
1 23

The Journal of Geometric Analysis
 
ISSN 1050-6926
 
J Geom Anal
DOI 10.1007/s12220-017-9816-1

Dynamics of a Family of Polynomial
Automorphisms of $$\mathbb {C}^3$$ C
3 , a Phase Transition

Julie Déserti & Martin Leguil



1 23

Your article is protected by copyright and all

rights are held exclusively by Mathematica

Josephina, Inc.. This e-offprint is for personal

use only and shall not be self-archived

in electronic repositories. If you wish to

self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J Geom Anal
DOI 10.1007/s12220-017-9816-1

Dynamics of a Family of Polynomial Automorphisms
of C

3, a Phase Transition

Julie Déserti1 · Martin Leguil1

Received: 8 June 2016
© Mathematica Josephina, Inc. 2017

Abstract The polynomial automorphisms of the affine plane have been studied a lot:
if f is such an automorphism, then either f preserves a rational fibration, has an
uncountable centralizer, and its first dynamical degree equals 1, or f preserves no
rational curves, has a countable centralizer, and its first dynamical degree is >1. In
higher dimensions there is no such description. In this article we study a family (�α)α
of polynomial automorphisms of C

3. We show that the first dynamical degree of�α is
> 1, that �α preserves a unique rational fibration and has an uncountable centralizer.
We then describe the dynamics of the family (�α)α, in particular the speed of points
escaping to infinity. We also observe different behaviors according to the value of the
parameter α.

Keywords Iteration problems · Polynomial maps

Mathematics Subject Classification 32H50 · 37F10

1 Introduction

Hénon gave families of quadratic automorphisms of the plane which provide exam-
ples of dynamical systems with very complicated dynamics ([5,8,14,15]). In [11],
Friedland and Milnor proved that if f belongs to the group Aut(C2) of polynomial
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automorphisms of C
2, then either f is Aut(C2)-conjugate to an elementary automor-

phism (elementary in the sense that they preserve a rational fibration), or f is of Hénon
type, i.e., conjugate to an element of the semigroupHwhose elements are of the form

g1g2 . . . gk, g j : (z0, z1) �→ (z1, Pj (z1) − δ j z0), δ j ∈ C
∗, Pj ∈ C[z1], deg Pj ≥ 2.

The topological entropy allows to measure chaotic behaviors. In dimension 1, the
topological entropy of a rational fraction coincides with the logarithm of its degree,
but the algebraic degree of a polynomial automorphism of C

2 is not invariant under
conjugacy so [10,20] introduce the first dynamical degree. The topological entropy is
equal to the logarithm of the first dynamical degree ([4,24]). If f is of Hénon type, then
the first dynamical degree of f is equal to its algebraic degree≥ 2; on the other hand, if
f is conjugate to an elementary automorphism, then its first dynamical degree is 1 (see
[11]). Another criterion to measure chaos is the size of the centralizer of an element.
The group Aut(C2) has a structure of amalgamated product ([17]); hence according
to [21], this group acts nontrivially on a tree. Using this action, Lamy proved that a
polynomial automorphism is of Hénon type if and only if its centralizer is countable
([18]).

The group Aut(C3) and the dynamics of its elements are much less known. In this
article, we study the properties of the family of polynomial automorphisms of C

3

given by

�α : (z0, z1, z2) �→
(

z0 + z1 + zq
0 zd

2 , z0, αz2
)

,

where α denotes a nonzero complex number with modulus ≤ 1, q an integer ≥ 2, and
d an integer ≥ 1.

The automorphism �α can be seen as a skew product over the map z2 �→ αz2,
and whose dynamics in the fibers is given by automorphisms of Hénon type. More
precisely, if z2 ∈ C, let us denote ψz2 : (z0, z1) �→ (z0 + z1 + zq

0 zd
2 , z0); then

�α(z0, z1, z2) = (ψz2(z0, z1), αz2), and for every n ≥ 1, we have �n
α (z0, z1, z2) =

((ψz2)n(z0, z1), αnz2), where

(ψz2)n = ψαn−1z2 ◦ · · · ◦ ψαz2 ◦ ψz2 . (1.1)

If α 	= 0, we also define the map φα := αlψ1 where l := d/(q − 1). We will see later
that �α is semi-conjugate to (φα, α z2). The family of automorphisms {�α}α satisfies
the following properties:

Proposition A Take 0 < |α| ≤ 1. Then

– the first dynamical degree of the automorphism �α (resp. �−1
α ) is q ≥ 2;

– the centralizer of �α is uncountable;
– if 0 < |α| ≤ 1, then �α preserves a unique rational fibration, {z2 = cst}.
We then focus on the dynamics of �α, 0 < |α| ≤ 1. Let us introduce a defini-

tion. We denote by ϕ := 1+√
5

2 the golden ratio. We say that the forward orbit of p
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goes to infinity with Fibonacci speed if the sequence (�n
α (p)ϕ−n)n≥0 converges and

lim
n→+∞ �n

α (p)ϕ−n = p′ 	= 0C3 . In particular this implies

∥∥�n
α (p)

∥∥ ∼ ∥∥p′∥∥ϕn .

The hypersurface {z2 = 0} is fixed by �α, and the induced map on it is given by a
hyperbolic matrix. We see that for any p ∈ {z2 = 0}, either its forward orbit goes
to 0C3 exponentially fast, or it escapes to infinity with Fibonacci speed. Concerning
points escaping to infinity with maximal speed, we prove:

Theorem B Fix 0 < |α| ≤ 1. For any point p ∈ C
3, the limit lim

n→+∞
log+‖�n

α (p)‖
qn

exists. The function

G+
�α

(p) = lim
n→+∞

log+ ∥∥�n
α (p)

∥∥
qn

is plurisubharmonic, Hölder continuous, and satisfies G+
�α

◦ �α = q · G+
�α

. Set

l̃ := 2max
(

d
q−1 , 1

)
; then

1 ≤ lim sup
‖p‖→+∞

G+
�α

(p)

log ‖p‖ ≤ l̃.

Moreover, the set E := {
p ∈ C

3 | G+
�α

(p) > 0
}

of points escaping to
infinity with maximal speed is open, connected, and has infinite Lebesgue mea-
sure on any complex line where G+

�α
is not identically zero. In particular, the set{

p ∈ C
3 | lim

n→+∞ ‖�n
α (p)‖ = +∞}

is of infinite measure. We also exhibit an explicit

open set � ⊂ E .

Theorem C Assume 0 < |α| < 1. Then �α has a unique periodic point at finite
distance, 0C3 = (0, 0, 0), which is a saddle point of index 2. The fixed hypersurface
{z2 = 0} attracts any other point. Moreover, the set K +

�α
of points with bounded for-

ward orbit is exactly the stable manifold W s
�α

(0C3), and the latter can be characterized

analytically. The set J+
�α

:= ∂K +
�α

thus corresponds to W s
�α

(0C3).

We observe a phase transition in the dynamics of the family {�α}0<|α|≤1 for the
value |α| = ϕ(1−q)/d :

Theorem D Assume 0 < |α| < ϕ(1−q)/d . The set V := {
p ∈ C

3 | G+
�α

(p) = 0
}

is
a closed neighborhood of the hyperplane {z2 = 0}. It consists of the disjoint union
�′′ � W s

�α
(0C3), where �′′ has non-empty interior and the forward orbit of any point

p ∈ �′′ goes to infinity with Fibonacci speed.

Note that we also define an analytic function g whose domain of definition is equal
to V and which parametrizes the stable manifold in the sense that W s

�α
(0C3) coincides

with the zero set Z of g.
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Theorem E Assume now ϕ(1−q)/d < |α| < 1. For any p ∈ C
3, exactly one of the

following cases occurs:

– either p ∈ W s
�α

(0C3) and its forward orbit converges to 0C3 exponentially fast;
– or p ∈ {z2 = 0} � W s

�α
(0C3) and it goes to infinity with Fibonacci speed;

– or the speed explodes: G+
�α

(p) > 0.

In particular, contrary to the previous situation where the set �′′ has non-empty
interior, we see here that Fibonacci speed does not occur outside the hypersurface
{z2 = 0}.
Remark 1.1 We stress the fact that for any 0 < |α| < 1, the forward orbit of a point
under�α is bounded if and only if it goes to 0C3 . Moreover, we see that in the case the
orbit is unbounded, it has to escape to infinity. This rigidity phenomenon is related to
the properties of the automorphism of Hénon type φα which possesses an attractor at
infinity such that the positive iterates of any point whose forward orbit is not bounded
escape to it.

Theorem F Assume |α| = 1. We define K�α to be the set of points p ∈ C
3 whose

orbit (�n
α (p))n∈Z is bounded. Similarly to what we did above, we define the Green

function G−
�α

. Then for any point p ∈ C
3, exactly one of the following assertions is

satisfied:

– either the orbit of p is bounded, i.e., p ∈ K�α ;
– or p ∈ {z2 = 0}� {0C3} and either its forward orbit or its backward orbit escapes

to infinity with Fibonacci speed;
– or G+

�α
(p) > 0 or G−

�α
(p) > 0; in this case, either its forward orbit or its

backward orbit escapes to infinity with maximal speed.

We define the associate Green currents T ±
�α

:= ddcG±
�α

, and we set μ�α := T +
�α

∧
T −

�α
∧dz2 ∧dz2. The measure μ�α is invariant by �α and supported on the set ∂K�α .

For any p2 	= 0, the set Cp2 := C
2 × {

p2eix | x ∈ R
}

is invariant under �α. Define
Jp2 := J�α ∩ Cp2 ; it is also invariant and we show that when α is not a root of unity,
(�α Jp2

, μ�α) is ergodic.

2 Invariant Fibrations and Degree Growths

2.1 Invariant Fibrations

Let us come back to dimension 2 for a while. As recalled in §1, if f is a polynomial
automorphism of C

2, then up to conjugacy either f is an elementary automorphism
or f is of Hénon type. In the first case, f preserves a rational fibration, whereas in the
secondone f does not preserve any rational curve ([6]). This gives a geometric criterion
to distinguishmaps ofHénon type and elementarymaps.What about dimensionn ≥ 3?
Contrary to the 2-dimensional case we will see, as soon as n = 3, that “no invariant
rational curve” does not mean “first dynamical degree > 1.”
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Assume that 0 < |α| ≤ 1. Let �α be the automorphism of C
3 given by

�α =
(
αl(z0 + z1 + zq

0), α
l z0, αz2

)
,

where l := d
q−1 . It is possible to show that�α is conjugate to�α through the birational

map of P
3
C
given in the affine chart z3 = 1 by

θ = (z0zl
2, z1zl

2, z2),

that is θ ◦ �α = �α ◦ θ. The advantage is that the action of �α in the fibers is
independent of the base point. Moreover, it has a lot of good properties; in particular,
we will see that it is algebraically stable (§2.2). Nevertheless θ is birational so we
might loose some information (§6).

Proposition 2.1 For any 0 < |α| ≤ 1, the polynomial automorphism �α preserves a
unique rational fibration, the fibration given by {z2 = cst}.

Corollary 2.2 For any 0 < |α| ≤ 1, the polynomial automorphism �α preserves a
unique rational fibration, the fibration given by {z2 = cst}.

