the n× n matrix

G =














1 0 0 0 · · · 0

0 r−1
3 0 0 · · · 0

0 −r2r−2
3 r−1

4 0 · · · 0
...

. . .

0 · · · 0 −rn−2r
−2
n−1 r−1

n 0

−rnr−2
1 0 0 · · · 0 r−1

1














.

Since G is clearly nonsingular for ξ ∈ D, so is the Jacobian of Φ.

A.2 Proof of Equivalence (A)

In this section, the equivalence (A) used in the proof of Lemma 3.5 on page 52 is

derived. A consequence of this result is the identity

∂g(ξ)

∂ξ
f̂(ξ) = 0 for every ξ ∈ M (A.2)

which is used to prove the invariance of M under f̂ in Lemma 3.4. Recall that

the problem of equivalence (A) is to find an expression for

∂g(ξ)

∂ξ
f̂(ξ) (A.3)
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in the new coordinates ϕ = Φ(ξ). First, rewrite the constraint functions g(ξ)

using summation notation. By substituting (A.1) into the constraint equations

defined in Section 3.1.3, one obtains

g1(ξ) =
n∑

i=1

ri sin(αi + γi), g2(ξ) =
n∑

i=1

ri cos(αi + γi), g3(ξ) =
n∑

i=1

βi + nπ.

Next, rewrite (A.3) as

n∑

i=1

∂g(ξ)

∂ξi
f(ξi, ξi+1).

That is, separate the problem into n vehicle subsystems. The first constraint has

∂g1(ξ)

∂ξi
=

[

sin(αi + γi) ri cos(αi + γi) −
n∑

j=i+1

rj cos(αj + γj)

]

.

Multiplying this by f(ξi, ξi+1) from (3.5) on page 40 gives

∂g1(ξ)

∂ξi
f(ξi, ξi+1) = −(cosαi + cos(αi + βi)) sin(αi + γi)

+ (sinαi + sin(αi + βi)) cos(αi + γi) − kriαi cos(αi + γi)

− k(αi − αi+1)
n∑

j=i+1

rj cos(αj + γj). (A.4)

Simplifying the first two terms of (A.4) using trigonometric identities yields

(sinαi + sin(αi + βi)) cos(αi + γi) − (cosαi + cos(αi + βi)) sin(αi + γi)

= sin(βi − γi) − sin γi.



Appendix A: Supplementary Proofs 183

The sum of these n terms is

n∑

i=1

(sin(βi − γi) − sin γi)

= (sin β1 + sin(β1 + β2 − π) + · · ·
· · · + sin(β1 + · · · + βn − (n− 1)π))

− (0 + sin(π − β1) + sin(2π − β1 − β2) + · · ·
· · · + sin((n− 1)π − β1 − · · · − βn−1))

= sin (
∑n

i=1 βi − (n− 1)π)

= sin (g3(ξ) − π)

= − sin(g3(ξ)). (A.5)

Now, look at the remaining two terms of (A.4). Summing these terms gives

n∑

i=1

(

−kriαi cos(αi + γi) − k(αi − αi+1)
n∑

j=i+1

rj cos(αj + γj)

)

= −k
n∑

i=1

riαi cos(αi + γi) − k

(

α1

n∑

j=2

rj cos(αj + γj)

+α2

n∑

j=3

rj cos(αj + γj) + · · · + αn−1rn cos(αn + γn)

)

+ k

(

α2

n∑

j=2

rj cos(αj + γj) + · · · + αnrn cos(αn + γn)

)

= −k
n∑

i=1

riαi cos(αi + γi) − kα1

n∑

j=2

rj cos(αj + γj)

+ k
n∑

j=2

αjrj cos(αj + γj)

= −kα1

n∑

i=1

ri cos(αi + γi)

= −kα1g2(ξ). (A.6)

Combining equations (A.5) and (A.6) yields

∂g1(ξ)

∂ξ
f̂(ξ) = −kα1g2(ξ) − sin(g3(ξ)). (A.7)
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Repeat this process for the second constraint, which has

∂g2(ξ)

∂ξi
=

[

cos(αi + γi) −ri sin(αi + γi)
n∑

j=i+1

rj sin(αj + γj)

]

.

