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Abstract. In this paper, we investigate the question of whether a typical

vector field on a compact connected Riemannian manifold Md has a “small”
centralizer. In the C1 case, we give two criteria, one of which is C1-generic,

which guarantees that the centralizer of a C1-generic vector field is indeed

small, namely collinear. The other criterion states that a C1 separating flow
has a collinear C1-centralizer. When all the singularities are hyperbolic, we

prove that the collinearity property can actually be promoted to a stronger one,

refered as quasi-triviality. In particular, the C1-centralizer of a C1-generic
vector field is quasi-trivial. In certain cases, we obtain the triviality of the

centralizer of a C1-generic vector field, which includes C1-generic Axiom A (or

sectional Axiom A) vector fields and C1-generic vector fields with countably
many chain recurrent classes. For sufficiently regular vector fields, we also

obtain various criteria which ensure that the centralizer is trivial (as small as

it can be), and we show that in higher regularity, collinearity and triviality of
the Cd-centralizer are equivalent properties for a generic vector field in the Cd

topology. We also obtain that in the non-uniformly hyperbolic scenario, with
regularity C2, the C1-centralizer is trivial.
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1. Introduction

Given a dynamical system, it is natural to try to understand the symmetries
that it may have. Often times, they may give extra information which can be used
to understand the dynamical behaviour. For example, towards the end of the 19th
century, Lie was able to use the symmetries of some differential equations to derive
their solutions, ans it was actually during this work that he introduced the notion of
Lie groups. There are several different notions of symmetries that one may consider
for a dynamical system. In this paper, the one we study is the so-called centralizer
of a dynamical system.

The study of centralizers of diffeomorphisms has a long history. For a Cr dif-
feomorphism f : M →M , where r ≥ 1 and M is a compact Riemannian manifold,
the centralizer of f is the set of all Cr diffeomorphisms g : M →M that commute
with f . A diffeomorphism f has trivial centralizer if the only diffeomorphisms that
commute with f are its powers, fn, with n ∈ Z. In [Sma91] and [Sma98], Smale
asked the following question:

Question 1 ([Sma91], [Sma98]). Is the set of Cr diffeomorphisms with trivial cen-
tralizer a residual set? That is, does it contain a Gδ-dense subset of the space of
Cr diffeomorphisms?

This question remains open in this generality. However, there are several partial
answers. The first result related with Question 1 goes back to 1970, with the work
of Kopell [Kop70], which gives an affirmative answer when r ≥ 2 and M is the
circle. Since then several partial answers have been given. In [BCW09], Bonatti-
Crovisier-Wilkinson proved that the centralizer of a C1-generic diffeomorphism is
trivial, giving a positive answer to Question 1 for r = 1. For vector fields, the
picture is much more incomplete.

Consider Xr(M) to be the set of Cr vector fields of M . For X ∈ Xr(M) and for
any 1 ≤ k ≤ r we define the Ck-centralizer of X as

Ck(X) := {Y ∈ Xk(M) : [X,Y ] = 0}, (1.1)

where [X,Y ] is the Lie bracket of M . Notice that for vector fields there are different
types of centralizers (or symmetries) that are natural to consider. For example,
given a vector field X one may consider the set of diffeomorphisms f that fix X,
that is, f∗X = X. However, in this paper we will only study the centralizer defined
in (1.1).

There are different notions of “triviality” for the centralizers of vector fields,
called collinearity, quasi-triviality and triviality (see Definitions 2.1, 2.6 and 2.7
below). We remark that the notion of collinearity is weaker than quasi-triviality,
which itself is weaker than triviality.

There are some results about conditions for some “triviality” of the centralizer
of a vector field, all of them related, to some extent with some hyperbolicity. In
[KM73] the authors proved that an Anosov flow has quasi-trivial centralizer. This
result was extended to (Bowen-Walters) expansive flows by Oka in [Oka76]. In
[Sad79], Sad proved the “triviality” of a more general type of centralizer for an
open and dense subset of C∞-Axiom A vector fields that verify a strong transver-
sality condition. More recently, in [BRV18], Bonomo-Rocha-Varandas proved the
triviality of the centralizer of transitive Komuro expansive flows, which includes the
Lorenz attractor.
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This paper has two types of results: C1-generic results, and some general results
giving conditions for a vector field to have a centralizer exhibiting some of the types
of “triviality” mentioned above. Let us summarize some of the results in this paper.

(1) A C1-generic vector field has quasi-trivial centralizer (see Theorem B).
Furthermore, if a C1-generic vector field admits a countable spectral
decomposition, then it has trivial centralizer. In particular, the centralizer
of a C1-generic vector field is trivial in the following cases: when M
is a surface (see Corollary A), for Axiom A, or sectional Axiom A,
vector fields (see Corollary B), and when M has dimension 3 and it is not
approximated by vector fields with a homoclinic tangency (see Corollary C).

(2) For a compact manifold of dimension d ≥ 1, a Cd-generic vector field has
a collinear Cd-centralizer if and only if it has a trivial Cd-centralizer (see
Theorem G).

(3) A separating vector field has collinear centralizer (see Proposition 2.4 and
Definition 2.3 for the definition of the separating property).

(4) A C1 vector field with collinear centralizer such that all its singularities
are hyperbolic has quasi-trivial centralizer (see Theorem A).

(5) A C2 vector field that preserves a non-uniformly hyperbolic measure with
full support and with finitely many singularities has trivial centralizer (see
Theorem D).

(6) In dimension 3, a C3 vector field with some type of expansiveness (called
Kinematic expansiveness) and such that all its singularities are hyperbolic
has trivial centralizer (see Theorem E).

In the next section we give all the definitions and precise statements of our
results. Let us make a few remarks. In result (1) we can actually obtain triviality
in several scenarios, see Theorem 6.1. What is missing to obtain the triviality of
the centralizer for a C1-generic vector field is to prove that a C1-generic vector field
does not admit any non-trivial C1 first integral (see section 5). This is a conjecture
made by Thom [Thom]. With our result, a complete answer for Question 1 for C1

vector fields is equivalent to answering Thom’s conjecture. Result (2) states that
at least Cd-generically the three notions of “triviality” coincide. For a manifold of
dimension d ≥ 1, the regularity Cd is needed because we use Sard’s theorem in the
proof.

An important point of our work is given in item (4). To conclude quasi-triviality
from collinearity is a problem of extending an invariant function to the singularities.
The previous works in this direction were dealing with vector fields with higher
regularity, see for instance [BRV18]. In our work we are able to obtain a quite
general criterion using only regularity C1.

A natural direction is to understand what happens in the generic case in higher
regularity. We conclude this section with the following question:

Question 2. Given any manifold M with dimension dim(M) ≥ 3, does there exist
r > 1 sufficiently large and a Cr-open set U ⊂ Xr(M) such that for any X ∈ U the
Cs-centralizer (for some 1 ≤ s ≤ r) of X is not collinear?
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2. Definitions and statement of the main results

In this part, we introduce some definitions and notations, and we summarize
some of the results that we will show in the following.

2.1. General notions on vector fields. Let M be a smooth manifold of dimen-
sion d ≥ 1, which we assume to be compact and boundaryless. For any r ≥ 1, we
denote by Xr(M) the space of vector fields over M , endowed with the Cr topology.
A property P for vector fields in Xr(M) is called Cr-generic if it is satisfied for
any vector field in a residual set of Xr(M). Recall that R ⊂ Xr(M) is residual if
it contains a Gδ-dense subset of Xr(M). In particular, it is dense in Xr(M), by
Baire’s theorem.

In the following, given a vector field X ∈ X1(M), we denote by Xt the flow it
generates. Recall that for any Y ∈ C1(X), and for any s, t ∈ R, we have Ys ◦Xt =
Xt ◦ Ys. Differentiating this relation with respect to s at 0, we get

Y (Xt(x)) = DXt(x) · Y (x), ∀x ∈M. (2.1)

We denote by Zero(X) := {x ∈M : X(x) = 0} the set of zeros, or singularities, of
the vector field X, and we set

MX := M − Zero(X). (2.2)

For any x ∈ M and any interval I ⊂ R, we also let XI(x) := {Xt(x) : t ∈ I}. In

particular, we denote by orbX(x) := XR(x) the orbit of the point x under X. Note

that if x ∈MX , then orbX(x) ⊂MX too.

Let X ∈ X1(M) be some C1 vector field. The non-wandering set Ω(X) of X is
defined as the set of all points x ∈ M such that for any open neighbourhood U of
x and for any T > 0, there exists a time t > T such that U ∩Xt(U) 6= ∅.

Let us also recall another weaker notion of recurrence. Given two points x, y ∈
M , we write x ∼X y if for any ε > 0 and T > 0, there exists an (ε, T )-pseudo
orbit connecting them, i.e., there exist n ≥ 2, t1, t2, . . . , tn−1 ∈ [T,+∞), and x =
x1, x2, . . . , xn = y ∈M , such that d(Xtj (xj), xj+1) < ε, for j ∈ {1, . . . , n− 1}. The
chain recurrent set CR(X) ⊂M of X is defined as the set of all points x ∈M such
that x ∼X x. Restricted to CR(X), the relation ∼X is an equivalence relation. An
equivalence class under the relation ∼X is called a chain recurrent class: x, y ∈
CR(X) belong to the same chain recurrent class if x ∼X y. In particular, chain
recurrent classes define a partition of the chain recurrent set CR(X).

A point x ∈ M is periodic if there exists T > 0 such that XT (x) = x. The set
of all periodic points is denoted by Per(X), observe that we are also including the
singularities in this set.

An X-invariant compact set Λ is hyperbolic if there is a continuous decompo-
sition of the tangent bundle over Λ, TΛM = Es ⊕ 〈X〉 ⊕ Eu into DXt-invariant
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sub-bundles that verifies the following property: there exists T > 0 such that for
any x ∈ Λ, we have

‖DXT (x)|Es
x
‖ < 1

2
and ‖DX−T (x)|Eu

x
‖ < 1

2
.

A periodic point x ∈ Per(X) is hyperbolic if orbX(x) is a hyperbolic set. Let γ be a
hyperbolic periodic orbit. We denote by W s(γ) the stable manifold of the periodic
orbit γ, which is defined as the set of points y ∈ M such that d(Xt(y), γ) → 0 as
t → +∞. We define in an analogous way the unstable manifold of γ. It is well
known that the stable and unstable manifolds are C1-immersed submanifolds. A
hyperbolic periodic orbit is a sink if the unstable direction is trivial. It is a source if
the stable direction is trivial. A hyperbolic periodic orbit is a saddle if it is neither
a sink nor a source. For a hyperbolic periodic point p we defined its index by
ind(p) := dim(Es).

2.2. Collinear centralizers. In this part, we consider a compact Riemannian
manifold M , and we let r, k ≥ 1 be positive integers. Given x ∈M and u, v ∈ TxM
we denote by 〈u, v〉 the subspace spanned by u and v in TxM .

Definition 2.1 (Collinear centralizer). We say that X ∈ Xr(M) has a collinear
Ck-centralizer if

dim〈X(x), Y (x)〉 ≤ 1,

for every x ∈M and every Y ∈ Ck(X).

We have the following elementary result:

Lemma 2.2. Let X ∈ Xr(M) and assume that the vector field Y ∈ Ck(M)
satisfies dim〈X(x), Y (x)〉 ≤ 1, for every x ∈ M . Then, there exists a function
f ∈ Cs(MX ,R), with s := min{r, k}, such that

Y (x) = f(x)X(x), ∀x ∈MX .

Moreover, the function f is X-invariant, i.e.,

f(Xt(x)) = f(x), ∀x ∈MX , ∀ t ∈ R.

Proof. Let us denote by (·, ·) the scalar product associated to the Riemannian
structure on M . For any x ∈ MX and for any v ∈ TxM , we set πX(x, v) :=

(X(x),v)
(X(x),X(x)) . In particular, πX(x, v)X(x) is the orthogonal projection of the vector

v on the direction spanned by X(x). Let Y ∈ Ck(M) be a vector field that satisfies
dim〈X(x), Y (x)〉 ≤ 1. The function f : MX → R, x 7→ πX(x, Y (x)) is of class Cs,
with s = min{r, k}. Moreover, by the collinearity of the vector fields X and Y , we
have Y = fX.