Proof of Proposition 2.1 Note that �α = (φα(z0, z1), αz2) where φα ∈ Aut(C2) is
the automorphism of Hénon type given by φα : (z0, z1) �→ αl(z1 + z0 + zq

0 , z0).
Since φα does not preserve rational curves ([6]), the only invariant rational fibration
is {z2 = cst}. ��

2.2 Degrees and Degree Growths

The results in this part hold for any α 	= 0. As we saw in §1, the first dynamical degree
is an important invariant; in this section we will thus compute λ(�±1

α ) and λ(�±1
α ).

Let us first mention a big difference between dimension 2 and higher dimensions: if f
belongs to Aut(C2) then deg f = deg f −1. This equality does not necessarily hold in
higher dimension; nevertheless if f belongs to Aut(Cn), then deg f ≤ (deg f −1)n−1

and deg f −1 ≤ (deg f )n−1 (see [22]).

Lemma 2.3 We have for any n ≥ 0 both

deg(�n
α ) = qn + d × qn − 1

q − 1

and

deg
(
�−n

α

) = deg
(
�n

α

)
.
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Proof Let us denote by (P(n)
α )n ≥−1 the sequence of polynomials where

⎧⎪⎨
⎪⎩

P(−1)
α (z0, z1, z2) := z1

P(0)
α (z0, z1, z2) := z0

∀ n ≥ 0 P(n+1)
α := P(n)

α + P(n−1)
α +

(
P(n)

α

)q
(αnz2)

d .

In particular, for every n ≥ 0, �n
α (z0, z1, z2) = (

P(n)
α (z0, z1, z2), P(n−1)

α (z0, z1, z2),
αnz2

)
. Since the degree of the third component does not change, and the second

component is just the first one at time n − 1, the growth of the degree is supported
by the first component, that is deg(�n

α ) = deg(P(n)
α ). Let us then show the result by

induction on n. The result is true for n = 0. If it holds for n ≥ 0, then we have

deg(P(n+1)
α ) = deg

((
P(n)

α

)q
(αnz2)

d
)

= q

(
qn + d × qn − 1

q − 1

)
+ d = qn+1 + d × qn+1 − 1

q − 1
.

��
Since the degree is not invariant under conjugacy, [10,20] introduce the first dynam-

ical degree. If f is a polynomial automorphism of C
3, the first dynamical degree of

f is defined by

λ( f ) := lim
n→+∞

(
deg f n)1/n

.

It satisfies the following inequalities: 1 ≤ λ( f ) ≤ deg f .

Corollary 2.4 Since qn ≤ deg(�n
α ) ≤ (d + 1)qn, it follows that

λ(�α) = λ

(
�−1

α

)
= q.

To any polynomial automorphism f = ( f0, f1, f2) of C
3 of degree d, one can

associate a birational self map of P
3
C
as follows

(z0 : z1 : z2 : z3) ���
(

zd
3 f0

(
z0
z3

,
z1
z3

,
z2
z3

)
: zd

3 f1

(
z0
z3

,
z1
z3

,
z2
z3

)
: zd

3 f2

(
z0
z3

,
z1
z3

,
z2
z3

)
: zd

3

)
;

we still denote it by f .
If g = (g0 : g1 : g2 : g3) is a birational self map of P

3
C
, the indeterminacy set

Ind(g) of g is the set where g is not defined, that is

Ind(g) =
{

m ∈ P
3
C

∣∣ g0(m) = g1(m) = g2(m) = g3(m) = 0
}

.

Remark that if we look at a birational map of P
3
C
that comes from a polynomial

automorphism of C
3 then its indeterminacy set is contained in {z3 = 0}.
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A polynomial automorphism of C
3 is algebraically stable if for every n ∈ N,

f n({z3 = 0} � Ind
(

f n) ) 	⊂ Ind( f ).

Let us recall the following result.

Proposition 2.5 ([9]) The map f is algebraically stable if and only if deg( f n) =
(deg( f ))n for every n ≥ 1.

Lemma 2.3 and Proposition 2.5 imply that �α is not algebraically stable, as well
as �−1

α . It can also be seen directly from the definition. Indeed the map

�α =
(
(z0 + z1)z

q+d−1
3 + zq

0 zd
2 : z0zq+d−1

3 : αz2zq+d−1
3 : zq+d

3

)

sends z3 = 0 onto (1:0:0:0) and Ind(�α) = {z0 = 0, z3 = 0} ∪ {z2 = 0, z3 = 0}.
Similarly, we see that

Ind(�−1
α ) = {z1 = 0, z3 = 0} ∪ {z2 = 0, z3 = 0} ,

and �−1
α sends z3 = 0 onto (0:1:0:0) ∈ Ind(�−1

α ). On the other hand, �α({z0 	=
0, z3 = 0}) = (1:0:0:0) does not belong to Ind(�α) and (1:0:0:0) is a fixed point
of �α hence �n

α({z0 	= 0, z3 = 0}) = (1:0:0:0) for any n ≥ 1. In particular, �α is
algebraically stable. We have for every n ≥ 0, deg(�n

α) = qn . Notice that for n ≥ 3,
there exist examples of maps f ∈ Aut(C3) which are algebraically stable but whose
inverse f −1 is not algebraically stable (let us mention the following example due to
Guedj: f = (z20 + λz1 + az2,λ−1z20 + z1, z0) with a and λ in C

∗). Yet this is not the
case for �α. Indeed,

�−1
α (z0 : z1 : z2 : z3) =

(
z1zq−1

3

αl
: − z1zq−1

3

αl
+ z0zq−1

3

αl
− zq

1

αlq
: z2zq−1

3

α
: zq

3

)

so �−1
α ({z1 	= 0, z3 = 0}) = (0:1:0:0) does not belong to Ind(�−1

α ) = {z1 = 0, z3 =
0} and is fixed by �−1

α . Hence �−1
α is also algebraically stable. As a result one can

state:

Proposition 2.6 For any integer n ≥ 1 the following equalities hold

deg
(
�n

α

) = deg
(
�−n

α

) = qn, λ(�α) = λ

(
�−1

α

)
= q.

3 Centralizers

If G is a group and f an element of G, we denote by Cent( f,G) the centralizer of f
in G, that is

Cent( f,G) := {
g ∈ G

∣∣ f g = g f
}
.
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The description of centralizers of discrete dynamical systems is an important prob-
lem in real and complex dynamics: Julia ([16]) and Ritt ([19]) showed that the
centralizer of a rational function f of P

1 is in general the set of iterates of f (we
then say that the centralizer of f is trivial) except for some very special f . Later
Smale asked if the centralizer of a generic diffeomorphism of a compact manifold
is trivial ([23]). Since then a lot of mathematicians have looked at this question in
different contexts; for instance as recalled in §1, Lamy has proved that the centralizer
of a polynomial automorphism of C

2 of Hénon type is in general trivial ([18]).
Fix α with 0 < |α| ≤ 1. We would like to describe Cent(�α,Aut(C3)). Of course

it contains not only
{
�n

α

∣∣ n ∈ Z
}
but also the following one-parameter family

{
(ηz0,ηz1, νz2)

∣∣ ν ∈ C
∗,η a (q − 1)-th root of unity

}
.

We show that the centralizer is essentially reduced to the iterates of�α and such maps.
Since the automorphism φα = αl(z1 + z0 + zq

0 , z0) is of Hénon type, it follows from
a result of Lamy [18] that Cent(φα,Aut(C

2)) � Z � Zn for some n ∈ N.
Let f ∈ Cent(�α,Aut(C3)); we write f = ( f0, f1, f2).

Lemma 3.1 We have ∂ f2
∂z0

= 0, ∂ f2
∂z1

= 0. Therefore, the last component f2 only depends
on z2, and in fact it is a homothety:

f2(z0, z1, z2) = f2(z2) = μz2, μ ∈ C
∗.

Proof If we focus on the third coordinate in the relation �α ◦ f = f ◦ �α, we get
α f2 = f2 ◦ �α, that is, for every (z0, z1, z2) ∈ C

3,

α f2(z0, z1, z2) = f2
(
αl z0 + αl z1 + αl zq

0 , α
l z0, αz2

)
.

Taking the derivatives in the different coordinates, we obtain:

⎧
⎪⎪⎨
⎪⎪⎩

α ∂ f2
∂z0

= αl
(
1 + qzq−1

0

)
∂ f2
∂z0

◦ �α + αl ∂ f2
∂z1

◦ �α,

α
∂ f2
∂z1

= αl ∂ f2
∂z0

◦ �α,

α
∂ f2
∂z2

= α
∂ f2
∂z2

◦ �α.

(3.1)

Let us consider the first coordinate and assume that ∂ f2
∂z0

	= 0; we will get a contra-
diction by looking at highest-order terms in z0. Since f2 ∈ C[z1, z2][z0], we can write
f2(z0, z1, z2) = ∑

k≤k0

Rk(z1, z2)zk
0, where the Rk are polynomials and k0 is the degree

in z0 of f2. From our hypothesis, k0 ≥ 1. We also look at the expansion of Rk0 	= 0:

Rk0(z1, z2) =
∑

m≤m0

Qm(z2)z
m
1 , Qm0 	= 0.
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For the three terms, we look at the term of highest order in z0:

⎧⎪⎪⎨
⎪⎪⎩

α ∂ f2
∂z0

(z0, z1, z2) = αk0Rk0(z1, z2)z
k0−1
0 + . . .

αl
(
1 + qzq−1

0

)
∂ f2
∂z0

◦ �α(z0, z1, z2) = qk0αl(k0+m0)Qm0(αz2)z
qk0+m0−1
0 + . . .

αl ∂ f2
∂z1

◦ �α(z0, z1, z2) = m0α
l(k0+m0)Qm0(αz2)z

qk0+m0−1
0 + . . .

Since we assume k0 ≥ 1, and q > 1, we have qk0 + m0 − 1 > k0 − 1
so the coefficient of the term in zqk0+m0−1

0 must vanish. But this coefficient is

(qk0 + m0)α
l(k0+m0)Qm0(αz2) 	= 0, a contradiction. Hence ∂ f2

∂z0
= 0, and it follows

from the second equation of (3.1) that ∂ f2
∂z1

= 0 as well. Therefore, f2 = f2(z2).

Now, since f ∈ Aut(C3), we know that f2 is of degree at most 1. The map f
commutes with �α, so it must preserve its fixed point 0C3 , and we conclude that
f2 : z2 �→ μz2 for some μ ∈ C

∗. ��
Recall that φα : (z0, z1) �→ αl(z1 + z0 + zq

0 , z0). Let us denote f̃ := ( f0, f1). By
projecting the commutation relation on the first two coordinates, we get

φα ◦ f̃ = f̃ ◦ �α. (3.2)

Lemma 3.2 The map f̃ only depends on the first two coordinates.

Proof We rewrite (3.2) as the following system:

{
αl f0 + αl f1 + αl f q

0 = f0 ◦ �α

αl f0 = f1 ◦ �α.
(3.3)

We then get:

αl f0 ◦ �α + α2l f0 + αl f q
0 ◦ �α = f0 ◦ �2

α.

Let d0 be the degree of f0 ∈ C[z0, z1][z2]. Since �α does not change the degree in
z2, we obtain

deg
(
αl f0 ◦ �α

)
= deg(α2l f0) = deg

(
f0 ◦ �2

α

)
= d0, deg

(
αl f q

0 ◦ �α

)
= dq

0 ,

but q > 1, which implies that d0 = 0: f0 does not depend on z2. Using the second
equation of (3.3), we see that f1 does not depend on z2 either. ��

Therefore, Equation (3.2) can be rewritten:

φα ◦ f̃ = f̃ ◦ φα.