Multiplying this by f(ξi, ξi+1) gives

∂g2(ξ)

∂ξi
f(ξi, ξi+1) = −(cosαi + cos(αi + βi)) cos(αi + γi)

− (sinαi + sin(αi + βi)) sin(αi + γi) + kriαi sin(αi + γi)

+ k(αi − αi+1)
n∑

j=i+1

rj sin(αj + γj). (A.8)

Simplifying the first two terms of (A.8) using trigonometric identities yields

− (cosαi + cos(αi + βi)) cos(αi + γi) − (sinαi + sin(αi + βi)) sin(αi + γi)

= − cos(βi − γi) − cos γi.

Summing n of these terms gives

n∑

i=1

(− cos(βi − γi) − cos γi)

= − (cos β1 + cos(β1 + β2 − π) + · · ·
· · · + cos(β1 + · · · + βn − (n− 1)π))

− (1 + cos(π − β1) + cos(2π − β1 − β2) + · · ·
· · · + cos((n− 1)π − β1 − · · · − βn−1))

= − cos (
∑n

i=1 βi − (n− 1)π) − 1

= − cos (g3(ξ) − π) − 1

= cos(g3(ξ)) − 1. (A.9)

To obtain the remaining terms of (A.8), carry out a computation that exactly

parallels the one resulting in (A.6), yielding

n∑

i=1

(

kriαi sin(αi + γi) + k(αi − αi+1)
n∑

j=i+1

rj sin(αj + γj)

)

= kα1g1(ξ),
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which, together with (A.9), gives

∂g2(ξ)

∂ξ
f̂(ξ) = kα1g1(ξ) + cos(g3(ξ)) − 1. (A.10)

The last constraint has ∂g3(ξ)/∂ξi = [0 0 1]. Multiplying by f(ξi, ξi+1) yields

∂g3(ξ)

∂ξ
f(ξi, ξi+1) = k(αi − αi+1)

such that

∂g3(ξ)

∂ξ
f̂(ξ) =

n∑

i=1

k(αi + αi+1) = 0 (A.11)

since the indices i+ 1 are taken modulo n.

The equations (A.7), (A.10), and (A.11) together provide the equivalence (A)

used in the proof of Lemma 3.5. Furthermore, notice that the identity (A.2) is

easily verified by choosing g(ξ) = 0, or equivalently ξ ∈ M.

A.3 Proof of Equivalence (B)

Parallel to the proof of equivalence (A) in Appendix A.2, in this section the equiv-

alence (B) used in the proof of Lemma 4.2 on page 88 is derived. A consequence

of this result is the identity (A.2), which is used to prove the invariance of M
under f̂ in Lemma 4.1. Let γi be defined as in (A.1) and compute

∂g1(ξ)

∂ξi
f(ξi, ξi+1) = −k(ri cosαi + ri+1 cos(αi + βi)) sin(αi + γi)

+ k(ri sinαi + ri+1 sin(αi + βi)) cos(αi + γi)

− riαi cos(αi + γi) − (αi − αi+1)
n∑

j=i+1

rj cos(αj + γj). (A.12)

Simplifying the first two terms of (A.12) using trigonometric identities yields

kri+1 sin(βi − γi) − kri sin γi.
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Summing n of these terms gives

k
n∑

i=1

(ri+1 sin(βi − γi) − ri sin γi)

= k (r2 sin β1 + r3 sin(β1 + β2 − π) + · · ·
· · · + r1 sin(β1 + · · · + βn − (n− 1)π))

− k (0 + r2 sin(π − β1) + r3 sin(2π − β1 − β2) + · · ·
· · · + rn sin((n− 1)π − β1 − · · · − βn−1))

= kr1 sin (
∑n

i=1 βi − (n− 1)π)

= kr1 sin (g3(ξ) − π)

= −kr1 sin(g3(ξ)).