By (2.1), it holds Y (Xt(·)) = DXt · Y (·). Therefore, for any x ∈ MX and for
any t ∈ R, we have

f(Xt(x))X(Xt(x)) = DXt(x) · (f(x)X(x)) = f(x)DXt(x) ·X(x) = f(x)X(Xt(x)),

where the last equality follows from (2.1), with Y in place of X. Since X(Xt(x)) 6=
0, we obtain f(Xt(x)) = f(x), which concludes the proof. �

In this paper, we obtain a few different criteria which ensure that the C1-
centralizer of a C1 vector field is collinear. The following definition is a very weak
form of expansiveness for flows.
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Definition 2.3. A vector field X ∈ X1(M) is separating if there exists ε > 0 such

that the following holds: if d(Xt(x), Xt(y)) < ε for every t ∈ R, then y ∈ orbX(x).

In Section 3 we will elaborate on this property. In Section 3, we prove the
following criterion for collinearity:

Proposition 2.4. If X ∈ X1(M) is separating, then X has collinear C1-centralizer.

We remark that the separating property is not generic (see Appendix A). So to
obtain that the C1-centralizer of a C1-generic vector field is collinear we will need
another criterion.

In Section 3, we define the notion of unbounded normal distortion (see Definition
3.3). This is an adaptation for flows of the definition of unbounded distortion used
in [BCW09] to prove the triviality of the C1-centralizer of a C1-generic diffeomor-
phism. Using this property we obtain the following proposition.

Proposition 2.5. Let X ∈ X1(M). Suppose that X verifies the following proper-
ties:

• X has unbounded normal distortion;
• every singularity and periodic orbit of X is hyperbolic;
• CR(X) = Per(X).

Then X has collinear C1-centralizer.

2.3. Quasi-trivial centralizers. Let M be a compact manifold.

Definition 2.6 (Quasi-trivial centralizer). Given two positive integers 1 ≤ k ≤ r,
we say that X ∈ Xr(M) has a quasi-trivial Ck-centralizer if for every Y ∈ Ck(X),
there exists a C1 function f : M → R such that X · f ≡ 0 and Y (x) = f(x)X(x),
for every x ∈M .

Actually, by Lemma 2.2, ifX ∈ Xr(M) has a quasi-trivial Ck-centralizer, then for
any Y ∈ Ck(X), the function f in Definition 2.6 is in fact of class Ck in restriction
to MX .

The difference between collinear and quasi-trivial centralizers is to know whether
or not a Ck invariant function defined on MX admits a C1 extension to M . This is
not always the case; indeed, in Section 4 we construct an example of a vector field
with collinear centralizer which is not quasi-trivial.

Nevertheless, when all the singularities of a C1 vector field are hyperbolic,
collinearity can actually be promoted to quasi-triviality:

Theorem A. Let M be a compact manifold. If X ∈ X1(M) has collinear C1-
centralizer and all the singularities of X are hyperbolic, then X has quasi-trivial
C1-centralizer.

A significant part of the present paper is dedicated to the proof of the C1-
genericity of the unbounded normal distortion property (see Section 6). Since the
other assumptions of Proposition 2.5 and Theorem A are already known to be
C1-generic, this allows us to conclude:

Theorem B. Let M be a compact manifold. There exists a residual subset R ⊂
X1(M) such that any X ∈ R has quasi-trivial C1-centralizer.
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2.4. Trivial centralizers. Let M be a compact manifold. Notice that for any
r ≥ 1 and X ∈ Xr(M), we have that cX ∈ Ck(X), for any c ∈ R and 1 ≤ k ≤ r.

Definition 2.7 (Trivial centralizer). For any 1 ≤ k ≤ r, we say that X ∈ Xr(M)
has a trivial Ck-centralizer if Ck(X) is as small as it can be, i.e.,

Ck(X) = {cX : c ∈ R} .

It is easy to construct examples of vector fields whose centralizer is quasi-trivial
but not trivial. In Section 5 we explain how example 3.1 has quasi-trivial centralizer,
but not trivial.

The problem of knowing if a quasi-trivial centralizer is trivial is reduced to the
problem of knowing when a X-invariant function is constant. This problem will be
studied in Section 5.

Our first criterion to obtain triviality is based on the notion of spectral decom-
position. We say that X admits a countable spectral decomposition if the non-
wandering set, Ω(X), satisfies Ω(X) = ti∈NΛi, where the sets Λi are pairwise
disjoint, X-invariant and transitive, i.e., contains a dense orbit.

Theorem C. Let M be a compact connected manifold and let X ∈ X1(M). Assume
that all the singularities of X are hyperbolic, that X admits a countable spectral
decomposition and that the C1-centralizer of X is collinear. Then C1(X) is trivial.

Theorem C has several interesting applications. We now present several scenarios
where we immediately obtain the triviality of the centralizer of a C1-generic vector
field.

In [Pei60], Peixoto proved that a C1-generic vector field on a compact surface is
Morse-Smale. Recall that a vector field is Morse-Smale if the non-wandering set is
the union of finitely many hyperbolic periodic orbits and hyperbolic singularities,
and it verifies some transversality condition. In particular, the non-wandering set
is finite. As a consequence of this result of Peixoto and Theorems B and C, we have
the following corollary.

Corollary A. Let M be a compact connected surface. Then, there exists a residual
set R† ⊂ X1(M) such that for any X ∈ R†, the C1-centralizer of X is trivial.

A C1-vector field X is Axiom A if the non-wandering set is hyperbolic and
Ω(X) = Per(X). It is well known that Axiom A vector fields admits a spectral
decomposition, with finitely many basic pieces.

Corollary B. A C1-generic Axiom A vector field has trivial C1-centralizer.

Remark 2.8. Corollary B actually holds for more a general type of hyperbolic system
called sectional Axiom A. We refer the reader to [MM08] definition 2.14, for a precise
definition.

Another corollary is for C1-vector fields far from homoclinic tangencies in di-
mension three. Let us make it more precise. Recall that a vector field X ∈ X1(M)
has a homoclinic tangency if there exists a hyperbolic non-singular closed orbit γ
and a non-transverse intersection between W s(γ) and Wu(γ). By the proof of Palis
conjecture in dimension three given in [CY17], a C1-generic X ∈ X1(M) which can-
not be approximated by such vector fields admits a finite spectral decomposition,
hence:
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Corollary C. Let M be a compact connected 3-manifold. Then there exists a
residual subset R‡ ⊂ X1(M) such that any vector field X ∈ R‡ which cannot
be approximated by vector fields exhibiting a homoclinic tangency has trivial C1-
centralizer.

As a simple application of Proposition 2.4 and Theorem C, we obtain the trivial-
ity of the centralizer of the flow introduced in [Art15]. This example is a transitive
Komuro expansive flow on the three-sphere such that all its singularities are hyper-
bolic. In particular, by the discussion in [Art16], this flow is separating.

In higher regularity, Pesin’s theory in the non-uniformly hyperbolic case and
Sard’s theorem give us two useful tools to verify triviality of the centralizer. Con-
sider a probability measure µ on M and X ∈ X1(M). We say that µ is X-invariant
if for any measurable set A ⊂ M and any t ∈ R we have µ(A) = µ(Xt(A)). By
Oseledets theorem, for µ-almost every point x, there exist a number 1 ≤ l(x) ≤ d
and l(x)-numbers λ1(x) < . . . < λl(x)(x) with the following properties: there exist
l(x)-subspaces E1(x), . . . , El(x)(x) such that TxM = E1(x)⊕ · · · ⊕El(x)(x) and for
each i = 1, . . . , l(x) and for any non zero vector v ∈ Ei(x) we have

lim
t→±∞

log ‖DXt(x) · v‖
t

= λi(x).

The numbers λi are called Lyapunov exponents. We say that µ is non-uniformly
hyperbolic if for µ-almost every point all the Lyapunov exponents are non-zero
except the direction generated by the vector field X. Using Pesin’s theory, in the
non-uniformly hyperbolic scenario, we obtain:

Theorem D. Let M be a compact manifold of dimension d ≥ 2. Let X ∈ X2(M) be
a vector field with finitely many singularities and let µ be a X-invariant probability
measure such that suppµ = M . If µ is non-uniformly hyperbolic for X, then X has
trivial C1-centralizer.

Theorem D can be applied for non-uniformly hyperbolic geodesic flows, like the
ones constructed by Donnay [Don88] and Burns-Gerber [BG89]. In particular, we
obtain that non-uniformly hyperbolic geodesic flows have trivial centralizer.

In dimension three, under higher regularity assumptions, we are also able to
obtain triviality, for a slightly stronger notion of expansiveness.

Definition 2.9. We say that X ∈ X1(M) is Kinematic expansive if for every ε > 0
there exists δ > 0 such that if x, y ∈M satisfy d(Xt(x), Xt(y)) < δ, for every t ∈ R
then there exists 0 < |s| < ε such that y = Xs(x).

The difference between the separating property and Kinematic expansiveness
is that for the later even points on the same orbit must eventually separate. In
[Art16] it is described a vector field on the Möbius band which is separating but is
not Kinematic expansive.

Theorem E. Let M be a compact 3-manifold and consider X ∈ X3(M). If X is
Kinematic expansive and all its singularities are hyperbolic, then its C3-centralizer
is trivial.

Remark 2.10. The Kinematic expansive condition does not imply that the system
admits a countable spectral decomposition. Hence, we cannot use Theorem C to
conclude Theorem E.
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The technique we use in the above theorem, which relies on Sard’s Theorem, also
leads to a criteria to obtain triviality from a collinear centralizer of high regularity.

Theorem F. Let M be a compact, connected Riemannian manifold of dimension
d ≥ 1, and let X ∈ Xd(M). Assume that every singularity and periodic orbit of X

is hyperbolic, that Ω(X) = Per(X) and that the Cd-centralizer of X is collinear.
Then X has trivial Cd-centralizer.

This criterion is not sufficient if we want to obtain a generic result, due to the
lack of a Cd-closing lemma. However, following the arguments of [Hur86, Man73],
we can show that Cd-generically the triviality of the Cd-centralizer is equivalent to
the collinearity of the Cd-centralizer.

Theorem G. Let M be a compact, connected Riemannian manifold of dimension
d ≥ 1. There exists a residual set RT ⊂ Xd(M) such that for any X ∈ RT , the
Cd-centralizer Cd(X) of X is collinear if and only if it is trivial.

Organization of the paper: The structure of this paper has two parts. The
first part deals with general criteria for collinearity, quasi-triviality and triviality of
the centralizer (Sections 3,4 and 5). The second part deals with our generic results
(Section 6). Propositions 2.4 and 2.5 are proved in Section 3. In Section 4 we prove
Theorem A. Theorems C, D, E, F and G are proved in Section 5. Finally in Section
6 we prove Theorem B.

3. Collinearity

In this section we obtain three criteria for collinear centralizer. The first criterion
is given by Proposition 2.4, which is based on the notion of being separating (see
Definition 2.3). There are several different notions of “expansiveness for flows. The
property of being separating is a very weak form of expansiveness. Indeed, all the
usual definitions for flows (Bowen-Walters expansive or Komuro expansive) imply
that the flow is separating, see [Art16] for a discussion. Let us give an example of
a separating flow.

Example 3.1. Fix two positive real numbers 0 < a < b and consider the annulus on
R2 given by A := {(x, y) ∈ R2 : a ≤ ‖(x, y)‖ ≤ b}. Using polar coordinates (r, θ)
on A, we consider the vector field X(r, θ) := ∂

∂θ . Observe that every orbit of X is
periodic with different period. It is easy to see that this flow is separating.

Figure 1. Example 3.1.

9



Proof of Proposition 2.4. Let X ∈ X1(M) be a separating vector field with sepa-
rating constant ε > 0 and suppose that there exists Y ∈ C1(X) that is not collinear
to X. Thus there is a point x ∈M such that dim〈X(x), Y (x)〉 = 2.

Let (ϕ,U) be a small flow box for the flow Xt around x, that is, ϕ : M ⊃ U →
W ⊂ Rd = R×Rd−1 is a local chart such that ϕ∗X = (1, 0). In particular we have
that for every point p ∈ U there is a positive number ρ(p) > 0 such that

ϕ(X(−ρ(p),ρ(p))(p)) ⊂ ϕ(p) + (−ρ(p), ρ(p))× {0}.

Fix δ > 0 small enough such that for each s ∈ (−δ, δ), we have Ys(x) ∈ U ,
dC0(Ys, id) < ε, and dim〈Y (Ys(x)), X(Ys(x))〉 = 2. Thus in the flow box, we have
that Dϕ(Ys(x)) · Y (Ys(x)) = (Y1(s), Y2(s)), with Y1(s) ∈ R and Y2(s) ∈ Rd − {0}.
In particular, for each t ∈ R such that Xt(x) ∈ Y(−δ,δ)(x), there exists an open
interval It := (t− ρ(Xt(x)), t+ ρ(Xt(x))) ⊂ R such that #XIt(x) ∩ Y(−δ,δ)(x) = 1.