But φα is a Hénon automorphism, so according to [18] one has:

Corollary 3.3 The map f̃ belongs to the countable set Cent(φα,Aut(C
2)) � Z � Zn

for some n ∈ N.
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We have seen that for any f = ( f0, f1, f2) ∈ Cent(�α,Aut(C3)), ( f0, f1) depends
only on (z0, z1) and belongs to Cent(φα,Aut(C

2)), and that f2 depends only on z2
and is a homothety. We conclude:

Proposition 3.4 The centralizer of �α in Aut(C3) is uncountable. More precisely

Cent
(
�α,Aut

(
C
3
))

= Cent
(
φα,Aut

(
C
2
))

× {
z2 �→ μz2

∣∣ μ ∈ C
∗} � (Z � Zn) × C

∗, n ∈ N.

Corollary 3.5 The centralizer of �α in Aut(C3) is uncountable.

4 Dynamics on the Invariant Hypersurface z2 = 0

The following holds for any α 	= 0. Let us recall that the Fibonacci sequence is the
sequence (Fn)n defined by: F0 = 0, F1 = 1 and for all n ≥ 2

Fn := Fn−1 + Fn−2.

The hypersurface {z2 = 0} is invariant, and when |α| < 1, it attracts every point
p ∈ C

3. On restriction to this hypersurface, the growth is given by the Fibonacci
numbers (Fn)n :

�n
α z2=0 = (Fn+1z0 + Fnz1, Fnz0 + Fn−1z1) , n ≥ 1. (4.1)

Since

�−1
α (z0, z1, z2) =

(
z1,−z1 + z0 − zq

1
zd
2

αd
,

z2
α

)
,

similarly, we have

�−n
α z2=0 : (z0, z1) �→ (−1)n(Fn−1z0 − Fnz1,−Fnz0 + Fn+1z1), n ≥ 1. (4.2)

Moreover, it is easy to see that any periodic point of �α belongs to the hypersurface
{z2 = 0}. In fact, �α has a unique fixed point at finite distance, 0C3 = (0, 0, 0) and

has no periodic point of period larger than 1. Let ϕ := 1+√
5

2 be the golden ratio and
ϕ′ := −1/ϕ. Since

Fn = ϕn − (ϕ′)n

√
5

= ϕn

√
5

+ o(1),

we deduce from (4.1) that any point
(
ϕ′z, z, 0

)
with z ∈ C converges to 0C3 when

we iterate �α, while any other point of the form (βz, z, 0) with z 	= 0 and β 	= ϕ′
goes to infinity. Likewise, we see from (4.2) that any point (ϕz, z, 0) with z ∈ C

converges to 0C3 when we iterate �−1
α , while any other point of the form (βz, z, 0)

with z 	= 0 and β 	= ϕ goes to infinity. Furthermore, in both cases, the speed of
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the convergence is exponential since it is in O(|ϕ|−n) with |ϕ| > 1. In other terms,
the linear map �α z2=0 : (z0, z1) �→ (z0 + z1, z0) is hyperbolic, with a unique fixed
point 0C2 = (0, 0) of saddle type, and whose stable, respectively, unstable manifolds
correspond to the following lines:

W s
�α z2=0

(0
C2 ) = �ϕ′ := {(

ϕ′z, z
) ∣∣ z ∈ C

}
, W u

�α z2=0
(0

C2 ) = �ϕ := {
(ϕz, z)

∣∣ z ∈ C
}
.

Moreover,ϕ andϕ′ are just the eigenvalues of�α z2=0, and�ϕ,�ϕ′ the corresponding
eigenspaces.

5 Points with Bounded Forward Orbit, Description of the Stable
Manifold Ws

�α
(0C3)

When 0 < |α| < 1, we remark that 0C3 is a hyperbolic fixed point of saddle type. The
tangent space at 0C3 can be written as T0

C3
(C3) = Es

�α
(0C3) ⊕ Eu

�α
(0C3), where the

stable, respectively, unstable spaces are given by

Es
�α

(0C3) = �ϕ′ × {0} ⊕ {0C2} × C, Eu
�α

(0C3) = �ϕ × {0}.

These spaces integrate to stable and unstable manifolds

W s
�α

(0C3 ) :=
{

p ∈ C
3
∣∣∣ lim

n→+∞ �n
α (p) = 0C3

}
, W u

�α
(0C3 ) :=

{
p ∈ C

3
∣∣∣ lim

n→+∞ �−n
α (p) = 0C3

}

which are invariant by the dynamics; furthermore, W u
�α

(0C3) = �ϕ × {0}, while
W s

�α
(0C3) is biholomorphic to C

2 (see [22]). Note that
(
�ϕ′ × {0}) ∪ ({0C2} × C

) ⊂
W s

�α
(0C3), but it is easy to see 1 that W s

�α
(0C3) 	= �ϕ′ × C.

In the next statement, we introduce a series that encodes the growth of forward
iterates of a point.

1 Indeed if p = (p0, p1, p2) satisfies p2 	= 0 and p1 = −ϕp0, we see that P(0)
α (p) + ϕP(1)

α (p) =
p0(1 + ϕ − ϕ2) + ϕpq

0 pd
2 = ϕpq

0 pd
2 	= 0 hence �ϕ′ × C is not left invariant by �α.

123

Author's personal copy



J. Déserti, M. Leguil

Lemma 5.1 Let p = (p0, p1, p2) ∈ C
3. For every n ≥ 0 and any α ∈ C, we have

P(n+1)
α (p) + ϕ−1P(n)

α (p) = ϕn

⎛
⎝ϕp0 + p1 + pd

2

n∑
j=0

(
P( j)

α (p)
)q

ϕ− jα jd

⎞
⎠ . (5.1)

Proof For n ≥ 0 we have the following set of equalities:

P(n+1)
α (p) = P(n)

α (p) + P(n−1)
α (p) +

(
P(n)

α (p)
)q

(αn p2)d

(× ϕ) P(n)
α (p) = P(n−1)

α (p) + P(n−2)
α (p) +

(
P(n−1)

α (p)
)q

(αn−1 p2)d

(× ϕ2) P(n−1)
α (p) = P(n−2)

α (p) + P(n−3)
α (p) +

(
P(n−2)

α (p)
)q

(αn−2 p2)d

... = ... + ... + ...

(× ϕn−1) P(2)
α (p) = P(1)

α (p) + p0 +
(

P(1)
α (p)

)q
(αp2)d

(× ϕn) P(1)
α (p) = p0 + p1 +

(
P(0)

α (p)
)q

(p2)d

Summing up, and because ϕ2 − ϕ − 1 = 0, we obtain

P(n+1)
α (p) + ϕ−1P(n)

α (p) = ϕn

⎛
⎝ϕp0 + p1 + pd

2

n∑
j=0

(
P( j)

α (p)
)q

ϕ− jα jd

⎞
⎠ .

For every n ≥ −1, we define the polynomial gn ∈ C[z] = C[z0, z1, z2] by

gn(z) := ϕz0 + z1 + zd
2

n∑
j=0

(
P( j)

α (z)
)q

ϕ− jα jd =
(

P(n+1)
α (z) + ϕ−1P(n)

α (z)
)

ϕ−n .

We also introduce the power series

g(z) := ϕz0 + z1 + zd
2

+∞∑
j=0

(
P( j)

α (z)
)q

ϕ− jα jd = ϕz0 + z1

+
+∞∑
j=−1

ϕ−( j+1)(P( j+2)
α (z) − P( j+1)

α (z) − P( j)
α (z)

)
.

Let us denote by D its domain of definition, that is the set of p ∈ C
3 such that the

series
∑

j

(
P( j)

α (p)
)q

ϕ− jα jd converges, and let

Z := {p ∈ D | g(p) = 0}
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be the set of its zeros. It is easy to check that both D and Z are invariant by the
dynamics, that is �α(D) ⊂ D and �α(Z) ⊂ Z . Moreover, if p ∈ D, we denote by

rn(p) := ∑
j≥n+1

(
P( j)

α (p)
)q

ϕ− jα jd the tail of the corresponding series.

Corollary 5.2 Suppose 0 < |α| ≤ 1. Let K +
�α

denote the set of points p =
(p0, p1, p2) whose forward orbit {�n

α (p), n ≥ 0} is bounded. This is equivalent

to the fact that the sequence
(|P(n)

α (p)|)n≥0 is bounded. If p ∈ K +
�α

, then for every
n ≥ 0, we have

|gn(p)| = O(ϕ−n). (5.2)

In particular, we deduce that

K +
�α

⊂ Z, and |rn(p)| = O(ϕ−n). (5.3)

Proof It follows immediately from Lemma 5.1. Indeed under our assumptions we
have:

|gn(p)| ≤
(∣∣∣P(n+1)

α (p)

∣∣∣ + ϕ−1
∣∣∣P(n)

α (p)

∣∣∣
)

ϕ−n = O(ϕ−n).

This implies p ∈ Z . Then we also have gn(p) = g(p) − pd
2rn(p) = −pd

2rn(p) and
|rn(p)| = O(ϕ−n).

Remark 5.3 We can see (5.3) as a codimension one condition that points with bounded
forward orbit have to satisfy. Also, we see from (5.2) that locally, such points are close
to the analyticmanifoldZn := {

p ∈ C
3 | gn(p) = 0

}
forn ≥ 0big. If p = (p0, p1, 0),

we recover from (5.3) that p has bounded forward orbit if and only if it belongs to the
stable manifold W s

�α
(0C3) ∩ {z2 = 0} = �ϕ′ × {0}.

When 0 < |α| < 1, we have the following analytic characterization of the stable
manifold W s

�α
(0C3).

Proposition 5.4 Assume 0 < |α| < 1. The point p = (p0, p1, p2) ∈ C
3 belongs to

the stable manifold W s
�α

(0C3) if and only if the following properties hold:

– p ∈ Z;
– the series

∑
j

|r j (p)|ϕ j is convergent.

Equivalently, p ∈ W s
�α

(0C3) if and only if
∑

j |g j (p)|ϕ j converges.

Proof If p belongs to the stable manifold W s
�α

(0C3), then its forward orbit is bounded
and Corollary 5.2 tells us that p ∈ Z . Moreover, we have

|rn(p)| = O

⎛
⎝ ∑

j≥n+1

ϕ− jα jd

⎞
⎠ = O

(
ϕ−n|α|nd

)
,
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hence |rn(p)|ϕn = O(|α|nd) and the series
∑

j |r j (p)|ϕ j converges.
For the other implication, we get from Lemma 5.1 that for every j ≥ 0,

P( j+1)
α (p) + ϕ−1P( j)

α (p) = −pd
2ϕ j r j (p). (5.4)

Now let n ≥ 0. Write equations (5.4) for j = 0, . . . , n and combine them to obtain

P(n+1)
α (p) = (−1)n+1

ϕn+1 p0 + pd
2

n∑
j=0

(−1)n+ j+1r j (p)ϕ jϕ j−n .

The first term of the right hand side goes to 0 with n; we split the sum as follows:

n∑
j=0

(−1)n+ j+1r j (p)ϕ jϕ j−n =
�n/2�∑
j=0

(−1)n+ j+1r j (p)ϕ jϕ j−n

+
n∑

j=�n/2�+1

(−1)n+ j+1r j (p)ϕ jϕ j−n .