Following Appendix A.2, the remaining terms of (A.12) sum to −α1g2(ξ). To-

gether with this fact, the above results yield

∂g1(ξ)

∂ξ
f̂(ξ) = −α1g2(ξ) − kr1 sin(g3(ξ)). (A.13)

Repeat this process for the second constraint, giving

∂g2(ξ)

∂ξi
f(ξi, ξi+1) = −k(ri cosαi + ri+1 cos(αi + βi)) cos(αi + γi)

− k(ri sinαi + ri+1 sin(αi + βi)) sin(αi + γi)

+ riαi sin(αi + γi) + (αi − αi+1)
n∑

j=i+1

rj sin(αj + γj). (A.14)

Simplifying the first two terms of (A.14) using trigonometric identities yields

−kri+1 cos(βi − γi) − kri cos γi.
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Summing n of these terms gives

k
n∑

i=1

(− cos(βi − γi) − cos γi)

= −k (r2 cos β1 + r3 cos(β1 + β2 − π) + · · ·
· · · + r1 cos(β1 + · · · + βn − (n− 1)π))

− k (r1 + r2 cos(π − β1) + r3 cos(2π − β1 − β2) + · · ·
· · · + rn cos((n− 1)π − β1 − · · · − βn−1))

= −kr1 cos (
∑n

i=1 βi − (n− 1)π) − kr1

= −kr1 cos (g3(ξ) − π) − kr1

= kr1 cos(g3(ξ)) − kr1.

Following Appendix A.2, the remaining terms of (A.14) sum to α1g1(ξ). Together

with this fact, the above results yield

∂g2(ξ)

∂ξ
f̂(ξ) = α1g1(ξ) + kr1 cos(g3(ξ)) − kr1. (A.15)

Finally, the last constraint has

∂g3(ξ)

∂ξ
f̂(ξ) =

n∑

i=1

(αi + αi+1) = 0 (A.16)

since the indices i+ 1 are taken modulo n.

The equations (A.13), (A.15), and (A.16) together provide the equivalence (B)

used in the proof of Lemma 4.2. Furthermore, notice that the identity (A.2) is

easily verified by choosing g(ξ) = 0, or equivalently ξ ∈ M.



Appendix B

Modelling of the Argo Rovers

This appendix is intended to supplement Section 5.3.1 of Chapter 5 and, in par-

ticular, detail the developed Argo Rover models (5.1) and (5.2). For simplicity’s

sake, it is assumed that each wheel of the body-centred-axis rover model of Figure

5.3 rolls without laterally slipping. Although this assumption is not a perfectly

realistic description of the situation, neither is it altogether unreasonable given the

near-ideal conditions of the UTIAS laboratory floor. This assumption manifests

itself as two independent nonholonomic constraints on the vehicle’s motion.

B.1 Nonholonomic Systems Background

This section offers, as background, a differential geometric approach to modelling

kinematic systems with nonholonomic motion constraints. The purpose here is to

provide only a brief overview of this (very rich) topic. The interested reader is

referred to Kolmanovsky and McClamroch (1995) and references therein.

Let M be an n-dimensional manifold that describes the set of all possible con-

figurations for a mechanical system. For the purposes of this thesis, the system’s

configuration is represented in local coordinates, which live in an open set Q ⊂ R
n.

Recall that when there are geometric constraints on the motion of a system there

exists a k-dimensional (with k < n) vector function c(q) : Q → R
k such that

c(q) = 0 for all q ∈ Q. These kinds of constraints imply that n−k coordinates are

sufficient to describe all possible configurations of the system (Campion, Novel,

and Bastin, 1990). Recall that kinematic constraints on the motion of a system

are constraints imposed on the coordinate velocities and are often of the form

ωi(q) = 0, (B.1)

188
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where q ∈ Q and ω1(q), ω2(q), . . . , ωk(q) are smooth n-dimensional covector fields

or one-forms on the configuration space Q. Constraints of this form are sometimes

called Pfaffian constraints (Murray, Li, and Sastry, 1994). These k constraints can

also be written in matrix form such that A⊤(q)q̇ = 0, where A(q) has dimension

n× k and columns ω⊤
1 (q), ω⊤

2 (q), . . . , ω⊤
k (q).