We conclude that the set orbX(x)∩ Y(−δ,δ)(x) is at most countable. Then, since

(−δ, δ) is uncountable, there is s ∈ (−δ, δ) such that Ys(x) /∈ orbX(x). Now, by
commutativity, and by our choice of δ, we obtain

d(Xt(Ys(x)), Xt(x)) = d(Ys(Xt(x)), Xt(x)) < ε, for every t ∈ R,

which is a contradiction.
�

The following theorem will be used to prove Theorem D. It also gives another
criterion to obtain collinearity of the C1-centralizer.

Proposition 3.2. Let X ∈ X1(M). Suppose that X verifies the following condition:
there exists a dense set D ⊂ M such that for any x ∈ D and any non zero vector
v ∈ TxM − 〈X(x)〉, it holds

‖DXt(x) · v‖ → +∞, for t→ +∞ or t→ −∞.

Then X has collinear centralizer.

Proof. Let Y ∈ C1(X). Then, by (2.1), for any x ∈M , and t ∈ R, it holds

Y (Xt(x)) = DXt(x) · Y (x).

Assume that Y (x) is not collinear to X(x). Since this is an open condition, we can
take x belonging to the set D. By compactness of M , we also have supp∈M ‖Y (p)‖ <
+∞. However, by hypothesis,

‖DXt(x) · Y (x)‖ → +∞, for t→ +∞ or t→ −∞,

which is a contradiction. �

Some examples of vector fields that verify the conditions of Proposition 3.2 are
non-uniformly hyperbolic divergence-free vector fields and quasi-Anosov flows.

We remark that the conditions of collinearity in Propositions 2.4 and 3.2 are
not generic (see Appendix A). Therefore, to obtain that the C1-centralizer of a
C1-generic vector field is collinear we will need another criterion, which is given by
Proposition 2.5.

Let X ∈ X1(M) and let MX := M − Zero(X) be as in (2.2). Over MX we may
consider the normal vector bundle NX defined as NX,p := 〈X(p)〉⊥, for p ∈ MX ,
where 〈X(p)〉⊥ is the orthogonal complement of the direction 〈X(p)〉 inside TpM .
Let ΠX : TMX → NX be the orthogonal projection on NX . On NX we have a well
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defined flow, called the linear Poincaré flow, which is defined as follows: for any
p ∈MX , any v ∈ NX,p, and t ∈ R, the image of v by the linear Poincaré flow is

PXp,t(v) := (ΠX
Xt(p)

◦DXt(p)) · v. (3.1)

The key criterion to study the centralizer of C1-generic vector fields is based on
the following property.

Definition 3.3 (Unbounded normal distortion). Let X ∈ X1(M) be a C1 vector
field. We say that X verifies the unbounded normal distortion property if the
following holds: there exists a dense subset D ⊂ M − CR(X), such that for any

x ∈ D, y ∈ M − CR(X) such that y /∈ orbX(x) and K ≥ 1, there is n ∈ (0,+∞),
such that

| log detPXx,n − log detPXy,n| > K.

Proof of Proposition 2.5. Let X ∈ X1(M) be a vector field with the unbounded
normal distortion property and let D ⊂M − CR(X) be the set given in Definition
3.3. Take Y ∈ C1(X). Assume by contradiction that Y is not collinear with X on
M − CR(X). The set of points x ∈ M such that X(x) and Y (x) are non-collinear
is open, hence by density of the set D, there exists a point x ∈ D such that Y (x)
and X(x) are not collinear.

By the same argument as in the proof of Proposition 2.4, we can always find
s > 0 arbitrarily close to 0 such that Ys(x) /∈ orbX(x). Observe that for any t ∈ R,
it holds

|detPXYs(x),t| = |det ΠX
Xt(Ys(x)).detDXt(Ys(x))|NX,Ys(x)

|.
Since X commutes with Y , we have that

DXt(Ys(x)) = DYs(Xt(x)) ◦DXt(x) ◦ (DYs(x))−1. (3.2)

Using the coordinates NX ⊕ 〈X〉 on TMX , for each s ∈ R, we obtain a linear map
Ls,x : NX,x → 〈X(x)〉 such that

(DYs(x))−1(NX,Ys(x)) = graph(Ls,x).

Furthermore, ‖Ls,x‖ can be made arbitrarily small as s → 0, since Ys is C1-close
to the identity. Using the coordinates NX,x ⊕ 〈X(x)〉, any vector v ∈ graph(Ls,x)
can be written as v = (vN , Ls,x(vN )), where vN := ΠX

x (v). For any such vector v,
for each t ∈ R and using the coordinates NX,Xt(x) ⊕ 〈X(Xt(x))〉, we have

DXt(x)v =

(
PXx,t(vN ), Ls,x(vN )

‖X(Xt(x))‖
‖X(x)‖

+

(
DXt(x)vN ,

X(Xt(x))

‖X(Xt(x))‖

))
,

(3.3)
where (·, ·) inside the second coordinate of the right side of (3.3) denotes the scalar
product given by the Riemannian structure.

On the other hand, for any vector vN ∈ NX,x and any t ∈ R, we have

DXt(x)vN =

(
PXx,t(vN ),

(
DXt(x) · vN ,

X(Xt(x))

‖X(Xt(x))‖

))
. (3.4)

Set c := ‖X(x)‖ > 0, and let c̃ ≥ 1 be a constant such that supp∈M ‖X(p)‖ < c̃.
For any vector vN ∈ NX,x, we obtain

|Ls,x(vN )| ‖X(Xt(x))‖
‖X(x)‖

< ‖Ls,x‖ · ‖vN‖
c̃

c
,

11



which can be made arbitrarily close to 0 by taking s small enough. This holds for
any t ∈ R. Hence, comparing (3.3) and (3.4) we conclude that DXt(x)|graph(Ls,x) is
arbitrarily close to DXt(x)|NX,x

, for any t ∈ R.
By (3.2), we obtain∣∣∣detPXYs(x),t

∣∣∣ =∣∣det ΠX
Ys(Xt(x))|DYs(Xt(x))DXt(x)·graph(Ls,x)

∣∣ · ∣∣detDYs(Xt(x))|DXt(x)·graph(Ls,x)

∣∣ ·
·
∣∣detDXt(x)|graph(Ls,x)

∣∣ · ∣∣(det(DYs(x))−1|NX,Ys(x)

∣∣ =: A ·B · C ·D.

Observe that∣∣detPXx,t
∣∣ =

∣∣∣det ΠX
Xt(p)

|DXt(x)NX,x

∣∣∣ . ∣∣detDXt(x)|NX,x

∣∣ =: I · II.

Notice that B and D are arbitrarily close to 1 if s ∈ R is small enough. By our
previous discussion, for any t ∈ R the value of C is arbitrarily close to the value of
II, for s sufficiently small.

Our previous discussion also implies that DYs(Xt(x))DXt(x) · graph(Ls,x) is
close to DXt(x) ·NX,x, since Ys(Xt(x)) is close to Xt(x). Thus, the value of A can
be made arbitrarily close to the value of I, for s ∈ R small enough. Hence, we can
take s small such that Ys(x) /∈ orbX(x) and

1

2
<

∣∣∣detPXYs(x),t

∣∣∣∣∣detPXx,t
∣∣ < 2, for any t ∈ R.

This is a contradiction with the unbounded normal distortion property. We con-
clude that any vector field Y ∈ C1(X) verifies that Y |M−CR(X) is collinear to
X|M−CR(X).

Suppose that for some x ∈ CR(X) we have that Y (x) is not collinear to X(x).
Since this is an open condition and the hyperbolic periodic points are dense in
CR(X), we can suppose that x is a periodic point. By a calculation similar to the
one made in the proof of Proposition 3.2 we would then have that ‖Y (Xt(x))‖ →
+∞ for t→ +∞ or t→ −∞, which contradicts the fact that supp∈M ‖Y (p)‖ < +∞.
Thus we have that Y is also collinear to X on CR(X). �

4. Quasi-triviality

This section has two parts. In the first part we construct an example of a vector
field whose centralizer is collinear but not quasi-trivial. In the second part we prove
that under the condition that every singularity is hyperbolic we can promote the
collinearity to quasi-triviality.

4.1. Collinear does not imply quasi-trivial. To obtain a quasi-trivial central-
izer from a collinear centralizer is an issue of knowing whether an invariant function
f : MX → R admits a C1 extension to the set Zero(X). The simple example below
shows that this is not always possible. Indeed we construct an example of a vector
field whose C1-centralizer is collinear but not quasi-trivial.

Example 4.1. Let V ∈ X∞(T2) generate an irrational flow. Fix a point p ∈ T2

and consider a function ψ : T2 → [0, 1] such that ψ(x) = 0 ⇐⇒ x = p. Let
12



Z ∈ X∞(T2) be defined by Z = ψV . As it is described in example 2.8 in [Art16],
Z is separating. Now, consider f, g : [0, 1)→ [1,+∞) be given, respectively, by

f(t) =
1

1− t
and g(t) =

1

1− t2
.

Observe that both functions diverge to +∞ when t→ 1, but the function f
g = 1+ t

extends smoothly to [0, 1]. Consider M = [0, 1] × T2 and extend Z to M by
Z(t, x) = Z(x). Define the vector field X(t, x) = 1

g(t)Z(t, x). Notice that X is

tangent to the fiber {t} × T2, and the trajectories on each fiber are the same,
but travelled with different speeds. Then, the proof of Proposition 2.4 shows that
X ∈ X∞(M) has collinear centralizer.

Nevertheless the vector field Y = f
gZ is smooth and commutes with X. Indeed,

both vector fields vanish at the fiber {1}×T2. Moreover, both f and g are constant
on each fiber and for t < 1 one has

Y (t, x) = f(t)X(t, x).

As X is tangent to each fiber {t}×T2, we conclude that [X,Y ] = 0. Since f(t)→∞
when t→ 1, this proves that X has not a quasi-trivial centralizer.

The above example has uncountably many singularities, and thus it is not sep-
arating. This raises the following question.

Question 3. Is there a separating vector field whose centralizer is not quasi-trivial?

We do not know what to expect as an answer to this question.

4.2. The case of hyperbolic zeros. The main result of this section is Theo-
rem 4.3 below, in which we obtain the quasi-triviality from collinearity of C1(X)
assuming only that all the singularities of X are hyperbolic.

Definition 4.2. A function f : M → R is called a first integral of X if it is of class
C1 and satisfies X · f ≡ 0. We denote by I1(X) the set of all such maps.

In particular, for any c ∈ R, the constant map c(x) := c is in I1(X), and then,
we always have R ' {c : c ∈ R} ⊂ I1(X). The following theorem is a reformulation
in terms of I1(X) of Theorem A.

Theorem 4.3. Let X ∈ X1(M). If X has collinear centralizer and all the singu-
larities of X are hyperbolic, then X has quasi-trivial C1-centralizer, in the sense of
Definition 2.6. More precisely, we have

C1(X) = {fX : f ∈ I1(X)}.

This theorem is an immediate consequence of Propositions 4.4, 4.5, and 4.6 be-
low. We divide the proof into two subsections to emphasize that the technique to
deal with singularities that are saddles is different from the technique to deal with
sinks and sources. We also remark that Theorem 4.3 gives a significant improvement
compared with previous works on centralizers of vector fields, since we only need
C1 regularity. The results that were known previously used Sternberg’s linearisa-
tion results, which require higher regularity of the vector field and non-resonant
conditions on the eigenvalues of the singularity, see for instance [BRV18].

13



4.3. When the singularity is of saddle type. Given any vector field X ∈
X1(M), and Y ∈ C1(X), by Lemma 2.2, we know that Y |MX

= fX|MX
, for some

C1, X-invariant function f : MX → R. Assume that σ ∈ Zero(X) is a saddle type
singularity. In Propositions 4.4 and 4.5, we show that f can be extended to a C1

function in a neighbourhood of σ.

Proposition 4.4. Let X ∈ X1(M) and let f : MX → R be an X-invariant con-
tinuous function. If σ ∈ Zero(X) is a saddle type singularity, then f admits a
continuous extension to σ.

Proof. Recall that M has dimension d ≥ 0. Fix a point ps ∈ W s
loc(σ). We claim

that for any point qu ∈ Wu(σ) we have that f(ps) = f(qu). By the X-invariance
of f , it is enough to consider qu ∈ Wu

loc(σ). Let (Ds
n)n∈N be a sequence of discs of

dimension ind(σ), centred on qu, with radius 1
n and transverse to Wu

loc(σ). Similarly,
consider a sequence (Du

n)n∈N of discs of dimension d− ind(σ), centred on ps, with
radius 1

n , and transverse to W s
loc(σ).