We get

∣∣∣∣∣∣

�n/2�∑
j=0

(−1)n+ j+1r j (p)ϕ jϕ j−n

∣∣∣∣∣∣
≤ ϕ�n/2�−n

+∞∑
j=0

∣∣r j (p)
∣∣ϕ j

hence it goes to 0 with respect to n. For the remaining term, we estimate

∣∣∣∣∣∣
n∑

j=�n/2�+1

(−1)n+ j+1r j (p)ϕ jϕ j−n

∣∣∣∣∣∣
≤

+∞∑
j=�n/2�+1

∣∣r j (p)
∣∣ϕ j ,

which goes to 0 as well. We conclude that lim
n→+∞ P(n)

α (p) = 0, hence p ∈ W s
�α

(0C3).

The other equivalence follows from the fact that for p ∈ Z , we have gn(p) =
−pd

2rn(p). ��
Corollary 5.5 Assume 0 < |α| < 1. Then the forward orbit of a point p =
(p0, p1, p2) is bounded if and only if p belongs to the stable manifold W s

�α
(0C3);

in other terms, K +
�α

= W s
�α

(0C3).

Proof Let p ∈ K +
�α

. We have already seen in Corollary 5.2 that p ∈ Z . Moreover, if

we denote rn(p) := ∑
j≥n+1

(P( j)
α (p))qϕ− jα jd , then

∑
j

|r j (p)|ϕ j is convergent since

|r j (p)| = O(ϕ− j |α| jd). Then, Proposition 5.4 tells us that p ∈ W s
�α

(0C3). The other
implication is straightforward. ��

123

Author's personal copy



Dynamics of a Family of Polynomial Automorphisms of C
3

Lemma 5.6 Assume now |α| = 1. We have seen that p ∈ K +
�α

implies that p ∈ Z
and |rn(p)| = O(ϕ−n). Conversely, if p ∈ Z and

∑
j |r j (p)|ϕ j is convergent, then

p ∈ K +
�α

.

Proof Assume that p ∈ Z and that
∑

j

|r j (p)|ϕ j converges. As previously, we have

for every n ≥ 0:

P(n)
α (p) = (−1)n

ϕn
p0 + pd

2

n−1∑
j=0

(−1)n+ j r j (p)ϕ jϕ j−(n−1).

From our assumption, we deduce that
∣∣P(n)

α (p)
∣∣ ≤ |p0| + |p2|d

+∞∑
j=0

|r j (p)|ϕ j , hence

∣∣P(n)
α (p)

∣∣ = O(1). ��

6 Birational Conjugacy, Dynamical Properties of Automorphisms of
Hénon type

Assume 0 < |α| ≤ 1. We recall here some facts concerning the dynamics of the
automorphism of Hénon type φα, and so on the dynamics of �α = (φα, αz2). Denote
by F+

φα
the largest open set on which (φn

α)n is locally equicontinuous, by K +
φα

the set of

points p ∈ C
2 such that (φn

α(p))n ≥ 0 is bounded and by J+
φα

its topological boundary.

The automorphism φα is regular, that is, Ind(φα) ∩ Ind(φ−1
α ) = ∅. In particular, it is

algebraically stable, hence the following limit exists and defines a Green function:

G+
φα

(z0, z1) := lim
n→+∞

log+ ∥∥φn
α(z0, z1)

∥∥
qn

.

It satisfies the invariance property G+
φα

◦φα = q · G+
φα
. We define the associate current

T +
φα

= ddcG+
φα
, where dc = i(∂−∂)

2π . Of course there are similar objects F−
φα
, K −

φα
, J−

φα
,

G−
φα
, and T −

φα
associated to the inverse map φ−1

α ; we also set Kφα
:= K +

φα
∩ K −

φα
. One

inherits a probability measure μφα
= T +

φα
∧ T −

φα
which is invariant by φα. Besides,

according to [1–4,9] the following properties hold: for 0 < α ≤ 1,

– the function G+
φα

is Hölder continuous;
– we have the following characterization of points with bounded orbit:

K ±
φα

= {
p ∈ C

2 | G±
φα

(p) = 0
}; (6.1)

this tells us that points either have bounded forward orbit, or escape to infinity
with maximal speed;

– let p be a saddle point of φα, then J+
φα

is the closure of the stable manifold W s
φα

(p);
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– the support of T +
φα

coincides with the boundary of K +
φα
, that is J+

φα
;

– the current T +
φα

is extremal among positive closed currents in C
2 and is—up to a

multiplicative constant—the unique positive closed current supported on K +
φα
;

– the measure μφα
has support in the compact set ∂Kφα

, is mixing, maximizes
entropy, and is well approximated by Dirac masses at saddle points.

One introduces analogous objects for the automorphism �α. In particular, �α is
algebraically stable so we can also define the Green function

G+
�α

:= lim
n→+∞

log+ ∥∥�n
α

∥∥
qn

.

In fact, for any (z0, z1, z2) ∈ C
3, G+

�α
(z0, z1, z2) = G+

φα
(z0, z1) because if z2 	= 0,

lim
n→+∞

log |αn z2|
qn = 0. We introduce the holomorphic map

h : C
3 → C

2, h : (z0, z1, z2) �→ (z0zl
2, z1zl

2).

It follows from the previous remark that G+
�α

◦θ = G+
φα

◦h where θ = (z0zl
2, z1zl

2, z2)
conjugates �α to �α (i.e., θ�α = �αθ). Moreover, for 0 < |α| < 1, one gets that

K +
�α

= K +
φα

× C, K −
�α

= K −
φα

× {0}, K�α = Kφα
× {0},

while for |α| = 1,

K +
�α

= K +
φα

× C, K −
�α

= K −
φα

× {C}, K�α = Kφα
× {C}.

When f is an algebraically stable polynomial automorphism of C
3 one can induc-

tively define the analytic sets X j ( f ) by

{
X1( f ) = f

({z3 = 0} � Ind( f )
)

X j+1( f ) = f
(
X j ( f ) � Ind( f )

) ∀ j ≥ 1.

The sequence (X j ( f )) j is decreasing, X j ( f ) is non-empty since f is algebraically
stable, so it is stationary. Denote by X ( f ) the corresponding limit set. An algebraically
stable polynomial automorphism f of C

3 is weakly regular if X ( f ) ∩ Ind( f ) = ∅.
For instance elements of H are weakly regular. A weakly regular automorphism is
algebraically stable. Moreover, X ( f ) is an attracting set for f ; in other words there

exists an open neighborhood V of X ( f ) such that f (V) � V and
+∞⋂
j=1

f j (V) = X ( f ).

Both �α and �−1
α are weakly regular; furthermore X (�α) = (1:0:0:0) and X (�−1

α )

= (0:1:0:0). Therefore (1:0:0:0) (resp. (0:1:0:0)) is an attracting point for �α (resp.
�−1

α ). From [12, Corollary 1.8], the basin of attraction of (1:0:0:0) is biholomorphic
to C

3.
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As recalled above, the automorphisms φ±
α are regular, hence weakly regular, and

similarly to �±
α , they possess attractors X (φ+

α ) = (1:0:0) and X (φ−
α ) = (0:1:0) whose

basins are biholomorphic to C
2.

We do not inherit these properties for �α. Indeed remark that K�α , X (�α) and
X (�−1

α ) are contained in {z2 = 0}, but {z2 = 0} is contracted by θ
−1 (recall that

θ�α = �αθ) onto {z2 = z3 = 0} and {z2 = z3 = 0} = Ind(�α).

7 Definition of a Green Function for �α

In this part, we assume 0 < |α| ≤ 1. As for φα and �α, and despite the fact that �α is
not algebraically stable, we will see that it is possible to define a Green function for
the automorphism �α which has almost as good properties. In particular, we will see
that this function carries a lot of information about the dynamics of the automorphism
�α.

Let p = (p0, p1, p2) ∈ C
3, and define C = C(p2) := 3max(1, |p2|d) > 0.

We remark that for n ≥ 0, we have |αn p2|d ≤ C , hence max(‖�n+1
α (p)‖, 1) ≤

C max(‖�n
α (p)‖, 1)q . We deduce that for every n ≥ 0,

∣∣∣∣∣
log+ ∥∥�n+1

α (p)
∥∥

qn+1 − log+ ∥∥�n
α (p)

∥∥
qn

∣∣∣∣∣ ≤ log(C)

qn+1 ,

hence

lim
n→+∞

log+ ||�n
α (p)‖

qn
= lim

n→+∞
log+ max

(∣∣∣P(n)
α (p)

∣∣∣ ,
∣∣∣P(n−1)

α (p)

∣∣∣
)

qn
=: G+

�α
(p)

exists. By construction, the function G+
�α

satisfies G+
�α

◦ �α = q · G+
�α

. We note that
on restriction to the hypersurface {z2 = 0},

G+
�α {z2=0} = 0.

Indeed, if p = (p0, p1, 0), then log+ |P(n)
α (p)| = O(n) since we have seen that the

forward iterates of p grow at most with Fibonacci speed.
For every n ≥ 0, we have θ ◦ �n

α = �n
α ◦ θ. In particular, the following limits exist

and satisfy:

lim
n→+∞

log+ ||θ ◦ �n
α ||

qn
= lim

n→+∞
log+ ||�n

α ◦ θ||
qn

= G+
�α

◦ θ. (7.1)

Define the open set U := {
(z0, z1, z2) ∈ C

3 | z2 	= 0
}
and let p = (p0, p1, p2) ∈ U .

For every n ≥ 0, recall that

θ ◦ �n
α (p) = θ

(
P(n)
α (p), P(n−1)

α (p), αn p2
)

=
(

P(n)
α (p)(αn p2)

l , P(n−1)
α (p)(αn p2)

l , αn p2
)
.
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For j ∈ {n − 1, n}, we have
log+ ∣∣∣P( j)

α (p)

∣∣∣ − l log+ ∣∣αn p2
∣∣ ≤ log+ ∣∣∣P( j)

α (p)(αn p2)
l
∣∣∣ ≤ log+ ∣∣∣P( j)

α (p)

∣∣∣ + l log+ ∣∣αn p2
∣∣ ,

so that

log+ ∣∣θ ◦ �n
α (p)

∥∥
qn

= log+ ∥∥�n
α (p)

∥∥
qn

+ o(1).

We deduce from (7.1) that

G+
�α

(p) = lim
n→+∞

log+ ∥∥�n
α (p)

∥∥
qn = lim

n→+∞
log+ ∥∥θ ◦ �n

α (p)
∥∥

qn = G+
�α

◦ θ(p) = G+
φα

◦ h(p). (7.2)

Now if p = (p0, p1, 0), then we have seen that G+
�α

(p) = 0. Note that h(p) = 0C2

and θ(p) = 0C3 ; therefore, G+
�α

◦ θ(p) = G+
φα

◦ h(p) = 0. We conclude that (7.2)

holds for any point p ∈ C
3.

The function G+
�α

is not ≡ −∞, it is upper semicontinuous and satisfies the sub-

mean value property (since G+
�α

does and θ : C
3 → C

3 is holomorphic); in other

terms, G+
�α

is plurisubharmonic. Moreover, we know that G+
φα

is Hölder continuous,

and h is holomorphic, hence G+
�α

is Hölder continuous as well. We have shown:

Proposition 7.1 For any point p ∈ C
3, the limit

lim
n→+∞

log+ ∥∥�n
α (p)

∥∥
qn

=: G+
�α

(p)

exists; the function G+
�α

= G+
�α

◦θ = G+
φα

◦h is plurisubharmonic, Hölder continuous,

and satisfies G+
�α

◦ �α = q · G+
�α

. We can then define the positive current T +
�α

:=
ddcG+

�α
. The maps θ U and h U are submersions, and T +

�α U = (θ U )∗(T +
�α U ) =

(h U )∗(T +
φα U ). We also have �∗

α(T +
�α

) = q · T +
�α

.