If a constraint is integrable, then there exists a function hi : Q → R such

that hi(q) = 0 is equivalent to ωi(q)q̇ = 0. If a particular constraint is integrable

it is said to be a holonomic constraint and the constraint causes a reduction in

the dimension of the configuration space (i.e., similar to a geometric constraint).

Otherwise, if the constraint is not integrable then it is said to be nonholonomic.

Further details about integrability can be found in Murray et al. (1994).

B.1.1 Modelling Kinematic Systems

At this point, an example is useful.

Example B.1: Consider the kinematic unicycle (a single rolling wheel), illustrated

in Figure 2.5 on page 35. It is assumed that the unicycle’s wheel cannot laterally

slip. This no-slipping assumption results in a kinematic constraint of the form

ẋ sin θ − ẏ cos θ = 0, (B.2)

where q = (x, y, θ) ∈ Q is the vector of system coordinates. In vector form, the

constraint (B.2) has the form A⊤(q)q̇ = 0 where

A(q) =
[

sin θ − cos θ 0
]⊤

.

As it turns out, this constraint is not integrable and is thus nonholonomic. ◭

One can assume that all redundant coordinates of the system due to geometric

constraints have been eliminated and that only independent kinematic constraints

of the form (B.1) remain. These constraints are said to be independent if A(q)

has full rank k for all q ∈ Q. The set of all possible tangent vectors to Q at any

point q ∈ Q is called the tangent space and is denoted TqQ. The tangent bundle

of Q is given by the union

TQ =
⋃

q∈Q

TqQ.
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The cotangent space and cotangent bundle are denoted T ⋆qQ and T ⋆Q, respec-

tively. Recall that a distribution assigns a subspace of the tangent space to each

point q ∈ Q in a smooth way. Let the annihilator of the codistribution

Ω(q) = span {ω1(q), ω2(q), . . . , ωk(q)} ⊂ T ⋆qQ

defined by the kinematic constraints be denoted ∆ ⊂ TQ, where for each q ∈ Q

∆(q) = span {g1(q), g2(q), . . . , gn−k(q)} ⊂ TqQ

is (n − k)-dimensional, smooth, and ∆ = Ω⊥. Thus, if m = n − k, then the

allowable trajectories of the system can be written as solutions of

q̇ = g1(q)v1 + g2(q)v2 + · · · + gm(q)vm, (B.3)

where v(t) = (v1(t), v2(t), . . . , vm(t)) ∈ R
m is the vector of control inputs. The

system (B.3) can be written in matrix form q̇ = G(q)v, where G(q) is n×m and

has full rank m since the constraints were assumed independent. Thus, it is clear

that the allowable trajectories have q̇ ∈ Img(G(q)) = Ker(A⊤(q)).

Example B.2: Consider again the unicycle of Example B.1. The distribution

∆ ⊂ TQ that annihilates the codistribution Ω ⊂ T ⋆Q spanned by the columns of

A(q) (there is only one) is, for each q ∈ Q,

∆(q) = span







g1(q) :=






cos θ

sin θ

0




 , g2(q) :=






0

0

1












.

This leaves one with the well-known kinematic unicycle model






ẋ

ẏ

θ̇




 =






cos θ

sin θ

0




 v1 +






0

0

1




 v2,

where v1, v2 ∈ R are clearly linear and angular speed control inputs. ◭

Thus the kinematic modelling approach taken in this appendix is to first write

the kinematic constraints acting on the system and subsequently compute the

admissible coordinate velocities via the kernel of A⊤(q).
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B.1.2 Modelling Dynamic Systems

This section presents a Lagrangian approach to modelling dynamic systems sub-

ject to first-order (i.e., kinematic) nonholonomic constraints (Nĕımark and Fufaev,

1972; Campion et al., 1990). The Lagrangian method of dynamics is particularly

useful for a number of reasons. Firstly, the technique essentially reduces the en-

tire study of rigid body mechanics to a single procedure. Secondly, Lagrange’s

equation is valid in any set of coordinates that are suitable for describing the

system’s configuration. Finally, the approach is based on the scalar quantities:

kinetic energy, potential energy, and virtual work.