For each n ∈ N, by the lambda-lemma (see [PM82] chapter 2.7) there exists
tn > 0 such that Xtn(Du

n) t Ds
n 6= ∅. In particular, there exists a point xn ∈ Du

n

that verifies Xtn(xn) ∈ Ds
n. It is immediate that xn → ps, as n → +∞. Since the

function f is continuous on MX , we have that f(xn) → f(ps). We also have that
Xtn(xn) → qu as n → +∞. Hence, f(Xtn(xn)) → f(qu). By the X-invariance of
f , we have

f(ps) = lim
n→+∞

f(xn) = lim
n→+∞

f(Xtn(xn)) = f(qu).

Analogously, we can prove that for a fixed q′u ∈ Wu
loc(σ) and for any p′s ∈ W s(σ),

it is verified f(p′s) = f(q′u). We conclude that f |W s(σ)−{σ} = f |Wu(σ)−{σ} = c, for
some constant c ∈ R. In particular, we can define a continuous extension of f to
the singularity σ by setting f(σ) := c. �

Proposition 4.5. Let X ∈ X1(M) and let f : MX → R be an X-invariant function
of class C1. If σ ∈ Zero(X) is a saddle type singularity, then f can be extended to
a C1 function in a neighbourhood of σ, by setting ∇f(σ) := 0.

Proof. By Proposition 4.4, we already know that the function f admits a continuous
extension to σ. We claim that limx→σ∇f(x) = 0. Let us fix r > 0 sufficiently small
such that B(σ, 2r)∩Zero(X) = {σ} and set K∗ := W ∗loc(σ)∩∂B(σ, r), for ∗ ∈ {s, u}.
In the following, given any two points ps ∈ Ks and qu ∈ Ku, we let (Du

n)n∈N be a
sequence of discs of dimension d− ind(σ), centred on ps, with radius 1

n , transverse
to W s

loc(σ), and we let (Ds
n)n∈N be a sequence of discs of dimension ind(σ), centred

on qu, with radius 1
n , transverse to Wu

loc(σ).
14



Figure 2. Proposition 4.5.

For any n ≥ 0, by the lambda-lemma, there exists a sequence (εn)n≥0 ∈ (R∗+)N,
with εn → 0 as n → +∞, such that for any z ∈ B(σ, εn), if ps ∈ Ks, qu ∈ Ku are
suitably chosen, and for Du

n, D
s
n as defined previously, then there exist xn ∈ Du

n,
yn ∈ Ds

n, and sn, tn > 0, such that z = Xsn(xn) = X−tn(yn). Note that necessarily,
sn, tn → +∞ as n→ +∞. Fix ps ∈ Ks, qu ∈ Ku and let (zn)n≥0 be a sequence of
points such that zn = Xsn(xn) = X−tn(yn) ∈ B(σ, εn), with xn ∈ Du

n, yn ∈ Ds
n,

sn, tn > 0, for all n ≥ 0. It is immediate that xn → ps and yn → qu, as n → +∞.
Since the function f is C1 on MX , we deduce that

lim
n→+∞

∇f |Du
n

= ∇f(ps), lim
n→+∞

∇f |Ds
n

= ∇f(qu). (4.1)

We set Sun := {v ∈ Txn
Du
n : ‖v‖ = 1} and Ssn := {v ∈ TynDs

n : ‖v‖ = 1}. Let v ∈ Sun.
By the X-invariance, we have f(zn) = f(Xsn(xn)) = f(xn). Differentiating the
equation f(.) = f ◦Xt(.) we obtain

(∇f(zn), DXsn(xn) · v) = (∇f(Xsn(xn)), DXsn(xn) · v) = (∇f(xn), v). (4.2)

By the lambda-lemma, we know that dC1(Xsn(Du
n), Du)→ 0, for some disc Du ⊂

Wu
loc(σ). In particular, ∠(DXsn(xn) · TxnD

u
n, E

u(σ)) → 0, and ‖DXsn(xn) · v‖ →
+∞. By (4.1), by compactness of Ks, and since ‖v‖ = 1, the right hand side of
(4.2) is uniformly bounded, independently of the choices of ps, qu, (zn)n and n, thus,

lim
n→+∞

(
∇f(zn),

DXsn(xn) · v
‖DXsn(xn) · v‖

)
= lim
n→+∞

(∇f(xn), v)

‖DXsn(xn) · v‖
= 0.

We deduce that limn→+∞ ‖πun(∇f(zn))‖ = 0, where πun : TznM → Tzn(Xsn(Du
n))

denotes the orthogonal projection onto Tzn(Xsn(Du
n)). Arguing in the same way for
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X−tn(Ds
n), we also have limn→+∞ ‖πsn(∇f(zn))‖ = 0, where πsn is the orthogonal

projection onto Tzn(X−tn(Ds
n)). Since TznM = Tzn(Xsn(Du

n)) ⊕ Tzn(X−tn(Ds
n)),

then for some sequence (δn)n≥0 going to 0, and for any z ∈ B(σ, εn), we have

‖∇f(z)‖ ≤ δn.
We conclude that ∇f can be extended by continuity to σ, by setting ∇f(σ) := 0.
In particular, the extension of f is C1 in a neighbourhood of σ. �

4.4. When the singularity is type sink or source. We now deal with hyper-
bolic singularities of type sink or source.

Proposition 4.6. Let X,Y ∈ X1(M) such that [X,Y ] = 0 and dim〈X(x), Y (x)〉 ≤
1, for every x ∈ M . Assume that σ ∈ Zero(X) is a hyperbolic sink. Then, there
exists c ∈ R such that Y (x) = cX(x), for every x ∈W s(σ).

In the proof of Proposition 4.6 we shall use the following elementary lemma.

Lemma 4.7. Let (E, ‖ · ‖) be a finite-dimensional vector space endowed with a
norm. Let Λ be an infinite set and assume that for each λ ∈ Λ, there exists a non-
empty compact subset Kλ ⊂ S := {v ∈ E : ‖v‖ = 1} of the sphere of unit vectors in
(E, ‖ · ‖), such that

λ′ 6= λ in Λ =⇒ Kλ ∩Kλ′ = ∅.
Suppose that dimE ≥ 2. Then, there exist a finite subset {λ, λ1, . . . , λk} ⊂ Λ and
vectors {u, u1, . . . , uk} such that

(1) u ∈ Kλ and u` ∈ Kλ`
, for each ` = 1, . . . , k;

(2) u belongs to the subspace spanned by {u1, . . . , uk};
(3) {u1, . . . , uk} is a linearly independent set.

Proof. We begin with a simple observation that we will use repeatedly in this proof:
for each u ∈ S, −u is the only other vector in S which is collinear with u.

Now, since Λ is infinite, we can pick a sequence (λn)n≥0 ⊂ Λ, whose terms are
distinct. For each n, choose a vector un ∈ Kλn

. Since dimE ≥ 2, and the sets Kλ

are pairwise disjoint, by the simple observation above, we can assume without lost
of generality that the set {u1, u2} is linearly independent. Assume by contradiction
that the conclusion does not hold. Then, we conclude by induction that for every
n the set {u1, u2, u3, . . . , un} must be linearly independent. But this is absurd as
E is finite dimensional. �

Proof of Proposition 4.6. By Lemma 2.2, for any x ∈MX = M−Zero(X), we have
Y (x) = f(x)X(x), for some C1 function f : MX → R. Moreover, f(Xt(x)) = f(x)
for every x ∈ MX and t ∈ R. Notice that, as σ is an isolated zero of X, we have
σ ∈ Zero(Y ). Take ε > 0 small so that B(σ, ε) ⊂ W s(σ) and let S := ∂B(σ, ε).
In particular, notice that x ∈ S implies limt→+∞Xt(x) = σ. Also, for every
x ∈W s(σ), there exists T ∈ R such that XT (x) ∈ S.

By the above remarks, the proof of the proposition is reduced to the proof of the
following claim.

Claim 1. Df(p) = 0 for every p ∈ S.

We shall postpone the proof of Claim 1. Take a point p ∈ S and consider the set

V (p) :=

{
u ∈ TσM : ∃ tn →∞, u = lim

n→∞

X(Xtn(p))

‖X(Xtn(p))‖

}
.
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By compactness, V (p) is non-empty, and every u ∈ V (p) is a unit vector; in partic-
ular, 0 /∈ V (p). The following claims are the key arguments for this proof.

Claim 2. If u ∈ V (p) then DY (σ) · u = f(p)DX(σ) · u.

Proof. Fix some t ∈ R. Since Y (Xt+s(p)) = f(p)X(Xt+s(p)) for every s ∈ R,
taking the derivative with respect to s on both sides we obtain

DY (Xt(p)) ·
(

X(Xt(p))

‖X(Xt(p))‖

)
= f(p)DX(Xt(p)) ·

(
X(Xt(p))

‖X(Xt(p))‖

)
.

By using this formula with t = tn and letting n→∞ we conclude that DY (σ) ·u =
f(p)DX(σ) · u, proving the claim. �

Claim 3. If p, q ∈ S and V (p) ∩ V (q) 6= ∅ then f(p) = f(q).

Proof. Assume that there exists u ∈ V (p) ∩ V (q). Then, by Claim 2, one has

DY (σ) · u = f(p)DX(σ) · u = f(q)DX(σ) · u.

As DX(σ) is an invertible linear map (because all eigenvalues are negative) this
implies that (f(p)− f(q))u = 0, and since u 6= 0, the claim is proved. �

We are now in position to give the proof of Claim 1. Assume by contradiction
that the claim is not true. Then, there exists U ⊂ S and real numbers a < b such
that f : U → [a, b] is surjective.

Now, for every t ∈ [a, b], we choose some point pt ∈ U ∩ f−1(t), and we consider
the family of compact subsets {V (pt)}t∈[a,b] ⊂ TσM of unit vectors. As t 6= s
implies f(pt) 6= f(ps), one obtains from Claim 3 that the family {V (pt)}t∈[a,b]

satisfies all the assumptions of Lemma 4.7.
Thus, there exists a finite set {p, p1, . . . , pk} ⊂ U and vectors u ∈ V (p), u` ∈

V (p`), ` = 1, . . . , k, with u ∈ 〈u1, . . . , uk〉 and {u1, . . . , uk} linearly independent,
and such that f(pi) 6= f(pj) 6= f(p), for every i, j ∈ {1, . . . , k}.

Take α1, . . . , αk ∈ R such that u =
∑k
`=1 α

`u`. Using Claim 2 we can write

DY (σ) · u = f(p)DX(σ) · u = DX(σ) ·

(
k∑
`=1

f(p)α`u`

)
.

Also

DY (σ) · u` = f(p`)DX(σ) · u`, ∀ ` = 1, . . . , k,

which implies that

DY (σ) · u = DX(σ) ·

(
k∑
`=1

f(p`)α
`u`

)
.

Since DX(σ) is invertible we must have
∑k
`=1 f(p)α`u` =

∑k
`=1 f(p`)α

`u`, and as
{u1, . . . , uk} is linearly independent, this gives

f(p)α` = f(p`)α
`, for every ` = 1, . . . , k.

Since u 6= 0 there exists some α` 6= 0. However, this implies that f(p) = f(p`), a
contradiction. �

We now give the proof of Theorem 4.3.
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Proof of Theorem 4.3. Assume that C1(X) is collinear and that each singularity
σ ∈ Zero(X) is hyperbolic. Let us consider Y ∈ C1(X). By Lemma 2.2, there
exists a C1 function f : MX → R which satisfies X · f ≡ 0 on MX and such that
Y (x) = f(x)X(x), for every x ∈ MX . By assumption, the singularities of X
are hyperbolic, hence they are isolated, and Y (σ) = 0, for all σ ∈ Zero(X). By
Propositions 4.4, 4.5 and 4.6, we can extend f to a C1 invariant function on M .
We conclude that f is a first integral of X, and Y = fX.

Conversely, assume that f : M → R is a first integral of X. We define a vector
field Y ∈ X1(M) as Y (x) := f(x)X(x), for every x ∈ M . Indeed, both f and X
are of class C1, thus Y is C1 too. Moreover, we have Y ∈ C1(X), since

[X,Y ] = (X · f)X + f [X,X] = 0. �

5. The study of invariant functions and trivial centralizers

The main focus of this section is the study of invariant functions. An invariant
function is also called a first integral of the system. There are several works that
study the existence of non trivial (non constant) first integrals, see for instance
[ABC16, FP15, FS04, Hur86, Man73, Pag11]. In this work we study dynamical
conditions that imply the non-existence of first integrals.