Remark 7.2 We observe that contrary to the case of φα, the set K +
�α

of points whose

forward orbit is bounded is strictly contained in
{

p ∈ C
3 | G+

�α
(p) = 0

}
; indeed, we

have seen that the latter always contains {z2 = 0} 	⊂ K +
�α

.

8 Analysis of the Dynamics of the Automorphism �α

In this section, we further analyze the dynamics of the automorphism�α, distinguish-
ing between the value of 0 < |α| ≤ 1. In particular, we want to describe what happens
outside the invariant hypersurface {z2 = 0}.

We see that a transition occurs for |α| = ϕ(1−q)/d . Indeed, when |α| < ϕ(1−q)/d ,
we observe different behaviors in the escape speed outside {z2 = 0} according to the
choice of the starting point p = (p0, p1, p2): Fibonacci, or bigger than ηqn

for some
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η > 1. On the contrary, for |α| > ϕ(1−q)/d , we see that it is impossible to escape to
infinity with Fibonacci speed, while the second case persists.

Let us say a fewwords about the critical valueϕ(1−q)/d where the transition happens.
We define the cocycle A : C

3 → GL2(C) by:

A(z0, z1, z2) :=
(
1 + zq−1

0 zd
2 1

1 0

)
,

and if M ∈ M2(C) and v = (v0, v1) ∈ C
2, we set M · v := vMT . Recall that

for every z2 ∈ C, we consider ψz2 = (z0 + z1 + zq
0 zd

2 , z0). We remark that for
every p = (p0, p1, p2) ∈ C

3, ψp2(p0, p1) = A(p) · (p0, p1). As usual we denote
A0(p) := Id and for n ≥ 1,

An(p) := A(�n−1
α (p)) · A(�n−2

α (p)) . . . A(�α(p)) · A(p).

In particular, for every n ≥ 0, �n
α (p) = (An(p) · (p0, p1), αn p2); equivalently,

(P(n)
α (p), P(n−1)

α (p)) = An(p) · (p0, p1). Note that

A(�n
α (p)) =

(
1 +

(
P(n)

α (p)
)q−1

αnd pd
2 1

1 0

)
.

– If lim
n→+∞

(
P(n)

α (p)
)q−1

αnd = 0, then lim
n→+∞ A(�n

α (p)) =
(
1 1
1 0

)
, whose largest

eigenvalue is ϕ. Then the growth will be exactly Fibonacci unless the initial point
belongs to W s

�α
(0C3). But then

(
ϕq−1 |α|d

)n = O
( ∣∣∣P(n)

α (p)

∣∣∣
q−1 |α|nd

)
= o(1),

and necessarily |α| < ϕ(1−q)/d .

– If |α| > ϕ(1−q)/d , Fibonacci growth is impossible; indeed if
∣∣∣P(n)

α (p)

∣∣∣ ≥ Cϕn

with C > 0, then

∣∣∣P(n)
α (p)

∣∣∣
q−1 |α|nd ≥ Cq−1(ϕq−1 |α|d )n

but here η := ϕq−1|α|d > 1 so that
∣∣P(n+1)

α (p)
∣∣ � Cq−1ηn

∣∣P(n)
α (p)

∣∣ and the
growth is much more in fact.

We will also see that this transition reflects an analogous change in the dynamics of
the Hénon automorphism φα: for |α| < ϕ(1−q)/d , the point 0C2 is a sink of φα, while
for |α| > ϕ(1−q)/d , the point 0C2 becomes a saddle fixed point.

The following general lemma will be useful in the analysis that follows.
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Lemma 8.1 Assume that 0 < |α| ≤ 1, and that p = (p0, p1, p2) satisfies:

∣∣∣P(n)
α (p)

∣∣∣ = O
(
[(1 − ε)ϕ]n

)
.

Then with our previous notations, p ∈ Z .

Proof This follows again from Lemma 5.1. Indeed for every n ≥ 0,

|gn(p)| ≤
(∣∣∣P(n+1)

α (p)

∣∣∣ + ϕ−1
∣∣∣P(n)

α (p)

∣∣∣
)

ϕ−n = O
(
(1 − ε)n)

hence g(p) = lim
n→+∞ gn(p) = 0. ��

8.1 Points escaping to infinity with maximal speed

The results of this subsection hold for any 0 < |α| ≤ 1. We start by exhibiting an
explicit non-empty open set of points escaping to infinity very fast; then we state some
facts concerning the set of points going to infinity with maximal speed and show how
they can be derived from the properties of the Green function G+

�α
.

Set γ := ln |α|
ln(ϕ)

. We choose M ≥ 0 sufficiently large so that M(q − 1) + dγ > 0
(this is possible since by hypothesis, q − 1 > 0).

Proposition 8.2 We define the open set

� := {
p = (p0, p1, p2) ∈ C

3 | |p0| > |p1| > 0 and |p1|q−1 |p2|d > 2 + ϕM}
.

Then for any point p ∈ �, we have G+
�α

(p) > 0; moreover the sequence
(∣∣∣P(n)

α (p)

∣∣∣
)

n
is increasing.

The proof splits in two lemmas that we are going to detail now.

Lemma 8.3 For any point p in � the escape speed is superpolynomial: for any n ≥
−1, ∣∣P(n)

α (p)
∣∣ ≥ ∣∣p1

∣∣ϕMn . (8.1)

Moreover the sequence
(∣∣P(n)

α (p)
∣∣)

n is increasing.

Proof Theproof is by induction onn ≥ −1. Let p ∈ �;wewill show that
(∣∣P(n)

α (p)
∣∣)

n
is increasing and that (8.1) holds. It follows from our assumptions that

–
∣∣P(−1)

α (p)
∣∣ = |p1| ≥ |p1|ϕ−M .

–
∣∣P(0)

α (p)
∣∣ = |p0| ≥ |p1|.

– Take n ≥ 0 and assume that |P(n)
α (p)| ≥ |p1|ϕMn and |P(n)

α (p)| ≥ |P(n−1)
α (p)|.

We estimate:
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∣∣∣P(n+1)
α (p)

∣∣∣ ≥
∣∣∣P(n)

α (p)

∣∣∣
(∣∣∣P(n)

α (p)

∣∣∣
q−1 ∣∣αn p2

∣∣d − 2

)

≥
∣∣∣P(n)

α (p)

∣∣∣
(
|p1|q−1 |p2|d ϕ(M(q−1)+dγ)n − 2

)

≥ |p1| ϕMn
(
|p1|q−1 |p2|d − 2

)

≥ |p1| ϕM(n+1)

because M(q − 1) + dγ > 0 and |p1|q−1|p2|d − 2 > ϕM . Since |p1|q−1|p2|d −
2 ≥ 1, the previous inequalities also show that |P(n+1)

α (p)| ≥ |P(n)
α (p)|, which

concludes the induction. ��
Lemma 8.4 Recall that γ := ln |α|

ln(ϕ)
and that M ≥ 0 is chosen such that M(q − 1) +

dγ > 0. Take p ∈ C
3 such that the sequence (|P(n)

α (p)|)n≥0 is increasing, and assume
that there exists n0 ≥ 1 such that for every n ≥ n0, the following inequality holds2:

∣∣∣P(n)
α (p)

∣∣∣ ≥ ϕMn .

Then the escape speed is much bigger in fact: there exist n1 ≥ n0 and η > 1 such that
for every n ≥ n1,

∣∣∣P(n)
α (p)

∣∣∣ ≥ ηqn
.

In terms of the Green function introduced above, we then get G+
�α

(p) > 0.

Proof Since (|P(n)
α (p)|)n≥0 is increasing, we have for every n ≥ 0,

∣∣∣P(n)
α (p)

∣∣∣
q ( |α|n |p2|

)d =
∣∣∣P(n+1)

α (p) − P(n)
α (p) − P(n−1)

α (p)

∣∣∣ ≤ 3
∣∣∣P(n+1)

α (p)

∣∣∣ .
(8.2)

Set xn := ln |P(n)
α (p)|. From our hypotheses, we know that for every n ≥ n0, xn ≥

Mn lnϕ. Since M(q − 1) + dγ > 0, we can take ε > 0 small such that we still
have M(q − 1 − ε) + dγ > 0. Let n′

0 ≥ n0 be chosen such that for n ≥ n′
0,

n(M(q − 1 − ε) + dγ) ln ϕ + d ln |p2| − ln 3 ≥ 0. Thanks to (8.2), we get: for
every n ≥ n′

0,

xn+1 ≥ qxn + ndγ lnϕ + d ln |p2| − ln 3

≥ (1 + ε)xn + (n (M(q − 1 − ε) + dγ) ln ϕ + d ln |p2| − ln 3)

≥ (1 + ε)xn .

We then obtain: for every n ≥ n′
0,

xn ≥ (1 + ε)n−n′
0xn′

0
≥ (1 + ε)n−n′

0 Mn′
0 lnϕ.

2 In particular, this is satisfied for points p ∈ � as we have seen in Lemma 8.3.
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As a result there exists n1 ≥ n′
0 such that for n ≥ n1,

xn

n2 ≥ (q/2)n−n′
0 Mn′

0 lnϕ

n2 ≥ − (ndγ lnϕ + d ln |p2| − ln 3) .

We can then refine the previous inequalities: for n ≥ n1,

xn+1 ≥ qxn + ndγ lnϕ + d ln |p2| − ln 3 ≥ q

(
1 − 1

n2

)
xn .

Let C := ∏
n≥n1

(
1 − 1

n2

)
xn1q−n1 > 0; for every n ≥ n1, we have xn ≥ Cqn , hence

|P(n)
α (p)| ≥ ηqn

, where η := eC > 1. ��

Remark 8.5 We have seen that the automorphism φα possesses an attractor at infinity
X (φα) = (1:0:0) whose basin is biholomorphic toC

2. Then there existsC = C(α) > 0
such that the forward orbit of any point p̃ = (p0, p1) ∈ C

2 such that |p0| � |p1|
and ‖ p̃‖ ≥ C is attracted by X (φα); in particular, p̃ /∈ K +

φα
, and thus, G+

φα
( p̃) > 0. If

p = (p0, p1, p2) ∈ C
3 satisfies |p0| � |p1| and ‖(p0, p1)‖ · |p2|l ≥ C , we see that

‖h(p)‖ ≥ C , hence G+
φα

(h(p)) > 0, and G+
�α

(p) > 0 as well. The definition of the
set � in Proposition 8.2 is coherent with this observation.

Proposition 8.6 Set l̃ := 2max(l, 1). We have

1 ≤ lim sup
‖p‖→+∞

G+
�α

(p)

log ‖p‖ ≤ l̃.

The set E := {
p ∈ C

3 | G+
�α

(p) > 0
}

of points escaping to infinity with maximal

speed is open, connected and of infinite measure on any complex line where G+
�α

is
not identically zero. In particular, the set

{
p ∈ C

3 | lim
n→+∞

∥∥�n
α (p)

∥∥ = +∞
}

of points whose forward orbit goes to infinity is of infinite measure.