Recall that q = (q1, q2, . . . , qn) ∈ Q ⊂ R
n denotes the vector of generalized

coordinates that describe the system’s configuration. Lagrange’s equation (for

systems without nonholonomic constraints) has the form

d

dt

(
∂T

∂q̇i

)

− ∂T

∂qi
+
∂V

∂qi
= τi(t, q),

where T (q, q̇) is the total kinetic energy of the system, V (q) is the total potential

energy of the system, τi(t, q) is the generalized force corresponding to a variation

of the coordinate qi (e.g., an external or nonconservative force), and i = 1, 2, . . . , n

(i.e., there are n equations of motion; one for each degree of freedom or coordinate).

Clearly, if the system is unforced then τi(t, q) ≡ 0 for all i ∈ {1, 2, . . . , n}. Note

that kinetic energy of a mechanical system can be defined as

T (q, q̇) = 1
2
q̇⊤M(q)q̇,

whereM(q) is the n×n positive-definite symmetric inertia matrix. The kinetic and

potential energies are typically combined into a single scalar called the Lagrangian,

defined as L = T−V . Since the potential energy is not a function of the coordinate

velocities q̇i, Lagrange’s equation is most commonly written as

d

dt

(
∂L

∂q̇i

)

− ∂L

∂qi
= τi(t, q).

Suppose that any redundant coordinates have been eliminated and that only

independent kinematic constraints of the form (B.1) remain. In this case, La-

grange’s equation can be extended to nonholonomic systems (see Nĕımark and

Fufaev, 1972 for details) through a technique utilizing Lagrange multipliers. The
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result is a set of equations of motion given by

d

dt

(
∂L

∂q̇i

)

− ∂L

∂qi
= τi(t, q) +

k∑

j=1

aij(q)λj,

where the coefficients aij(q) are the elements of the n× k constraint matrix A(q)

and λ = (λ1, λ2, . . . , λk) is the vector of Lagrange multipliers. Alternatively, the

above Lagrange equations can be written in matrix form, yielding

d

dt

(
∂⊤L

∂q̇

)

− ∂⊤L

∂q
= τ(t, q) + A(q)λ, (B.4)

where τ = (τ1, τ2, . . . , τn). Thus, (B.4) and the constraint equation A⊤(q)q̇ = 0,

together, completely describe the nonholonomic system’s dynamics.

Example B.3: Consider a unicycle, as in Examples B.1 and B.2, actuated by a

throttle force f(t) acting in the direction of its wheel (like tractive effort) and a

steering torque τ(t) at the wheel’s axis (x, y) in Figure 2.5. Suppose the unicycle

has mass m, moment of inertia I about the point (x, y), and that one ignores the

inertial effects due to the rotation of the wheel. In this case, for q = (x, y, θ),

T (q, q̇) = 1
2
m(ẋ2 + ẏ2) + 1

2
Iθ̇2

V (q) = 0.

Recall, from Example B.1, that the constraint matrix is given by

A(q) =
[

sin θ − cos θ 0
]⊤

.

Applying Lagrange’s equation (B.4) yields

mẍ = f(t) cos θ + λ sin θ

mÿ = f(t) sin θ − λ cos θ

Iθ̈ = τ(t),

or in matrix form






m 0 0

0 m 0

0 0 I




 q̈ =






cos θ 0

sin θ 0

0 1






[

f(t)

τ(t)

]

+






sin θ

− cos θ

0




λ,
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which together with A⊤(q)q̇ = 0, completely describes the system’s dynamics. ◭

What does the vector of Lagrange multipliers λ physically represent? These are

the constraint forces required to maintain the imposed nonholonomic constraints.

In the above example, it is easy to see that the Lagrange multiplier λ is a force

that always acts in a direction perpendicular to the wheel’s direction of motion,

keeping the wheel from laterally slipping.