First, it is easy to obtain examples of vector fields with quasi-trivial C1-
centralizer which is not trivial. Indeed consider the vector field in example 3.1.
Since X is separating, it has collinear C1-centralizer. This flow is non-singular,
hence it has quasi-trivial C1-centralizer. Now take any non-constant C1-function
f which is constant on each orbit, that is, a function which depends only on the
coordinate r. The vector field Y = fX belongs to the C1-centralizer of X, therefore
the centralizer of X is only quasi-trivial.

Let X ∈ X1(M). Recall that a compact set Λ is a basic piece for X if Λ is
X-invariant and transitive, that is, it has a dense orbit. We say that X admits a
countable spectral decomposition if Ω(X) = ti∈NΛi, where the sets Λi are pairwise
disjoint basic pieces.

Theorem 5.1. Let X ∈ X1(M). If X admits a countable spectral decomposition
then any continuous X-invariant function is constant.

Proof. Let f : M → R be a continuous X-invariant function. Suppose that f is
not constant. Since M is connected, there exist two real numbers a < b such
that f(M) = [a, b]. It is easy to see that in each basic piece the function f is
constant: this follows from the transitivity of each basic piece. For each i ∈ N
define ci := f(Λi). Since X admits a countable spectral decomposition, the set
C := {c1, c2, . . . } is at most countable and in particular [a, b] − C is non-empty.
Take any value c ∈ [a, b]− C and consider Λ := f−1({c}).

The set Λ is compact and X-invariant. Hence, for any point p ∈ Λ we must have
ω(p) ⊂ Λ, where ω(p) is the set of all accumulations points of the future orbit of
p. By the countable spectral decomposition, ω(p) must be contained in some basic
piece Λi, which implies that Λ∩Λi 6= ∅. Since Λ is a level set of f , this implies that
ci = f(Λi) = f(Λ) = c and this is a contradiction with our choice of c. �

Theorem C follows easily from Theorems A and 5.1.
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5.1. First integrals and trivial C1-centralizers. Let M be a compact con-
nected manifold. Recall that for any X ∈ X1(M), we let I1(X) := {f ∈ C1(M,R) :
X · f ≡ 0} be the set of all C1 functions which are invariant under X. As an easy
consequence of Theorem A, we obtain the following lemma.

Lemma 5.2. Let X ∈ X1(M). Assume that the singularities of X are hyperbolic
and that the C1-centralizer of X is collinear. Then X has trivial C1-centralizer if
and only if the set of first integrals of X is trivial, i.e., I1(X) ' R.

As an immediate consequence of Theorem 5.1 and Lemma 5.2, we obtain:

Corollary 5.3. Let X ∈ X1(M) be such that X admits a countable spectral de-
composition and all its singularities are hyperbolic. If the C1-centralizer of X is
collinear, then it is trivial.

The following lemma will be used several times in this section.

Lemma 5.4. Let M be a compact manifold of dimension d ≥ 1 and let X ∈ X1(M).
Then, for any f ∈ I1(X) and for any hyperbolic singularity or hyperbolic periodic
point p ∈ Zero(X) ∪ Per(X), it holds that ∇f(p) = 0.

Proof. Let X ∈ X1(X) be as above and let f ∈ I1(X). If σ ∈ Zero(X) is a
hyperbolic singularity, then it follows from Propositions 4.5 and 4.6 that∇f(σ) = 0.
Assume now that for some regular hyperbolic periodic point p ∈ Per(X), we have
∇f(p) 6= 0. Then, we have the hyperbolic decomposition along its orbit given by

TorbX(p)M = Es ⊕ 〈X〉 ⊕ Eu.

Note that f |W s(p) = f |Wu(p) = f(p): this follows easily from the X-invariance of f .

Since ∇f(p) 6= 0, by the local form of submersion, we have that Σ := f−1({f(p)})
is locally contained in a submanifold D of dimension d− 1. In particular, TpD is a
subspace of dimension d− 1 contained in TpM . However, our previous observation
implies that W s

loc(p) ⊂ Σ and Wu
loc(p) ⊂ Σ. This implies that Es(p) ⊕ 〈X(p)〉 ⊕

Eu(p) ⊂ TpD. By the hyperbolicity of p, we have that TpM = Es(p) ⊕ 〈X(p)〉 ⊕
Eu(p), but this is a contradiction with the fact that TpD has dimension d− 1. �

For surfaces where the Poincaré-Bendixson Theorem holds true, any level set of
an invariant function f has to contain a singularity or a periodic orbit, which forces
f to be constant in the generic case where the latter are hyperbolic.

Proposition 5.5. Let M := S2 be the two dimensional sphere, and let X ∈ X1(M)
be such that every singularity and periodic orbit of X is hyperbolic. Then any
continuous function that is invariant under the flow X is constant.

Proof. Let X ∈ X1(M) be as above, and let f : X → R be a continuous function
which satisfies f(Xt(x)) = f(x) for all x ∈ M and t ∈ R. Assume that f is non-
constant. Then f(M) = [a, b], with a < b ∈ R. By assumption, each singularity of
X is hyperbolic, hence there are finitely many of them. Let c ∈ [a, b]− f(Zero(X)).
For any x ∈ f−1({c}), it follows from Poincaré-Bendixson Theorem that ω(x) is a
closed orbit formed by regular points, and by our assumption, ω(x) is hyperbolic.
Moreover, ω(x) ⊂ f−1({c}), since f is invariant under X. In particular, for each
c ∈ [a, b]− f(Zero(X)), the level set f−1({c}) contains a hyperbolic periodic orbit.
This is a contradiction, since [a, b]− f(Zero(X)) is uncountable, while there can be
at most countably many hyperbolic periodic orbits. �
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5.2. Some results in higher regularity. As we mentioned in Section 2, using
Sard’s theorem and Pesin’s theory we can obtain more information about the in-
variant functions.

Theorem 5.6. Let M be a compact, connected Riemannian manifold of dimension
d ≥ 1 and let X ∈ X1(M). Suppose that X verifies the following conditions:

• every singularity and periodic orbit of X is hyperbolic;
• Ω(X) = Per(X).

Then any function f : MX → R which is X-invariant and such that f |MX
is of

class Cd is constant.

Proof. Let f : MX → R be an X-invariant function such that f |MX
is of class Cd.

By assumption, each singularity σ ∈ Zero(X) is hyperbolic, thus by Propositions 4.4
and 4.6, f admits a continuous extension to the whole manifold M . Suppose that f
is not constant. Then, there exist two real numbers a < b such that f(M) = [a, b].
All the singularities are hyperbolic, hence there are at most finitely many of them.
In particular, I ⊂ f(M) − f(Zero(X)) for some non-trivial open interval I ⊂ R.
Since f |MX

is of class Cd, then by Sard’s theorem, there exists a set R ⊂ I of
full Lebesgue measure, such that each c ∈ R is a regular value of f , that is, any
x ∈ f−1({c}) verifies ∇f(x) 6= 0.

Fix a value c ∈ R− f(Zero(X)). By the same reason as in the proof of Theorem
5.1, we have that f−1({c}) ∩ Ω(X) 6= 0. The fact that c is a regular value implies
that there exists y ∈ Ω(X)∩MX such that ∇f(y) 6= 0, thus by the continuity of X
and ∇f , there exists a neighbourhood V ⊂MX of y such that the gradient of f is
non-zero at any q ∈ V. Using the density of periodic points in the non-wandering
set, we conclude that there exists a regular periodic point p ∈ Per(X)∩V such that
∇f(p) 6= 0. By Lemma 5.4, we get a contradiction, since by assumption, the point
p is hyperbolic. �

As a consequence of Theorem 5.6, we can prove Theorem F.

Proof of Theorem F. Let X ∈ Xd(M) be as above and let Y ∈ Cd(X). By the
collinearity of Cd(X), and since all the singularities of X are hyperbolic, Lemma
2.2 and Theorem 4.3 imply that Y = fX, where f is a X-invariant C1 function
such that f |MX

is of class Cd. We deduce from Theorem 5.6 that f is constant.
Therefore, Cd(X) is trivial. �

Using the ideas from [Man73], we are able to prove Theorem G.

Proof of Theorem G. By Kupka-Smale Theorem, there exists an open and dense
subset UKS ⊂ Xd(M) such that for any X ∈ UKS , any singularity of X is hyper-
bolic. Let S(M) be the pseudometric space of subsets of M with the Hausdorff
pseudometric. By [Tak71], there exists a residual subset Rd ⊂ Xd(M) such that
the function Ω: Rd → S(M) which assigns to X ∈ Rd its non-wandering set is
continuous. Let us define the residual set RT := UKS ∩ Rd ⊂ Xd(M), and let
X ∈ RT . Notice that X has finitely many singularities, since they are hyperbolic.

Suppose that X has collinear Cd-centralizer and let Y ∈ Cd(X). By the collinear-
ity, as a consequence of Lemma 2.2 and Theorem 4.3, we have Y = fX, for some
X-invariant C1 function f such that f |MX

is of class Cd. Assume that f is non-
constant. Then, as in the proof of Theorem 5.6, f(M)−f(Zero(X)) contains a non-
trivial open interval I ⊂ R. Consider a regular value c ∈ I (this set is non-empty
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by Sard’s theorem) and let Mc = f−1({c}). We now describe Mañé’s argument
from Theorem 1.2 in [Man73]. Let U be a small open neighbourhood of Mc. Since
Ω(X) ∩ U 6= ∅, by the continuity of Ω(·) at X, for any X ′ in a neighbourhood of
X verifies Ω(X ′) ∩ U 6= ∅. Consider the gradient ∇f |Mc

, since it is nonzero on Mc

we can extend it to a vector field V : U → TU without singularities. We can take
a C1-vector field Z C1-arbitrarily close to the zero vector field, with the following
property: for any x ∈ U , (Z(x), V (x)) > 0. For the vector field X ′ = X + Z, it is
easy to verify that Ω(X ′)∩U = ∅, a contradiction. We conclude that f is constant,
and thus, Cd(X) is trivial. �

Using Pesin’s theory and ideas similar to the proof of Lemma 5.4, we can prove
Theorem D.

Proof of Theorem D. Since the support of µ is the entire manifold, and by non-
uniform hyperbolicity, we have that X verifies the conditions of Proposition 3.2, in
particular, C1(X) is collinear. Let Y be a vector field in the C1-centralizer of X.
there exists a C1-function f : MX → R such that Y = fX on MX .

Notice that MX is a connected open and dense subset of M . If f were not
constant, then it would exist a point p ∈ MX such that ∇f(p) 6= 0. Since this
condition is open we may take the point p to be a regular point of the measure
µ. By Pesin’s stable manifold theorem, there exists a C1-stable manifold, W s

loc(p),
which is tangent to E−(p) ⊕ 〈X(p)〉 on p. Similarly, there exists a C1-unstable
manifold which on p is tangent to 〈X(p)〉 ⊕E+(p). The non-uniform hyperbolicity
implies that E−(p)⊕ 〈X(p)〉 ⊕ E+(p) = TpM .

Since p is a non-singular point, we have that f |W s
loc(p) = f |Wu

loc(p) = f(p). An
argument similar to the one in the proof of Theorem 5.6 gives a contradiction
and we conclude that f |MX

is constant. This implies that the centralizer of X is
trivial. �

5.2.1. The C3 centralizer of a C3 Kinematic expansive vector field. In this part we
prove Theorem E. The proof is a combination of two results: Sard’s Theorem and
the proposition below.

Proposition 5.7. Let T2 denote the two dimensional torus. If X ∈ X2(T2) and if
Zero(X) = ∅ then X is not Kinematic expansive.

Proof. The argument follows closely some ideas in [Art16]. We present it here for
the sake of completeness.

Assume by contradiction that there exists X ∈ X2(T2) a Kinematic expansive
vector field. In particular it is separating. We fix ε > 0 to be the separation
constant. Since X is C2 we can apply Denjoy-Schwartz’s Theorem [Sch63] and we
have three possibilities for the dynamics:

(1) each orbit is periodic and X is a suspension of the identity map id: S1 → S1;
(2) there exist two distinct periodic orbits γs, γu and a non-periodic point x

such that ω(x) = γs and α(x) = γu;
(3) X is a suspension of a C3 diffeomorphism f : S1 → S1, which is topologically

conjugate to an irrational rotation.

We shall prove that each case leads us to a contradiction. In the first case, let
τ : S1 → (0,+∞) be the first return time function. Then, τ(x) is the period of the
orbit of x. As τ is a continuous function on the circle, there exists a maximum
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point x0 and arbitrarily close to x0 there are points x1, x2 such that τ(x1) = τ(x2).
This implies that one can choose those points so that

d(Xt(x1), Xt(x2)) ≤ ε, ∀ t ∈ R,

a contradiction.
Let us deal now with case (2). Fix an arbitrarily small number δ > 0.
Take a small segment I transverse to X at a point p ∈ γs and let f : I → I be the

first return map, with τ : I → (0,+∞) the first return time function. There exists a
time T s > 0 such that XT s(x) ∈ I. Consider the fundamental domain Is0 = [f(x), x]
for the dynamics of f and the sequence of image intervals Isn = [fn+1(x), fn(x)],
n ≥ 0. Then, there exists Ns > 0 such that for n ≥ Ns, it holds that Isn ⊂ B(p, δ).
Pick a, b ∈ Is0 arbitrarily close.