Proof The openness of E follows directly from the continuity of G+
�α

, shown in Propo-
sition 7.1.

The proof of the fact that E has infinite measure follows arguments given by Guedj-
Sibony [12]. Since φα is algebraically stable, we know from Proposition 1.3 in [12]

that lim sup
‖ p̃‖→+∞

G+
φα

( p̃)

log ‖ p̃‖ = 1. Therefore
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lim sup
‖p‖→+∞

G+
�α

(p)

log ‖p‖ = lim sup
‖p=(p0,p1,p2)‖→+∞

G+
φα

◦ h(p)

log ‖h(p)‖

× l log |p2| + log ‖(p0, p1)‖
log ‖p‖ ≤ l̃ lim sup

‖ p̃‖→+∞

G+
φα

( p̃)

log ‖ p̃‖ = l̃.

For the other inequality, we remark that

lim sup
‖p‖→+∞

G+
�α

(p)

log ‖p‖ ≥ lim sup
‖p=(p0,p1,1)‖→+∞

G+
φα

◦ h(p)

log ‖h(p)‖

× log ‖(p0, p1)‖
log ‖(p0, p1, 1)‖ = lim sup

‖ p̃‖→+∞

G+
φα

( p̃)

log ‖ p̃‖ = 1.

Assume that p ∈ C
3 satisfies G+

�α
(p) > 0, and for some v 	= 0C3 , consider the

line L := {
p + tv | t ∈ C

}
. Denote by m(r) the Lebesgue measure of the set{

eix , x ∈ R | G+
�α

(p + reixv) > 0
}
. From what precedes, we know that there exists

C > 0 such that for every r ≥ 0,

G+
�α

(p + reixv) ≤ l̃ log+(r) + C.

By the sub-mean value property,

0 < G+
�α

(p) ≤ 1

2π

∫ 2π

0
G+

�α
(p + reixv)dx ≤ 1

2π
(̃l log+(r) + C)m(r).

Therefore, m(r) ≥ 2πG+
�α

(p)

l̃ log+(r)+C
, and integrating over r , we get that the set of points p in

L such that G+
�α

(p) > 0 has infinite measure. The proof of connectivity is also based

on the slow growth of G+
�α

and follows from similar arguments (see [13]). ��

8.2 General Remarks When 0 < |α| < 1

In this case, 0C3 is a hyperbolic fixed point of�α of saddle type, and Corollary 5.5 tells
us that the set K +

�α
of points with bounded forward orbit is exactly the stable manifold

W s
�α

(0C3). The positive Julia set J+
�α

thus corresponds to ∂K +
�α

= W s
�α

(0C3). Let

p = (p0, p1, p2) ∈ C
3. For n ≥ 0,

θ ◦ �n
α (p) =

(
P(n)

α (p)(αn p2)
l , P(n−1)

α (p)(αn p2)
l , αn p2

) = (
φn

α ◦ h(p), αn p2
)
.

(8.3)
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From (8.3), we get that h(W s
�α

(0C3)) = W s
φα

(0C2) = K +
φα
.3 We deduce that J+

φα
=

∂W s
φα

(0C2). Besides, we know that K +
φα

= {
p̃ ∈ C

2 | G+
φα

( p̃) = 0
}
, and this set

is closed by continuity of G+
φα
. In particular, W s

φα
(0C2) is closed. For any p̃ ∈ C

2,
there are two possible behaviors: either p ∈ W s

φα
(0C2) and then its forward iterates

converge to 0C2 exponentially fast, or they go to infinity with maximal speed.

8.3 Analysis of the Dynamics in the Case Where 0 < |α| < ϕ(1−q)/d

We show that under this assumption, we can construct a set of points with non-empty
interior for which the escape speed is much smaller, in fact Fibonacci.

From our hypothesis on α, we can take ε > 0 small enough so that η := ((1 +
ε)ϕ)q |α|d < ϕ.

Proposition 8.7 Assume 0 < |α| < ϕ(1−q)/d . We consider the following open neigh-
borhood of the hypersurface {z2 = 0}:

�′ := {
p = (p0, p1, p2) ∈ C

3 | (|p0| + |p1|)q−1 |p2|d < ϕε
}
.

If p ∈ �′, there are two possible behaviors:

– either p belongs to the stable manifold W s
�α

(0C3) and then its forward iterates
converge to 0C3 exponentially fast;

– or p goes to infinity with Fibonacci speed:
(
P(n)

α (p)ϕ−n
)

n ≥ 0 converges and we
have

lim
n→+∞ P(n)

α (p)ϕ−n ∈ C
∗.

Remark 8.8 The last result tells us that if we start close enough to {z2 = 0} ⊂ �′, the
dynamics is similar to the one we observe on restriction to this invariant hypersurface:
either the startingpoint belongs toW s

�α
(0C3) and in this case its forwardorbit converges

to 0C3 with exponential speed, or the iterates escape to infinity with speed exactly
Fibonacci. We remark that when |α| is small, we can choose ε > 0 reasonably large,
so that the set �′ becomes larger and larger. This is coherent with the fact that the
smaller |α| is, the faster we converge to the hypersurface {z2 = 0}.

We start by showing that the speed cannot be more than Fibonacci.

Lemma 8.9 Any point p ∈ �′ grows at most with Fibonacci speed, that is, there
exists C = C(p0, p1) > 0 such that for any n ≥ 0,

∣∣∣P(n)
α (p)

∣∣∣ ≤ Cϕn .

3 Indeed, if p ∈ W s
�α

(0
C3 ), then h(p) ∈ W s

φα
(0

C2 ); conversely, if (p0, p1) ∈ K +
φα

, then (p0, p1) =
h(p0, p1, 1) and (p0, p1, 1) ∈ K +

�α
= W s

�α
(0

C3 ).
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Proof Let C̃ = C̃(p0, p1) := |p0| + |p1| and ε > 0 be chosen as explained above.
We first show that for every n ≥ 0,

∣∣∣P(n)
α (p)

∣∣∣ ≤ C̃ ((1 + ε)ϕ)n .

The result is clearly true for n = 0, and for n = 1 we have

∣∣∣P(1)
α (p)

∣∣∣ ≤ |p0| + |p1| + |p0|q |p2|d ≤ C̃(1 + C̃q−1 |p2|d) ≤ C̃(1 + ε)ϕ.

Suppose that it holds for n − 1 and n, that is

∣∣∣P(n−1)
α (p)

∣∣∣ ≤ C̃ ((1 + ε)ϕ)n−1 ,

∣∣∣P(n)
α (p)

∣∣∣ ≤ C̃((1 + ε)ϕ)n .

We then have

∣∣∣P(n+1)
α (p)

∣∣∣ ≤
∣∣∣P(n)

α (p)

∣∣∣ +
∣∣∣P(n−1)

α (p)

∣∣∣ +
∣∣∣
(

P(n)
α (p)

)q
(αn p2)

d
∣∣∣

≤ C̃
(
(1 + ε)ϕ

)n + C̃
(
(1 + ε)ϕ

)n−1 + C̃q |p2|d
(
((1 + ε)ϕ)q |α|d )n

≤ C̃(1 + ε)nϕn+1 + C̃ϕεηn

≤ C̃(1 + ε)nϕn+1 + C̃ε(1 + ε)nϕn+1

= C̃
(
(1 + ε)ϕ

)n+1
,

which concludes the induction.
Using this fact, we obtain a good control on the non-linear term: for any n ≥ 0,

∣∣∣(P(n)
α (p))q(αn p2)

d
∣∣∣ ≤ C̃q |p2|d

(
((1 + ε)ϕ)q |α|d )n = C0η

n,

where C0 = C0(p0, p1) := C̃ϕε. For every n ≥ 0, we have

∣∣∣P(n+1)
α (p)

∣∣∣ ≤
∣∣∣P(n)

α (p)

∣∣∣ +
∣∣∣P(n−1)

α (p)

∣∣∣ +
∣∣∣(P(n)

α (p))q(αn p2)
d
∣∣∣

≤
∣∣∣P(n)

α (p)

∣∣∣ +
∣∣∣P(n−1)

α (p)

∣∣∣ + C0η
n .

Thanks to the same trick as in the proof of Lemma 5.1, we obtain:

∣∣∣P(n+1)
α (p)

∣∣∣ + (ϕ − 1)
∣∣∣P(n)

α (p)

∣∣∣ ≤ ϕn

⎛
⎝ϕ |p0| + |p1| + C0

n∑
j=0

(
η

ϕ

) j
⎞
⎠ .
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Since η < ϕ, we can set C = C(p0, p1) := ϕ−1

(
ϕ|p0| + |p1| + C0

+∞∑
j=0

( η
ϕ

) j

)
. We

then get: for every n ≥ 0,

∣∣∣P(n)
α (p)

∣∣∣ ≤ Cϕn . ��

The proof of Proposition 8.7 is the combination of Lemma 8.9 and of the next result.

Lemma 8.10 Assume 0 < |α| < ϕ(1−q)/d and take p ∈ C
3

� W s
�α

(0C3) with speed

less than Fibonacci, i.e., there exists C > 0 such that for every n ≥ 0,
∣∣P(n)

α (p)
∣∣ ≤

Cϕn. Then p goes to infinity with speed exactly Fibonacci:
(
P(n)

α (p)ϕ−n
)

n≥0 con-
verges and we have

lim
n→+∞ P(n)

α (p)ϕ−n ∈ C
∗.

Proof Take p ∈ C
3
� W s

�α
(0C3) such that for every n ≥ 0, |P(n)

α (p)| ≤ Cϕn , C > 0.
We first show that p goes to infinity with speed at least Fibonacci too, i.e., there exists
C ′ = C ′(p0, p1) > 0 such that for every n ≥ 0, |P(n)

α (p)| ≥ C ′ϕn . Recall that if
(z0, z1, z2) ∈ C

3, we denote

A(z0, z1, z2) :=
(
1 + zq−1

0 zd
2 1

1 0

)
,

and that for n ≥ 0,
(
P(n)

α (p), P(n−1)
α (p)

) = An(p) · (p0, p1), where

An(p) := A(�n−1
α (p)) · A(�n−2

α (p)) . . . A(�α(p)) · A(p).

Note that for every j ≥ 0,

A(�
j
α (p)) =

(
1 + (P( j)

α (p))q−1α jd pd
2 1

1 0

)
. (8.4)

Since |P( j)
α (p)| ≤ Cϕ j , we see that

∣∣∣(P( j)
α (p)

)q−1
α jd pd

2

∣∣∣ ≤ Cq−1 |p2|d (ϕq−1 |α|d) j ≤ νη j , (8.5)

where η := ϕq−1|α|d < 1 and ν := Cq−1|p2|d ≥ 0. Set M0 :=
(
1 1
1 0

)
. If ε > 0,

let us consider Bε(M0) := {
M ∈ M2(C) | ‖M − M0‖∞ < ε

}
. We see from (8.4)

and (8.5) that for every j ≥ 0, A(�
j
α (p)) ∈ Bνη j (M0). For ε > 0 small, every

matrix M ∈ Bε(M0) is hyperbolic with eigenvalues close to ϕ and ϕ′; moreover, we
can choose a family of cones (Cε)ε>0 around �ϕ satisfying the following: there exist
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C0, C1 > 0 such that for each M ∈ Bε(M0), every vector v ∈ Cε will be expanded by
a factor close to ϕ:

(1 − C0ε)ϕ ‖v‖ ≤ ‖M · v‖ ≤ (1 + C1ε)ϕ ‖v‖ .