As was illustrated in the above example, one often sees the Lagrange equations

(B.4) rewritten in the standard matrix form

M(q)q̈ + f(q, q̇) = τ(t, q) + A(q)λ. (B.5)

One of the problems with this representation, and that of (B.4), is the pres-

ence of the vector of Lagrange multipliers λ. However, recall that by definition

G⊤(q)A(q) = 0, since the distribution ∆ = Ω⊥, where G(q) is defined by the set

of vector fields {g1, g2, . . . , gm} that span ∆. Thus, to eliminate the Lagrange

multipliers, one can premultiply (B.5) by G⊤(q), yielding n−m equations

G⊤(q)M(q)q̈ +G⊤(q)f(q, q̇) = G⊤(q)τ(t, q). (B.6)

Moreover, recall that the constraints A⊤(q)q̇ = 0 imply that the coordinate ve-

locities must satisfy q̇ ∈ Img(G(q)) or, equivalently, q̇ = G(q)v for some v ∈ R
m.

Differentiating this relationship gives

q̈ = G(q)v̇ +
n∑

i=1

∂G(q)

∂qi
q̇iv = G(q)v̇ +H(q, q̇)v,

which can be substituted into (B.6) with q̇ = G(q)v to yield

G⊤(q)M(q) (G(q)v̇ +H(q,G(q)v)v)+G⊤(q)f(q,G(q)v) = G⊤(q)τ(t, q). (B.7)

In other words, the n−m equations (B.7) together with them equations q̇ = G(q)v

completely describe the system’s dynamics.

Example B.4: This example continues where Example B.3 finished. To eliminate
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the Lagrange multiplier λ one premultiplies by G⊤(q), which gives

[

m cos θ m sin θ 0

0 0 I

]

q̈ =

[

f(t)

τ(t)

]

. (B.8)

In place of q̈, substitute

q̈ = G(q)v̇ +






− sin θ 0

cos θ 0

0 0




 θ̇v,

which, when substituted into (B.8), yields

[

m 0

0 I

]

v̇ =

[

f(t)

τ(t)

]

.

In other words, the dynamical equations of motion are

q̇ = G(q)v

v̇ =

[

1/m 0

0 1/I

][

f(t)

τ(t)

]

,

or equivalently

ẋ = v1 cos θ

ẏ = v1 sin θ

θ̇ = v2

v̇1 = f(t)/m

v̇2 = τ(t)/I,

which is simply the kinematic model but extended using Newton’s second law. ◭

There exist more general results than the ones given above. For example, it

can be shown that such systems can always be represented, via an appropriate

feedback linearizing control law, by its kinematic model extended by a system of

integrators (Campion et al., 1990; Kolmanovsky and McClamroch, 1995).



Appendix B: Modelling of the Argo Rovers 195

B.2 Kinematic Rover Model

Following the procedure outlined in Section B.1.1, the kinematic rover model (5.1)

of Chapter 5 is now derived. Recall that the rover has generalized coordinates

q = (x, y, θ, φ) ∈ Q. Since it has been assumed that the body-centred-axis model

(see Figure 5.3 on page 111) rolls without laterally slipping, the vehicle’s motion

is kinematically constrained at each point pf and pr. In fact, these are the same

constraints (B.2) given for the unicycle (so, they are not integrable); namely

ẋf sin(θ + φf ) − ẏf cos(θ + φf ) = 0

ẋr sin(θ + φr) − ẏr cos(θ + φr) = 0.
(B.9)

Therefore, by simple geometry, on obtains

xf = x+ l cos θ

yf = y + l sin θ

xr = x− l cos θ

yf = y − l sin θ.

Combining these with the fact that φ = φf = −φr gives, from (B.9), constraints

that may be written in the form A⊤(q)q̇ = 0, where

A(q) =

[

sin(θ + φ) − cos(θ + φ) −l cosφ 0

sin(θ − φ) − cos(θ − φ) l cosφ 0

]⊤

.