Let C > 0 be the Lipschitz constant of τ . Then,∣∣∣∣∣
n∑
`=0

τ(f `(a))−
n∑
`=0

τ(f `(b))

∣∣∣∣∣ ≤ C
n∑
`=0

|f `(a)− f `(b)|.

The hight-hand side of above inequality is bounded by
∑
n |Isn| = |I| <∞. There-

fore, the left-hand side converges. Moreover, by continuity of f , if d(a, b) is small

enough then
∑Ns

`=0 |f `(a) − f `(b)| < δ. Since Isn ⊂ B(p, δ) for every n ≥ Ns, we
have

∑∞
`=Ns |f `(a)− f `(b)| < δ. We conclude that∣∣∣∣∣

∞∑
`=0

τ(f `(a))−
∞∑
`=0

τ(f `(b))

∣∣∣∣∣ ≤ 2Cδ.

Taking δ small enough, as the flow of X is the suspension of f with return time τ ,
we conclude that d(Xt(a), Xt(b)) < ε, for every t ≥ 0.

Considering a small transverse segment to a point q ∈ γu and arguing similarly
with backwards iteration we obtain two arbitrarily close points a, b whose orbits
are distinct and such that d(Xt(a), Xt(b)) < ε for every t ∈ R, a contradiction.

Finally, let us see that case (3) leads to a contradiction. This is essentially
contained in the proof of Theorem 4.11 from [Art16] with a minor adaptation. We
will sketch the main points of the proof. Let f : S1 → S1 be a C3 diffeomorphism
with irrational rotation number θ, and let τ : S1 → (0,+∞) be a C1 function.
It is well known that the Lebesgue measure is the only ergodic measure for an
irrational rotation. Since f is C3 by the usual Denjoy’s theorem on the circle,
f is conjugated with an irrational rotation, in particular, f has only one ergodic
f -invariant probability measure µ.

Write T :=
∫
S1 τ(x)dµ(x) and let

(
pn
qn

)
n∈N

be the approximation of θ by rational

numbers given by the continued fractions algorithm. From the corollary in [NT13],
which is a version of Denjoy-Koksma inequality (Corollary C in [AK11]), we obtain
the following

lim
n→+∞

sup
x∈S1

∣∣∣∣∣
qn−1∑
l=0

τ(f l(x))− Tqn

∣∣∣∣∣ = 0.

Following the same calculations in the proof of Theorem 4.11 from [Art16], for any
ε > 0 and for n ∈ N large enough, the points x and fqn(x) are always ε-close for
the future. One can argue similarly for f−1 and find points that are not separated
for the past. Therefore, the flow cannot be Kinematic expansive. �
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Remark 5.8. We do not know if there exists a separating suspension of an irrational
rotation. The above proof shows that this is the only possibility for a separating
non-singular vector field on T2.

Proof of Theorem E. Since all the singularities are hyperbolic, by Proposition 3.2
and Theorem 4.3, we have that C3(X) is quasi-trivial. Let f : M → R be a C1, X-
invariant function such that f |MX

is C3. We will prove that f is constant. Suppose
not.

Since there are only finitely many singularities, then as in the proof of Theorem
5.6, if f were not constant, we would have I ⊂ f(M)− f(Zero(X)), for some non-
trivial open interval I ⊂ R. By Sard’s theorem, almost every value in I is a regular
value.

Take a regular value c ∈ I. Hence, Sc := f−1({c}) is a compact surface that
does not contain any singularity of X. Furthermore, since f is X-invariant, we
have that X|Sc

is a C3 non-singular vector field on Sc. Up to considering a double
orientation covering, this implies that Sc is a torus, since it is the only orientable
closed surface that admits a non-singular vector field.

Notice that X|Sc
induces a Kinematic expansive flow. However this contradicts

Proposition 5.7. We conclude that f is constant, and this implies that the C3-
centralizer of X is trivial. �

In the higher dimensional case, and at a point of continuity of Ω(·), we also have:

Proposition 5.9. Let M be a compact manifold of dimension d ≥ 1. Assume that
X ∈ Xd(M) is separating, that all its singularities are hyperbolic, and that X is a
point of continuity of the map Ω(·). Then the Cd-centralizer of X is trivial.

Remark 5.10. As noted in the proof of Theorem G, the last two assumptions are
satisfied by a residual subset of vector fields in Xd(M).

Proof of Proposition 5.9. Since X is separating and its singularitis are hyperbolic,
it follows from Proposition 2.4 and Theorem A that its C1-centralizer is quasi-
trivial. Take any vector field Y in the Cd-centralizer of X. By the quasi-triviality,
and by Lemma 2.2, there exists a C1 function f : M → R such that f |MX

is of
class Cd and Y = fX. If f is not constant, then as in the proof of Theorem G, by
continuity of Ω(·) at X, and by considering a regular value c ∈ f(M)−f(Zero(X)) of
f |MX

, we reach a contradiction. We conclude that the Cd-centralizer is trivial. �

6. The generic case

Our goal in this section is to prove the following theorem:

Theorem 6.1. There exists a residual subset R ⊂ X1(M) such that if X ∈ R
then X has quasi-trivial C1-centralizer. Furthermore, if X has at most countably
many chain recurrent classes then its C1-centralizer is trivial.

In particular, this theorem implies Theorem B. To prove this theorem, we will
use a few generic results. In the following statement we summarize all the results
we will need.

Theorem 6.2 ([BC04], [Cro06] and [PR83]). There exists a residual subset R∗
such that if X ∈ R∗, then the following properties are verified:

(1) Per(X) = Ω(X) = CR(X);
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(2) every periodic orbit, or singularity, is hyperbolic;
(3) if C is a chain recurrent class, then there exists a sequence of periodic orbits

(γn)n∈N such that γn → C in the Hausdorff topology.

We first prove that C1-generically the centralizer is collinear. This proof is
an adaptation for flows of Theorem A in [BCW09]. Once we have collinearity,
using the criterion for quasi-triviality given by Theorem 4.3, we conclude that
quasi-triviality of the C1-centralizer is a C1-generic property. At the end of
this section we will show that for a C1-generic vector field X that has at most
countably many chain recurrent classes has trivial C1-centralizer.

Idea of the proof of collinearity–. In [BCW09] the authors prove that a version
of the unbounded normal distortion holds C1-generically for diffeomorphisms. To
prove this, the key perturbative result is a perturbation made on a linear cocycle
over Z. To reduce the proof to this linear cocycle scenario, after several reductions,
they introduce some change of coordinates that linearizes the dynamics around the
orbit of a point for a finite time. Using the compactness of the manifold, they get
uniform estimates on the C1-norm of these changes of coordinates.

Our strategy is to reduce our problem to a perturbation of a linear cocycle over Z.
In order to do that, we study the Poincaré maps between a sequence of transverse
sections. Since we are dealing with wandering points, this can be defined for a
sequence of times arbitrarily large. Using these Poincaré maps we also introduce
some change of coordinates to linearize the dynamics given by these maps for a
finite time. However, the space where this can be defined is no longer compact,
since the Poincaré map is only defined over non-singular points. Nevertheless, we
can obtain uniform estimates for the C1-norm of these change of coordinates.

We also need to prove that any perturbation of a Poincaré map, that verifies
some conditions, can be realized as the Poincaré map of a perturbed vector field.
All of these perturbations have to be done with precise control on the estimates
that appear. These two ingredients are given in Lemma 6.9. Once we have that,
we can adapt the proof of Bonatti-Crovisier-Wilkinson in [BCW09] and obtain that
the unbounded normal distortion property is C1-generic.

6.1. Unbounded normal distortion is C1-generic. The goal of this section is
to prove the following theorem:

Theorem 6.3. There exists a residual subset of R ⊂ X1(M) such that if X ∈ R
then X has unbounded normal distortion.

6.1.1. Linearizing coordinates. Let X ∈ X1(M), and as before, set MX := M −
Zero(X). For p ∈ MX and t ∈ R, for any two submanifolds Σ1 and Σ2 which
are transverse to the orbit segment O := X[0,t](p), each of which intersects O only
at one point, we define the Poincaré map between these two transverse sections
as follows: let p1 := O ∩ Σ1 and p2 := O ∩ Σ2. If a point q ∈ Σ1 is sufficiently
close to p1, then X[−t,2t](q) intersects Σ2 at a unique point PXΣ1,Σ2

(q). The map

q 7→ PXΣ1,Σ2
(q) is called the Poincaré map between Σ1 and Σ2.

This map is a C1-diffeomorphism between a neighbourhood of p1 and its image.
It also holds that for any vector field Y ∈ X1(M) sufficiently C1-close to X, the
Poincaré map PYΣ1,Σ2

for Y is well defined in some neighbourhood of p1 in Σ1.
Let R > 0 be smaller than the radius of injectivity of M . Using the exponential

map, for each p ∈ MX and r ∈ (0, R), we define the submanifold NX,p(r) =
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expp(NX,p(r)), where NX,p(r) is the ball of center 0 and radius r contained in
NX,p.

Remark 6.4. Considering R to be small enough, for each p ∈ MX and for each
q ∈ NX,p(R) we have that the C1-norm of ΠX

q |TqNX,p(R) is close to 1.

It is known that for each t ∈ R, there exists a constant βt = β(X, t) > 0
such that for any point p ∈ MX , the Poincaré map is a C1 diffeomorphism from
NX,p(βt‖X(p)‖) to its image inside NX,Xt(p)(R). We denote this map by PXp,t and
we write β := β1. For a fixed δ > 0, we can choose β sufficiently small such that
for any p ∈MX and any q ∈ NX,p(β‖X(p)‖), it holds

‖DPXp,1(q)−DPXp,1(p)‖ < δ, (6.1)

we refer the reader to Section 2.2 in [GY18] for more details. By our choices of
transversals, we remark that DPXp,1(p) = PXp,1.

Definition 6.5. For any C > 1 we say that a vector field X ∈ X1(M) is bounded by
C if it holds

– sup
x∈M
|X(p)| < C;

– supp∈M ‖DX(p)‖ < C;

– C−1 < inf
x∈M

inf
t∈[−1,1]

‖(DXt(x))−1‖−1 ≤ sup
x∈M

sup
t∈[−1,1]

‖DXt(x)‖ < C;

– C−1 < inf
p∈MX

inf
t∈[−1,1]

‖(PXp,t)−1‖−1 ≤ sup
p∈MX

sup
t∈[−1,1]

‖PXp,t‖ < C;

– there exists β > 0 small, such that

C−1 < ‖(DPXp,1(q))−1‖−1 ≤ ‖DPXp,1(q)‖ < C, for any q ∈ NX,p(β‖X(p)‖).

By (6.1), for any vector field X ∈ X1(M), there is a constant C > 1 such that
X is bounded by C.

Let X ∈ X1(M) be a vector field bounded by C > 1. Using the exponential
map, for p ∈MX , we consider the lifted Poincaré map

P̃Xp,1 = exp−1
X1(p) ◦P

X
p,1 ◦ expp,

which goes from NX,p(β‖X(p)‖) to NX,X1(p)(R). Observe that

‖X(X1(p))‖ > C−1‖X(p)‖. (6.2)

By (6.2) and the last item in Definition 6.5, for any n ∈ N, the map PXp,n is

well defined on NX,p
(
β
Cn ‖X(p)‖

)
, while the lifted map P̃Xp,n is well defined on

V Xp,n := Np
(
β
Cn ‖X(p)‖

)
.

For each n ∈ N and p ∈ MX , we define the change of coordinates ψp,n =

PXX−n(p),n ◦ (P̃XX−n(p),n)−1, which is a C1 diffeomorphism from P̃Xp,n(V XX−n(p),n) to

PXX−n(p),n(V XX−n(p),n) ⊂ NX,p. Observe that ψp,0 = id. The sequence (ψXj(p),j)j∈N
verifies the following equality:

ψXn(p),n ◦ P̃Xp,n = PXp,n ◦ ψp,0,

which holds on V Xp,n. In other words, this change of coordinates linearizes the

dynamics of P̃Xp,n.
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For all y ∈ NX,p( β
Cn ‖X(p)‖), we define the hitting time τXp,n(y) as the first posi-

tive time where the trajectory starting at y hits the transverse section NX,Xn(p)(R),
that is,

τXp,n(y) := min{t ≥ 0 : Xt(y) ∈ NX,Xn(p)(R)}.
Notation. Let p ∈MX and n ∈ N. Suppose that for Y ∈ X1(M) the submani-

folds NX,p
(
β
Cn ‖X(p)‖

)
and NX,Xn(p)(R) are transverse to Y , and that the Poincaré

map for Y between these transverse sections is well defined on NX,p
(
β
Cn ‖X(p)‖

)
.