Since p /∈ W s
�α

(0C3), the iterates of (p0, p1) are expanded and accumulate on the
unstable space �ϕ = {

(ϕz, z) | z ∈ C
}
of M0. In fact, the angle 	 (�ϕ, A j (p) ·

(p0, p1)) decreases exponentially fast, and we can assume that for some n0 ≥ 0 and
for every j ≥ n0, A(�

j
α (p)) ∈ Bνη j (M0) maps Cνη j to Cνη j+1 . We deduce that for

every n ≥ n0,

n−1∏
j=n0

(1 − C0νη
j )
∥∥An0(p) · (p0, p1)

∥∥ ≤ ‖An(p) · (p0, p1)‖
ϕn−n0

≤
n−1∏
j=n0

(1 + C1νη
j )
∥∥An0(p) · (p0, p1)

∥∥ .

Let C ′ := ϕn0
+∞∏
j=n0

(1 − C0νη
j )‖An0(p) · (p0, p1)‖ > 0. We have thus obtained: for

every n ≥ 0,

∥∥∥
(

P(n)
α (p), P(n−1)

α (p)
)∥∥∥ ≥ C ′ϕn .

Now, we note that p belongs to D, the domain of definition of the series g intro-
duced earlier. Indeed, for any j ≥ 0, |P( j)

α (p)|qϕ− j |α| jd ≤ Cq(ϕq−1|α|d) j and
ϕq−1|α|d < 1. We have shown that the sequence (P(n)

α (p), P(n−1)
α (p))n accumulates

on the unstable direction
{
(ϕz, z) | z ∈ C

}
of M0; therefore, we get

lim
n→+∞

P(n)
α (p)

P(n−1)
α (p)

= ϕ. (8.6)

Recall that for n ≥ 0, gn(p) := (P(n+1)
α (p) + ϕ−1P(n)

α (p))ϕ−n . We have seen that
p ∈ D, and then, (gn(p))n converges. From (8.6), we deduce that for every n ≥ 0,

gn(p) =
(

P(n+1)
α (p)

P(n)
α (p)

+ ϕ−1

)
P(n)

α (p)ϕ−n ∼
(
ϕ + ϕ−1

)
P(n)

α (p)ϕ−n .

This implies that (P(n)
α (p)ϕ−n)n≥0 converges. But we also know from what precedes

that lim
n→+∞ |P(n)

α (p)ϕ−n| > 0, so that lim
n→+∞ P(n)

α (p)ϕ−n ∈ C
∗, which concludes. ��
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Recall that we take ε > 0 small enough so that ((1 + ε)ϕ)q |α|d < ϕ, and that
�′ := {

(p0, p1, p2) ∈ C
3 | (|p0|+|p1|)q−1|p2|d < ϕε

}
.We deduce fromProposition

8.7 that

G+
�α �′ = 0. (8.7)

Indeed, the forward iterates of any point in �′ grow at most with Fibonacci speed as
we have seen. In particular, the set

{
p ∈ C

3 | G�+
α
(p) = 0

}
has non-empty interior.

Set δ := (ϕε)1/(q−1) and define the open ball

Bδ := {
p̃ = (p0, p1) ∈ C

2 | ‖ p̃‖1 = |p0| + |p1| < δ
}
.

Recall that l = d
q−1 and that h : (z0, z1, z2) �→ (z0zl

2, z1zl
2). Remark that h(�′) ⊂ Bδ.

Indeed, if p = (p0, p1, p2) ∈ �′, then

‖h(p)‖1 =
∣∣∣p0 pl

2

∣∣∣ +
∣∣∣p1 pl

2

∣∣∣ =
(
(|p0| + |p1|)q−1 |p2|d

)1/(q−1)
< (ϕε)1/(q−1) = δ.

Conversely, if (p0, p1) ∈ Bδ, then (p0, p1) = h(p0, p1, 1) with (p0, p1, 1) ∈ �′, so
that h(�′) = Bδ in fact. Since G+

�α
= G+

φα
◦ h, we deduce from (8.7) that

G+
φα Bδ

= 0.

But as we have seen, K +
φα

= {
(p0, p1) ∈ C

2 | G+
φa

(p0, p1) = 0
}
. We conclude that

for |α| < ϕ(1−q)/d , any point (p0, p1) ∈ Bδ has bounded forward orbit under φα.
Actually we can say more. Recall that φα = αl(z0 + z1 + zq

0 , z0). We see that 0C2 is
a sink of φα; indeed, the largest eigenvalue of the Jacobian is αlϕ, which is strictly
smaller than 1 from the assumption we made on α. For any p ∈ C

3 and n ≥ 0,

θ ◦ �n
α (p) = (

P(n)
α (p)(αn p2)

l , P(n−1)
α (p)(αn p2)

l , αn p2
) = (

φn
α ◦ h(p), αn p2

)
.

(8.8)
If p ∈ �′, we know from Proposition 8.7 that there exists C > 0 such that for any
n ≥ 0, |P(n)

α (p)| ≤ Cϕn . But then, |P(n)
α (p)(αn p2)l | ≤ C |p2|l(ϕq−1|α|d)n/(q−1),

and ϕq−1|α|d < 1, so we deduce from (8.8) and the equality Bδ = h(�′) that any
point in Bδ goes to 0C2 by forward iteration of φα; equivalently, the basin of attraction
W s

φα
(0C2) of the sink 0C2 contains the ball Bδ. Recall also that it is a general fact that

for a sink p of φα, W s
φα

(p) is biholomorphic to C
2.

In the following, we will see how the previous results enable us to give a description
of the dynamics of �α in the case where 0 < |α| < ϕ(1−q)/d . Let p ∈ C

3. We have
shown previously that K +

�α
= W s

�α
(0C3), so assume that the forward orbit of p under

�α is not bounded. There are two possibilities:

– either G+
�α

(p) > 0 and the iterates of p go to infinity with maximal speed; in this

case, we also have G+
φα

(h(p)) = G+
�α

(p) > 0;
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– or G+
�α

(p) = 0 and G+
φα

(h(p)) = G+
�α

(p) = 0 too. But then we know

from the general properties of φα that h(p) ∈ K +
φα
. From §8.2, we also have

K +
φα

= W s
φα

(0C2). It follows from (8.8) that lim
n→+∞ |P(n)

α (p)(αn p2)l | exists and
vanishes. Since l = d/(q − 1), we deduce that lim

n→+∞ |P(n)
α (p)|q−1|αn p2|d = 0,

hence lim
n→+∞ A(�n

α (p)) = M0 =
(
1 1
1 0

)
where A is the cocycle introduced ear-

lier. Reasoning as before, and since by assumption p /∈ W s
�α

(0C3), we conclude
accordingly that p escapes to infinity with Fibonacci speed.

We have thus shown:

Proposition 8.11 When 0 < |α| < ϕ(1−q)/d , the point 0C3 is a saddle fixed point of
�α of index 2, and J+

�α
:= ∂K +

�α
= W s

�α
(0C3). Moreover,

{
p ∈ C

3 | G+
�α

(p) = 0
} =

h−1(W s
φα

(0C2)) = �′′ � W s
�α

(0C3), where �′′ has non-empty interior (it contains the
set �′

� W s
�α

(0C3)), and the forward orbit of points that belong to it goes to infinity

with Fibonacci speed. Moreover, W s
φα

(0C2) is biholomorphic to C
2, and

K +
φα

= W s
φα

(0C2) = {
p̃ ∈ C

2 | G+
φα

( p̃) = 0
}
.

We summarize this as follows:

h
{z2 = 0} → {

0C2
} ;

K +
�α

= W s
�α

(0C3) → K +
φα

= W s
φα

(0C2);
�′′ → W s

φα
(0C2);{

p ∈ C
3 | G+

�α
(p) > 0

} → {
p̃ ∈ C

2 | G+
φα

( p̃) > 0
}
.

(8.9)

Thanks to the last statement, we now give an alternative description of the stable
manifold W s

�α
(0C3) in terms of the setZ of zeros of the series g introduced previously.

Proposition 8.12 Assume 0 < |α| < ϕ(1−q)/d . Set V := {
p ∈ C

3 | G+
�α

(p) =
0
} = �′′ � W s

�α
(0C3). Then V coincides with the domain of definition D of the series

g introduced earlier. Moreover, we have the following parametrization of the stable
manifold:

W s
�α

(0C3) = Z = {
p ∈ V | g(p) = 0

} =
⋃
n≥0

�−n
α (�′ ∩ Z).

Proof Let p ∈ V . We know from Proposition 8.11 that there exists C > 0 such that
for any j ≥ 0, |P( j)

α (p)| ≤ Cϕ j . Then p belongs to the domain of definition of g
since in this case, |P( j)

α (p)|qϕ− j |α| jd ≤ Cq(ϕq−1|α|d) j and ϕq−1|α|d < 1. It is also
clear that if G+

�α
(p) > 0, then p /∈ D.
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Recall that for any n ≥ 0,

gn(z) = ϕz0 + z1 + zd
2

n∑
j=0

(
P( j)

α (z)
)q

ϕ− jα jd = (
P(n+1)

α (z) + ϕ−1P(n)
α (z)

)
ϕ−n .

(8.10)
If p ∈ �′′ = V � W s

�α
(0C3), then as in the proof of Lemma 8.10, we see that the

sequence (P(n)
α (p)ϕ−n)n≥0 converges; moreover, we get from (8.10):

lim
n→+∞ gn(p) = lim

n→+∞

(
P(n+1)

α (p)

P(n)
α (p)

+ ϕ−1

)
P(n)

α (p)ϕ−n = (
ϕ + ϕ−1) lim

n→+∞ P(n)
α (p)ϕ−n .

But we also know that lim
n→+∞ |P(n)

α (p)ϕ−n| > 0, so that g(p) = lim
n→+∞ gn(p) 	= 0

and p /∈ Z . This shows that if p ∈ Z then p ∈ W s
�α

(0C3); the other implication is
always true.

The last point follows from the fact that for �′ ⊂ V , we have �′ ∩ W s
�α

(0C3) =
�′ ∩ Z . Moreover, �′ contains a neighborhood of 0C3 so the orbit of any point p ∈
W s

�α
(0C3) will eventually reach �′. To conclude, we note that by invariance of the

stable manifold, we have W s
�α

(0C3) = ∪n≥0�
−n
α (�′ ∩ W s

�α
(0C3)). ��

8.4 Analysis of the Dynamics in the Case Where ϕ(1−q)/d < |α| < 1

Thanks to previous results, we show the following intermediate result concerning the
dynamics of �α in this case.

Proposition 8.13 Assume ϕ(1−q)/d < |α| < 1. For p ∈ U = {z2 = 0}c, we obtain
the following trichotomy:

– either p belongs to the stable manifold W s
�α

(0C3); in this case, its forward iterates
converge to 0C3 with exponential speed;

– or there exist ε > 0 and n0 ≥ 0 such that for n ≥ n0,

∣∣∣P(n)
α (p)

∣∣∣ ≤ ((1 − ε)ϕ)n;

in this case p ∈ Z . Furthermore,

lim sup
n→+∞

∣∣∣P(n)
α (p)

∣∣∣
q−1 |α|nd > 0;

– or the orbit of p escapes to infinity very fast: G+
�α

(p) > 0. Moreover, the sequence

(|P(n)
α (p)|)n is increasing after a certain time.