Following the approach previously outlined, the admissible coordinate velocities

are contained in the kernel of A⊤(q). However, one actually has some choice

about how to assign the distribution ∆ that annihilates Ω. In other words, one

can choose our inputs v1 and v2 to suit the actual vehicle inputs. For example,

suppose one views the vehicle as being driven by a velocity input ṽ1 acting at

point p = (x, y) in the direction of θ and steered by an angular steering velocity

input ṽ2. Then, one obtains the kinematic rover model









ẋ

ẏ

θ̇

φ̇









=









cos θ

sin θ
1
l
tanφ

0









ṽ1 +









0

0

0

1









ṽ2. (B.10)
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Notice that there is a singularity in the model at φ = ±π/2, where g1(q) has a

discontinuity. This corresponds to the case when the driving velocity input at p,

acting in the direction of θ, is normal to the direction of the wheels. However, the

actual steering range for the rovers is likely such that |φ| < π/2.

Fortunately, the real rovers are actually driven at their wheels, not at the

centre point p of the model. In this case, a more realistic input v1 acts in the

direction of the front wheel (or real wheel — it does not matter). In other words,

ṽ1 = v1 cosφ and ṽ2 = v2, where ṽ1 and ṽ2 are as in (B.10). This gives









ẋ

ẏ

θ̇

φ̇









=









cosφ cos θ

cosφ sin θ
1
l
sinφ

0









v1 +









0

0

0

1









v2. (B.11)

Notice that the singularity in (B.10) does not occur in (B.11) since the rover could,

in theory, pivot about the point p by actuating its wheels when φ = ±π/2.

Another point worth noting is that the instantaneous radius of curvature ρ

of the trajectory in the plane traced out by the points pf and pr is given by

ρ = l/ sinφ, as can be seen in Figure 5.3. Therefore, specifying the steering angle

φ is equivalent to prescribing a radius of curvature for the rover’s motion.

B.3 Dynamic Rover Model

Following the procedure outlined in Section B.1.2, the dynamic rover model (5.2)

of Chapter 5 is now derived. Ignoring friction and inertial effects due to rotation

of the wheels, kinetic and potential energy expressions for the rover are

T (q, q̇) = 1
2
m(ẋ2 + ẏ2) + 1

2
Ipθ̇

2 + 1
2
Isφ̇

2

V (q) = 0,
(B.12)

where m is the rover’s total mass (approximately 15 kg), Ip is the rover body’s

moment of inertia about the point p in Figure 5.2 on page 111, and Is represents

the inertia that needs to be overcome by the steering angle actuator (assumed

constant). Applying Lagrange’s equation (B.4) yields

M(q)q̈ = τ(t, q) + A(q)λ,
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where M(q) is the inertia matrix

M(q) =









m 0 0 0

0 m 0 0

0 0 Ip 0

0 0 0 Is









.

Since the rovers are driven at their wheels, one can model this as a throttle force

input f(t) applied at the front wheel axis, point pf = (x + l cos θ, y + l sin θ) in

Figure 5.2, acting in the direction of the wheels. Similarly, suppose the steering

mechanism is actuated by a steering torque input τ(t), which acts at the front

wheel axis (however, in reality this torque actuates both wheel pairs simultane-

ously). Therefore, the system model’s generalized force vector τ(t, q) is

τx(t, q) = f(t) cos(θ + φ)

τy(t, q) = f(t) sin(θ + φ)

τθ(t, q) = f(t)l sinφ

τφ(t, q) = τ(t).

Thus, the resulting equations of motion are









m 0 0 0

0 m 0 0

0 0 Ip 0

0 0 0 Is









q̈ =









cos(θ + φ) 0

sin(θ + φ) 0

l sinφ 0

0 1









[

f(t)

τ(t)

]

+ A(q)

[

λ1

λ2

]

.