Then we denote this Poincaré map for Y by PYX,p,n. Accordingly, we denote its

lift by P̃YX,p,n and its hitting time by τYX,p,n. We also extend those notations for

non-integer times: given an integer n ≥ 1 and t ∈ [n − 1, n], we let PYX,p,t be the

Poincaré map between the transversals NX,p
(
β
Cn ‖X(p)‖

)
and NX,Xt(p)(R).

In the next definition we introduce the type of perturbations of the Poincaré
map that we will consider in the sequel.

Definition 6.6. For each δ > 0 and given an open set U ⊂ NX,p(β‖X(p)‖), a
C1 map g : NX,p(β‖X(p)‖) → NX,X1(p)(R) is called a δ-perturbation of PXp,1 with
support in U if the following holds:

• dC1(PXp,1, g) < δ;

• the image of g coincides with the image of PXp,1;

• the map g is a C1 diffeomorphism into its image;
• the support of (PXp,1)−1 ◦ g is contained in U .

For any n ∈ N and any U ⊂ NX,p
(
β
Cn ‖X(p)‖

)
, we define

IX(p, U, n) := {(y, t) : y ∈ U, t ∈ [0, τXp,n(y)]}, (6.3)

and we let UX(p, U, n) be the image of IX(p, U, n) under the map (y, t) 7→ Xt(y):

UX(p, U, n) :=
⋃
y∈U

⋃
t∈[0,τX

p,n(y)]

Xt(y). (6.4)

Remark 6.7. For a vector field X ∈ X1(M) we can fix a constant α = α(X) small

enough such that for any t ∈ [−α, α] and p ∈MX , it holds that |detPXp,t−1| < log 2
2 .

Remark 6.8. Let α > 0 be as in Remark 6.7. Then for β > 0 sufficiently small, for
any p ∈MX and q ∈ NX,p

(
β
Cn ‖X(p)‖

)
, it holds that τXp,n(q) ∈ [n−α, n+α]. From

now on we will always assume that β verifies this condition for this choice of α.

6.1.2. A realization lemma. We state and prove below a lemma that allows us to
realise a non-linear perturbation of the linear Poincaré flow as the lifted Poincaré
map of a vector field nearby.

Lemma 6.9. For any C, ε > 0, there exists δ = δ(C, ε) > 0 that verifies the
following. For any vector field X ∈ X1(M) that is bounded by C, any 0 < δ1 < δ
and any integer n ∈ N, there is ρ = ρ(X, ε, δ1) > 0 with the following property.

For any p ∈ MX and U ⊂ NX,p(ρ‖X(p)‖) such that the map (y, t) 7→ Xt(y) is
injective restricted to the set IX(p, U, n), then the following holds:

(1) Set Ũ := exp−1
p (U). Then for every i ∈ {0, . . . , n}, the map ΨXi(p),i :=

ψXi(p),i ◦ exp−1
Xi(p)

induces a C1 diffeomorphism from PXp,i(U) onto PXp,i(Ũ)

such that

max{‖DΨXi(p),i‖, ‖DΨ−1
Xi(p),i

‖, |detDΨXi(p),i|, |detDΨ−1
Xi(p),i

|} < 2. (6.5)
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(2) For i ∈ {1, . . . , n}, let g̃i : NX,Xi−1(p) → NX,Xi(p) be any C1 diffeomorphism

such that the support of (PXXi(p),1
)−1◦g̃i is contained in PXp,i−1(Ũ), and which

satisfies dC1(g̃i, P
X
Xi−1(p),1) < δ1. Let gi be the map defined as follows:

• gi(y) := PXXi−1(p),1(y), if y /∈ PXp,i−1(U);

• gi(y) := Ψ−1
Xi(p),i

◦ g̃i ◦ΨXi−1(p),i−1(y), if y ∈ PXp,i−1(U).

Then the map gi is a δ-perturbation of PXXi−1(p),1 with support in PXp,i−1(U).

(3) There exists Y ∈ X1(M) such that dC1(X,Y ) < ε, and the Poincaré map
PYX,Xi(p),1

for the vector field Y between NXi−1(p)(ρ‖X(p)‖) and NXi(p)(R)

is well defined and is given by gi, for each i ∈ {1, . . . , n}. Moreover, the
support of X − Y is contained in UX(p, U, n) and the image of τYX,p,n coin-

cides with the image of τXp,n. In particular, it is contained in [n−α, n+α].

Before proving this lemma, let us say a few words on items 2 and 3 in the
statement. Item 2 states that we can obtain perturbations of the Poincaré map by
perturbing its lift, with precise estimates on the size of each of these perturbations
we consider. Observe that this only gives C1 diffeomorphisms between certain
transverse sections. Item 3 states that any such perturbation can be realized as the
Poincaré map of a vector field C1-close to X, with precise estimates on its distance
to X. Furthermore, the hitting time is the “same” as the hitting time of X, in the
sense that they have the same image as a function of the transverse section to R.
These two properties will be crucial in our proof, because it will allow us to reduce
the proof of the theorem to the discrete case, after several adaptations.

Proof. We will obtain δ later, as consequence of a finite number of inequalities. In
the following, we always assume that 0 < ρ ≤ β

Cn . By the previous discussion, this

ensures that PXp,n is well defined on NX,p
(
ρ‖X(p)‖

)
, for all p ∈MX .

Point (1) follows from the following facts:

• It holds

C−n < inf
p∈MX , t∈[−n,n]

‖(PXp,t)−1‖−1 ≤ sup
p∈MX , t∈[−n,n]

‖PXp,t‖ < Cn, (6.6)

and by (6.1), we have similar estimates for the Poincaré maps PXp,t, uni-
formly in p ∈MX and t ∈ [−n, n].
• By choosing ρ > 0 sufficiently small, the set⋃

y∈Np(ρ‖X(p)‖)

⋃
t∈[0,n]

PXp,t(y)

can be made arbitrarily close to the 0 section, uniformly in p ∈ MX . Sim-
ilarly, the set UX(p,NX,p(ρ‖X(p)‖), n) defined in (6.4) can be made ar-
bitrarily close to the orbit segment {Xt(p) : 0 ≤ t ≤ n}, uniformly in
p ∈MX .
• The map D exp−1

p is uniformly close to the identity in a neighbourhood of
p.
• Since the vector field X is of class C1 and by choosing ρ > 0 sufficiently

small, the maps ψXi(p),i used to linearize the dynamics can be made uni-

formly C1-close to the identity for i ∈ {0, . . . , n} and p ∈ MX . Therefore,
the map ΨXi(p),i can be made arbitrarily C1 close to exp−1

Xi(p)
.
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In particular, we obtain a uniform control of ΨXi(p),i for p ∈MX and i ∈ {0, . . . , n}
even though the space MX is not compact.

By Definition 6.6, the proof of (2) follows easily from the first point. Indeed,
given i ∈ {1, . . . , n} and p ∈MX , we use the maps ΨXi−1(p),i−1 and ΨXi(p),i to con-

jugate PXXi−1(p),1 to the linear Poincaré map PXXi−1(p),1. By the previous discussion,

for ρ > 0 small enough, the maps ΨXi−1(p),i−1 and ΨXi(p),i are arbitrarily C1-close

to exp−1
Xi−1(p) and exp−1

Xi(p)
respectively. The estimate on the C1 distance between

gi and PXXi−1(p),1 follows, since we assume dC1(g̃i, P
X
Xi−1(p),1) < δ1, and δ1 < δ.

The proof of point (3) follows from arguments similar to those presented in
Pugh-Robinson [PR83] (see in particular Lemma 6.5 in that paper).

More precisely, let i ∈ {1, . . . , n}, and let g̃i : NXi−1(p) → NXi(p) be a C1 dif-

feomorphism satisfying the assumptions of point (2). We pull back g̃i to a C1

diffeomorphism ĝi : NXi−1(p) → NXi−1(p) by letting ĝi := PXXi(p),−1 ◦ g̃i. By as-

sumption, the support of ĝi is contained in PXp,i−1(Ũ), with Ũ := exp−1
p (U) and

U ⊂ NX,p(ρ‖X(p)‖), hence by (6.6), we get

dC0(ĝi, id) ≤ 2Cρmax
p∈M
‖X(p)‖. (6.7)

Then for all t ∈ [i − 1, i], we define a map g̃t : NXi−1(p) → NXt(p) as g̃t :=

PXXi−1(p),t−i+1 ◦ ĝi. By the above estimate, and by (6.6), we deduce that

dC0(g̃t, P
X
Xi−1(p),t−i+1) ≤ 2C2ρmax

p∈M
‖X(p)‖, ∀t ∈ [i− 1, i]. (6.8)

Moreover, for any t ∈ [i−1, i], we have Dg̃t = PXXi−1(p),t−i+1 ·Dĝi = PXXi−1(p),t−i+1◦
PXXi(p),−1 ·Dg̃i. Since dC1(g̃i, P

X
Xi−1(p),1) < δ1, we obtain

dC1(g̃t, P
X
Xi−1(p),t−i+1) ≤ C2δ1, ∀t ∈ [i− 1, i]. (6.9)

Let us fix a C∞ bump function χ : R → [0, 1] which is 0 near 0 and 1 near 1.
Fix i ∈ {1, . . . , n} and set χi−1(·) := χ(· − i + 1). For k ∈ {0, . . . , n}, we also let

Np,k := NX,Xk(p)

(
β

Cn−k ‖X(p)‖
)
. Then for any t ∈ [i − 1, i], we let h

(i)
t : Np,i−1 →

Np,i be the map defined as

• h(i)
t (y) := PXXi−1(p),t−i+1(y), if y /∈ Pi−1

p (U);

• h(i)
t (y) := Ψ−1

Xt(p),t
◦
(
χi−1(t)g̃t + (1− χi−1(t))PXXi−1(p),t−i+1

)
◦

ΨXi−1(p),i−1(y), if y ∈ PXp,i−1(U),

where we have extended the previous notation by setting

ΨXt(p),t := PXp,t ◦ P̃XXt(p),−t ◦ exp−1
Xt(p)

.
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Figure 3. Interpolation between the initial Poincaré map and gi.

In particular, we note that for t = i − 1, we have h
(i)
t = h

(i)
i−1 = id, while for

t = i, h
(i)
t = h

(i)
i coincides with the map gi defined in item (2).

By (6.8), for all t ∈ [i− 1, i], we have

dC0

(
χi−1(t)g̃t + (1− χi−1(t))PXXi−1(p),t−i+1, P

X
Xi−1(p),t−i+1

)
≤ 2C2ρmax

p∈M
‖X(p)‖.

Since PXXi−1(p),t−i+1 = Ψ−1
Xt(p),t

◦ PXXi−1(p),t−i+1 ◦ ΨXi−1(p),i−1, by the definition of

h
(i)
t and by (6.5), we can thus make the C0 distance between h

(i)
t and PXXi−1(p),t−i+1

arbitrarily small, provided that ρ > 0 is taken small enough.
For any t ∈ [i− 1, i], we have

D
(
χi−1(t)g̃t + (1− χi−1(t))PXXi−1(p),t−i+1

)
= DPXXi−1(p),t−i+1 + χi−1(t)

(
Dg̃t − PXXi−1(p),t−i+1

)
.

By (6.6) and (6.9), we thus get

dC1(h
(i)
t ,PXXi−1(p),t−i+1) ≤ 4C2δ1. (6.10)

For any t ∈ [i− 1, i], we also have:

∂t

(
χi−1(t)g̃t + (1− χi−1(t))PXXi−1(p),t−i+1

)
− ∂tPXXi−1(p),t−i+1

= χ′i−1(t)
(
g̃t − PXXi−1(p),t−i+1

)
+ χi−1(t)∂t

(
g̃t − PXXi−1(p),t−i+1

)
= χ′i−1(t)PXXi−1(p),t−i+1 ◦

(
ĝi − id

)
+ χi−1(t)∂tP

X
Xi−1(p),t−i+1 ◦

(
ĝi − id

)
.
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By (6.5), (6.6) and (6.7), we deduce that

max
t∈[i−1,i]

max
y∈U
|∂tPXXi−1(p),t−i+1(y)− ∂th(i)

t (y)|

≤ 8C max

(
C, sup

t∈[0,1]

‖∂tPXXi−1(p),t‖

)
‖χ‖C1ρmax

p∈M
‖X(p)‖. (6.11)

Recall that for k ∈ {0, . . . , n}, we denote Np,k := NX,Xk(p)

(
β

Cn−k ‖X(p)‖
)
. As in

(6.3), given a set V ⊂ Np,0, we set

IX(p, V, n) :=
{

(y, t) : y ∈ V, t ∈ [0, τXp,n(y)]
}
.