Proof Take0 < ε < 1−ϕ−1|α|d/(1−q).Note thatμ := |α|d((1−ε)ϕ)q−1 > 1.Let p =
(p0, p1, p2) /∈ W s

�α
(0C3); according to Corollary 5.5 its forward orbit is unbounded.

Suppose that there exists n0 ≥ 0 such that for every n ≥ n0, |P(n)
α (p)| ≤ ((1− ε)ϕ)n .
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From Lemma 8.1, we know that p ∈ Z . Moreover, if lim sup
n→+∞

|P(n)
α (p)|q−1|α|nd = 0,

then with our previous notations, lim
n→+∞ A(�n

α (p)) =
(
1 1
1 0

)
and the growth is at least

Fibonacci, which is excluded. We are then in the second case of Proposition 8.13.
Let us handle the remaining case. In particular, we can take n0 ≥ 0 as big aswewant

such that |P(n0)
α (p)| > ((1 − ε)ϕ)n0 . Note that since by assumption |α| > ϕ(1−q)/d ,

and we have (q − 1) + dγ > 0 (with the notations of Lemma 8.4). In particular,
M = 1 satisfies the hypotheses of this lemma. Take n0 ≥ 0 sufficiently large such
that |P(n0)

α (p)| > ((1 − ε)ϕ)n0 and μn0 |p2|d ≥ 2 + ϕ. We can always assume that

|P(n0)
α (p)| ≥ |P(n0−1)

α (p)|.4 Since
∣∣∣(P(n0)

α (p))q−1(αn0)d
∣∣∣ ≥ μn0 , we deduce

∣∣∣∣∣
P(n0+1)
α (p)

P(n0)
α (p)

∣∣∣∣∣ =
∣∣∣∣∣(P(n0)

α (p))q−1(αn0 )d |p2|d + 1 + P(n0−1)
α (p)

P(n0)
α (p)

∣∣∣∣∣ ≥ μn0 |p2|d − 2 ≥ ϕ.

This shows that after time at most n0, the sequence (|P(n)
α (p)|)n is increasing, more-

over, there exists C0 > 0 such that for any n ≥ 0,

∣∣∣P(n)
α (p)

∣∣∣ ≥ C0ϕ
n .

The assumptions of Lemma 8.4 are satisfied, and we thus get the desired estimate on
the speed. ��
Remark 8.14 Denote byS the set of points corresponding to the second case described
in Proposition 8.13. A priori, points in S might exhibit a rather complicated dynamics:
their forward orbit is not bounded, still, it could happen that it does not escape to
infinity. We will see that in fact this behavior does not occur: S = ∅. This is related to
the properties of the Hénon map φα to which �α is semi-conjugate: φα possesses an
attractor at infinity which attracts any point whose forward orbit is not bounded.

Let us see how the previous result enables us to conclude the analysis of the dynam-
ics of�α when ϕ(1−q)/d < |α| < 1. Note that in this case, 0C2 becomes a saddle point
for φα. We have seen in §8.2 that W s

φα
(0C2) = K +

φα
is closed. Therefore, we recover

the fact recalled above in the particular case of the saddle fixed point 0C2 , and which
asserts that J+

φα
= W s

φα
(0C2) = W s

φα
(0C2). Let p = (p0, p1, p2) ∈ C

3. For n ≥ 0,

θ ◦ �n
α (p) = (

P(n)
α (p)(αn p2)

l , P(n−1)
α (p)(αn p2)

l , αn p2
) = (

φn
α ◦ h(p), αn p2

)
.

(8.11)
Recall that U := {z2 = 0}c and that S ⊂ U denotes the set of points whose behavior
is described in the second item of Proposition 8.13. From the estimate on the speed
we obtained, we know that

S ⊂ {
p ∈ C

3 | G+
�α

(p) = 0
}
.

4 Else there exists n1 < n0 such that |P(n1)
α (p)| > ((1 − ε)ϕ)n0 and |P(n1)

α (p)| ≥ |P(n1−1)
α (p)| and we

consider n1 instead of n0.
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Since G+
�α

= Gφα
◦ h, we deduce that h(S) ⊂ {

p̃ ∈ C
2 | G+

φα
( p̃) = 0

} = W s
φα

(0C2).
Assume that S is non-empty and take p ∈ S. From (8.11), and because by definition
S ⊂ U , we see that lim

n→+∞ |P(n)
α (p)| · |α|nl exists and vanishes. Since l = d/(q − 1),

this is in contradiction with the estimate lim sup
n→+∞

|P(n)
α (p)|q−1 · |α|nd > 0 given in

Proposition 8.13. Let us rephrase what we have obtained:

Proposition 8.15 When ϕ(1−q)/d < |α| < 1, the automorphism �α shares a certain
number of properties with the automorphism of Hénon type φα. The point 0C3 is a
fixed point of �α of saddle type, and J+

�α
:= ∂K +

�α
= W s

�α
(0C3). Moreover, it follows

from the previous discussion that

h
{z2 = 0} → {0C2};

K +
�α

= W s
�α

(0C3) → K +
φα

= W s
φα

(0C2);{
p ∈ C

3 | G+
�α

(p) > 0
} → {

p̃ ∈ C
2 | G+

φα
( p̃) > 0

}
.

(8.12)

In this situation, we see that the set �′′ introduced in the case where 0 < |α| < ϕ(1−q)/d

shrinks to the hyperplane {z2 = 0} which is contracted by h; in particular, it has empty
interior.

8.5 A Few Words on the Case Where |α| = 1

Note that in this case, the point 0C3 is still fixed by �α but it is no longer hyperbolic.
We show the following trichotomy:

Proposition 8.16 Let p ∈ U = {z2 = 0}c. We have three possibilities:

– either p ∈ K +
�α

, that is, its forward orbit is bounded;

– or p ∈ Z � K +
�α

; in particular, |P(n)
α (p)| = o(ϕn/q);

– or G+
�α

(p) > 0; moreover, the sequence (|P(n)
α (p)|)n is increasing after a certain

time.

Proof Assume that p /∈ K +
�α

and p ∈ D. This implies |P(n)
α (p)| = o(ϕn/q). From

Lemma 8.1, and since q > 1, we deduce that p ∈ Z and we are in the second case.
Let us then assume that p /∈ D and fix ε > 0 such that (1 − ε)ϕ > 1. From

Lemma 8.1, we see that for every n0 ≥ 0, it is possible to find n ≥ n0 such that
|P(n)

α (p)| ≥ ((1 − ε)ϕ)n . Arguing as in the proof of Proposition 8.13, we see that the
assumptions of Lemma 8.4 are satisfied after a certain time, and we conclude that we
are in the third case described above. ��
Remark 8.17 Note that for any p ∈ C

3, either its forward orbit escapes to infinity
with maximal speed (this corresponds to the third case), or p ∈ Z . We denote by S ′
the set of points corresponding to the second case described in Proposition 8.16. We
will show later that in fact S ′ = ∅.
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When αn = 1 for some n ≥ 1, we see that the dynamics of �α is essentially given
by the one of the Hénon automorphism φ = φ1, so we assume in the following that α
is not a root of unity.

Reasoning as before, (8.11) tells us that h(K +
�α

) = K +
φα

= {
p̃ ∈ C

2 | G+
φα

( p̃) = 0
}
,

but now, h(W s
�α

(0C3)) � W s
φα

(0C2). Again, K +
�α

	= {
p ∈ C

3 | G+
�α

(p) = 0
}
since

there are points in {z2 = 0} escaping to infinity with Fibonacci speed. The point 0C2

is still a saddle point of φα, hence J+
φα

:= ∂K +
φα

= W s
φα

(0C2). The map �−1
α is of the

same form as �α, and similarly, we have h(K −
�α

) = K −
φα

= {
p̃ ∈ C

2 | G−
φα

( p̃) = 0
}

as well as J−
φα

:= ∂K −
φα

= W u
φα

(0C2).

We define K�α := K +
�α

∩ K −
�α

; note that K�α ∩ {z2 = 0} = (�ϕ × {0}) ∩ (�ϕ′ ×
{0}) = {0C3}, and that h(K�α) = Kφα

. We also see that θ U maps bijectively K�α ∩U
onto K�α ∩ U = Kφα

× C
∗. In particular, K�α = {0C3} ∪ θ

−1(Kφα
× C

∗). Since θ U
is a biholomorphism, we deduce that:

∂K�α = ∂
({

0C3
} ∪ θ

−1(Kφα
× C

∗)
)

= {
0C3

} ∪ θ−1(Jφα
× C∗).

Now, Proposition 8.16 implies that for any p ∈ U , either |P(n)
α (p)| = O(ϕ j/q)

(this corresponds to the first and the second cases described in this proposition), or
G+

�α
(p) > 0. With the notations of Proposition 8.16, assume that S ′ 	= ∅ and let

p ∈ S ′ ⊂ (K +
�α

)c. In particular, G+
�α

(p) = 0. But G+
�α

(p) = G+
φα

(h(p)), so h(p) ∈{
p̃ ∈ C

2 | G+
φα

( p̃) = 0
} = K +

φα
. Then Equation (8.11) implies that p ∈ K +

�α
, a

contradiction: we conclude that S ′ = ∅.
We define a Green function G−

�α
in the same way as we did before, as well as a

current T −
�α

:= ddc(G−
�α

). We note that T ±
�α U = (θ U )∗(T ±

�α U ) = (h U )∗(T ±
φα U ),

and by construction, the currents T ±
�α

satisfy �∗
α(T ±

�α
) = q±1 · T ±

�α
. The measure

μ�α := T +
�α

∧ T −
�α

∧ dz2 ∧ dz2

is invariant by �α. Moreover, if we denote μ�α := μφα
∧ dz2 ∧ dz2, then

μ�α U = (h U )∗(μφα U ) ∧ dz2 ∧ dz2 = (θ U )∗(μ�α U ). (8.13)

Since μφα
has support in the compact set ∂Kφα

, we deduce from (8.13) that μ�α is

supported on ∂K�α = {OC3} ∪ θ−1(∂Kφα
× C∗).

For every p2 	= 0, the set Cp2 := C
2 × {

p2eix | x ∈ R
}
is invariant both by

�α and �α. We know that (φα, μφα
) is mixing (in particular, weakly mixing), and

for any p2 	= 0, the restriction of z2 �→ αz2 to Cp2 is ergodic for dz2 ∧ dz2, hence
(�α Cp2

, μ�α) is ergodic (see [7] for instance). We define Jp2 := J�α ∩ Cp2 ; this set
is invariant, and we know that μ�α Jp2

is supported on it. By (8.13), we conclude that
(�α Jp2

, μ�α) is ergodic too. Yet there is no hope to get mixing properties for �α

since by projection on the third coordinate, z2 �→ αz2 is a quasiperiodic factor of the
dynamics. We have thus obtained:
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Proposition 8.18 For any point p ∈ C
3, we are in exactly one of the following cases:

– either the orbit of p is bounded, i.e., p ∈ K�α ;
– or p ∈ {z2 = 0} � {0C3};
– or G+

�α
(p) > 0 or G−

�α
(p) > 0.

The measure μ�α is invariant by �α and supported on the set ∂K�α = {0C3} ∪
θ−1(∂Kφα

× C∗). Moreover, when p2 	= 0 and α is not a root of unity, (�α Jp2
, μ�α)

is ergodic.
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