To eliminate the Lagrange multipliers λ1 and λ2, premultiply the above by G⊤(q),

where G(q) is defined by the vector fields of (B.11). This yields

[

m cosφ cos θ m cosφ sin θ 1
l
Ip sinφ 0

0 0 0 Is

]

q̈ =

[

f(t)

τ(t)

]

. (B.13)
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Now, in place of q̈, substitute

q̈ = G(q)v̇ +









− cosφ sin θ 0

cosφ cos θ 0

0 0

0 0









θ̇v +









− sinφ cos θ 0

− sinφ sin θ 0
1
l
cosφ 0

0 0









φ̇v,

which, when substituted into (B.13), yields

[

m cos2 φ+ 1
l2
Ip sin2 φ 0

0 Is

]

v̇−
[

v2(m− 1
l2
Ip) cosφ sinφ 0

0 0

]

v =

[

f(t)

τ(t)

]

.

In other words, the dynamical equations of motion (5.2) are

ẋ = v1 cosφ cos θ

ẏ = v1 cosφ sin θ

θ̇ = v1
1

l
sinφ

φ̇ = v2

v̇1 =
(
m cos2 φ+ 1

l2
Ip sin2 φ

)−1 (
v1v2(m− 1

l2
Ip) cosφ sinφ+ f(t)

)

v̇2 = τ(t)/Is.

If the steering angle φ = 0, then the forward velocity v1 has the simple dy-

namics v̇1 = f(t)/m, which is similar to the unicycle in Example B.4. Also, one

could add frictional resistance terms to the dynamics. For example, (5.2f) could

be replaced with v̇2 = (τ(t) − bv2)/Is, where b is a coefficient of friction.

B.4 Throttle Actuator Dynamics

Although the rover dynamic model (5.2) on page 112 employs the force f as its

throttle input, this force is actually generated by a DC motor, which drives the

rover wheels by way of a geared transmission mechanism. If one assumes that the

transmission has a torque ratio of µ, then the output torque at the wheels is µ

times the input torque to the transmission and the output speed is approximately

1/µ times the input speed.

Let τa denote the torque generated by the DC motor and ωa the armature’s
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angular speed. Then, it can be determined that the developed torque is given by

τa ≈
kt
Ra

(va − keωa) ,

where va is the armature voltage input and the constants kt, ke, and Ra are the

motor’s torque constant, “back emf” constant, and in-line resistor value, respec-

tively. Given the torque ratio µ, the torque at the rover wheels is τw ≈ µτa. Let ρ

denote the radius of the wheels. Therefore, the throttle force fτ generated by the

motor is approximately

fτ = τw/ρ ≈
µkt
Ra

(va − keωa) .

There is likely a significant amount of friction and resistance in the system, which

can be added to the model as a resistive force bvf , where b is a coefficient of

friction. Thus, the force f in (5.2e) can be modelled by

f ≈ µkt
Ra

(

va −
keµ

ρ
vf

)

− bvf . (B.14)

B.5 Compensator Selection

Suppose (5.2e) is linearized about a constant steering angle φ ≡ φ̄. Then the

forward velocity vf has the simple linear dynamics v̇f = f/(m cos2 φ̄+ 1
l2
Ip sin2 φ̄).

To simplify the equations, suppose φ̄ = 0, so that (B.14) yields

v̇f ≈
µkt
mRa

(

va −
keµ

ρ
vf

)

− b

m
vf =: a1(va + a2vf ) − a3vf .

Thus, taking the Laplace transform of both sides and solving for the transfer

function G(s) := Vf (s)/Va(s) yields

G(s) =
a1

s+ (a1a2 + a3)
.

Even though the parameters a1, a2, and a3 are not known, the form of G(s)

suggests the rover behaves approximately like a type 0 system (assuming a fixed
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steering angle). Thus, for each rover a PI compensator of the form

D(s) = kP +
kI
s

was designed to regulate its speed to a desired constant level. Thus, the final

closed-loop transfer function from va to vf is of the form

T (s) =
kPa1s+ kIa1

s2 + (kPa1 + a1a2 + a3)s+ kIa1

.

Since D(s)G(s) is type I, the closed loop steady-state tracking error tends to zero

when the system is subject to a step input in the reference speed.