Let us assume that U ⊂ NX,p(ρ‖X(p)‖) is such that the map (y, t) 7→ Xt(y) is
injective on the set IX(p, U, n). For ρ > 0 small, the hitting time function τXp,n
is uniformly close to n on NX,p(ρ‖X(p)‖), and the C1 distance between the maps
(y, t) 7→ PXp,t(y) and (y, t) 7→ Xt(y) restricted to IX(p,NX,p(ρ‖X(p)‖), n) is small.

Given i ∈ {1, . . . , n}, let us consider the map h(i) : (y, t) 7→ h
(i)
t (y) defined on

Np,i−1 × [i − 1, i] as above. By (6.10) and (6.11), and since 0 < δ1 < δ, the maps

Np,i−1 × [i− 1, i] 3 (y, t) 7→ PXXi−1(p),t−i+1(y) and h(i) can be made arbitrarily C1-

close by taking δ > 0 small enough. For δ > 0 sufficiently small, we deduce that the
map h(i) is locally injective on the interior of PXp,i−1(U)×[i−1, i]. Besides, as we have

seen, h
(i)
i−1|Np,i−1

= id|Np,i−1
, while h

(i)
i |Np,i−1

= gi|Np,i−1
is a C1 diffeomorphism.

Now, we define a map H on Np,0 × [0, n] by setting

H(y, t) := h
(i)
t ◦ gi−1 ◦ gi−2 ◦ · · · ◦ g1(y), (6.12)

∀y ∈ Np,0, t ∈ [i− 1, i], i ∈ {1, . . . , n}.
By what precedes, the map H is locally injective on the interior of the set U× [0, n].
Moreover, ∂ (U × [0, n]) = (U ×{0})∪ (U ×{n})∪ (∂U × [0, n]). On the one hand,
we have H(·, 0)|U = id|U , and by construction, the map H(·, n)|U coincides with
gn ◦ gn−1 ◦ · · · ◦ g1|U , hence it is a C1 diffeomorphism from U to PXp,n(U) ⊂ Np,n.
On the other hand, by point (2), each diffeomorphism gi is a δ2-perturbation of
PXXi−1(p),1 with support in PXp,i−1(U). Therefore the restriction of H to the set

∂U × [0, n] coincides with the restriction of the map (y, t) 7→ PXp,t(y). In particular,
we deduce that the restriction H|∂(U×[0,n]) of H to the boundary of U × [0, n] is
injective. From Lemma 6.5 in Pugh-Robinson [PR83], we conclude that H embeds
U × [0, n] into the set UX(p, U, n) introduced in (6.4).

In the same way as before, for any y ∈ NX,p(ρ‖X(p)‖) and t ∈ [0, n], we set

τXp,t(y) := min{s ≥ 0 : Xs(y) ∈ NX,Xt(p)(R)}.

By definition, PXp,t(y) = XτX
p,t(y)(y), for any (y, t) ∈ NX,p(ρ‖X(p)‖)× [0, n], thus

X(PXp,t(y)) = (∂tτ
X
p,t(y))−1∂tPXp,t(y). (6.13)

Moreover, τXp,·(p) = id, and the map (y, t) 7→ τXp,t(y) is C1 on NX,p(ρ‖X(p)‖)×[0, n],
hence for ρ > 0 sufficiently small, we have

1

2
< |∂tτXp,t(y)| < 2, ∀p ∈MX , y ∈ NX,p(ρ‖X(p)‖), t ∈ [0, n]. (6.14)

As we have noted above, on the complement of U × [0, n], the maps H and
(y, t) 7→ PXp,t(y) coincide. We thus define a vector field Y ∈ X1(M) on M by setting
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• Y (q) := X(q), if q ∈M − UX(p, U, n);
• Y (q) := (∂t|t=t0τXp,t(y))−1∂t|t=t0H(y0, t), if q ∈ UX(p, U, n), where

(y0, t0) := H−1(q) ∈ U × [0, n].

For each i ∈ {1, . . . , n}, by the definition of H in (6.12) and since h
(i)
i = gi, it

follows that the Poincaré map PYX,Xi−1(p),1 for the vector field Y between Np,i−1

and Np,i is given by gi. By definition, the support of X − Y is contained in
UX(p, U, n). Moreover, given any point q = PXp,t(y) = H(y′, t) ∈ UX(p, U, n), say

(y, t) ∈ U × [i − 1, i], letting z := PXp,i−1(y) and z′ := gi−1 ◦ gi−2 ◦ · · · ◦ g1(y′), we
obtain

PXp,t(y) = PXXi−1(p),t−i+1(z)

= Ψ−1
Xt(p),t

◦ PXXi−1(p),t−i+1 ◦ΨXi−1(p),i−1(z);

H(y′, t) = h
(i)
t (z′)

= Ψ−1
Xt(p),t

◦
(
χi−1(t)g̃t + (1− χi−1(t))PXXi−1(p),t−i+1

)
◦ΨXi−1(p),i−1(z′)

= Ψ−1
Xt(p),t

◦ PXXi−1(p),t−i+1 ◦ (χi−1(t)(ĝi − id) + id) ◦ΨXi−1(p),i−1(z′).

Set

w := ΨXi−1(p),i−1(z) = (χi−1(t)(ĝi − id) + id) ◦ΨXi−1(p),i−1(z′).

We deduce that

∂tPXp,t(y) = ∂t

(
Ψ−1
Xt(p),t

◦ PXXi−1(p),t−i+1

)
(w),

∂tH(y′, t) = ∂t

(
Ψ−1
Xt(p),t

◦ PXXi−1(p),t−i+1

)
(w) +Dw

(
Ψ−1
Xt(p),t

◦ PXXi−1(p),t−i+1

)
· ∂t
(
(χi−1(t)(ĝi − id) + id) ◦ΨXi−1(p),i−1(z′)

)
= ∂tPXp,t(y) + χ′i−1(t)DΨXt(p),t

(q)Ψ
−1
Xt(p),t

◦ PXXi−1(p),t−i+1◦

◦ (ĝi − id)
(
ΨXi−1(p),i−1(z′)

)
,

and

Y (q)−X(q) =

χ′i−1(t)

∂tτXp,t(y)
DΨXt(p),t

(q)Ψ
−1
Xt(p),t

◦ PXXi−1(p),t−i+1 ◦ (ĝi − id)
(
ΨXi−1(p),i−1(z′)

)
,

where the last equality follows from (6.13) and the definition of Y . In particular,
the difference between the vector fields X and Y is essentially controlled by the C0

distance between ĝi and id. More precisely, by (6.5), (6.6), (6.7), and (6.14), we
deduce that

|X(q)− Y (q)| ≤ 8‖χ‖C1C2ρmax
p∈M
‖X(p)‖,

and we argue similarly for the derivatives. Therefore, by taking ρ sufficiently small,
we can ensure that dC1(X,Y ) < ε, which concludes the proof of point (3), and
then, of Lemma 6.9. �

6.1.3. Producing unbounded normal distortion by perturbation. We are now in posi-
tion to prove the main perturbation result (Proposition 6.12 below) that will allow
us to obtain unbounded normal distortion generically. The key tool behind this is
a perturbation result for linear cocycles taken from [BCW09].
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Proposition 6.10. For any d ≥ 2, C > 1, K, ε > 0, let δ = δ(C, ε) be the constant
given by Lemma 6.9. There exists n0 = n0(d,C,K, ε) ∈ N with the following
property.

For any d-dimensional manifold M , any vector field X ∈ X1(M) which is
bounded by C, there exists ρ0 = ρ0(d,C,K, ε) > 0 such that for any η > 0, any
compact set ∆ ⊂MX and x, p ∈MX satisfying:

(a) there exists an open set U inside NX,p(ρ0‖X(p)‖), such that ∆ ⊂ U ;

(b) the map (y, t) 7→ Xt(y) is injective on IX(p, U, n0) (see (6.3));

(c) orbX(x) ∩ U = ∅,
there exists a vector field Y ∈ X1(M) such that

(1) the support of X − Y is contained in UX(p, U, n0) (see (6.4));

(2) dC1(X,Y ) < ε;

(3) for any i ∈ {0, . . . , n0 − 1}, it is verified dC1(PXXi(p),1
,PYX,Xi(p),1

) < δ,

where PYX,Xi(p),1
is the Poincaré map between NX,Xi(p)(β‖X(Xi(p))‖) and

NX,Xi+1(p)(R);

(4) dC0(PXXi(p),t
,PYX,Xi(p),t

) < η, for all t ∈ [0, 1];

(5) for all y ∈ ∆, there exists an integer n ∈ {1, . . . , n0} such that

| log detPYx,n − log detPYy,n| > K.

Proposition 6.10 is the analogous for flows of Proposition 8 in [BCW09]. Using
Lemma 6.9, we will reduce the proof of this proposition to a discrete scenario where
we can apply the following proposition from [BCW09].

Proposition 6.11 (Proposition 9 in [BCW09]). For any d ≥ 1, and any C,K, ε >
0, there exists n1 = n1(d,C,K, ε) ≥ 1 with the following property.

Consider any sequence (Ai) ∈ GL(d,R) with ‖Ai‖, ‖A−1
i ‖ < C and the associated

cocycle f̃ on Z×Rd defined by f̃(i, v) := (i+1, Aiv). Then, for any open set U ⊂ Rd,
for any compact set ∆ ⊂ U and any η > 0, there exists a diffeomorphism g̃ of Z×Rd
such that:

• dC1(f̃ , g̃) < ε;

• dC0(f̃ , g̃) < η;

• f̃ = g̃ on the complement of
⋃2n1−1
i=0 f̃ i({0} × U);

• for all y ∈ {0} ×∆, there exists n ∈ {1, . . . , n1} such that

| log detDf̃n(y)− log detDg̃n(y)| > K.

Proof of Proposition 6.10 from Proposition 6.11. Fix any δ1 ∈ (0, δ) and K0 >
2K + 10 log 2. Let n1 = n1(d − 1, C,K0, δ1) be the constant given by Proposi-
tion 6.11 for d − 1, C,K0, ε and let n0 = 2n1. Let X ∈ X1(M) be a vector field
bounded by C and let ρ > 0 be the constant given by Lemma 6.9 for C, ε, δ1, n0

and X. Fix ρ0 ∈ (0, ρ
Cn0

).
Let ∆ ⊂ MX , x, p ∈ MX and η > 0 be such that conditions (a), (b) and (c) in

Proposition (6.10) are verified. Let U ⊂ NX,p(ρ0‖X(x)‖) be the open set given by
condition (a). Consider OX1

(p) = {. . . , X−1(p), p,X1(p), . . . } and observe that this
set is naturally identified with Z. We consider the normal bundle, with respect to
X, over OX1

(p) and the linear cocycle defined as follows: for i ∈ Z and v ∈ NX,Xi(p)

set f̃(i, v) := (i+ 1, PXXi(p),1
v).
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Recall that Ũ = exp−1
p (U). By item (1) in Lemma 6.9, for any i ∈ {0, . . . , n0},

we obtain C1 diffeomorphisms Ψi := ΨXi(p),i : PXp,i(U)→ PXp,i(Ũ), such that for any

q ∈ PXp,i(U) it holds that

PXXi(p),1
(Ψi(q)) = Ψi+1(PXXi(p),1

(q)). (6.15)

Write Ψ:
⋃n0

i=0 PXp,i(U)→
⋃n0

i=0 P
X
p,i(Ũ) as the C1 diffeomorphism which is equal to

Ψi on PXp,i.
For the cocycle f̃ , we apply Proposition 6.11 and obtain a δ1-perturbation g̃ of

f̃ supported on
⋃n0−1
i=0 f̃ i({0} × Ũ), such that for every q ∈ Ψ0(∆), it holds:

• dC0(f̃ , g̃) < η
2 ;

• f̃ = g̃ on the complement of
⋃n0−1
i=0 f̃ i({0} × Ũ);

• for every q ∈ Ψ0(∆), there exists n ∈ {1, . . . , n0} such that

| log detDf̃n(q)− log detDg̃n(q)| > K0.

For each i ∈ {0, . . . , n0 − 1}, let g̃i := g|{i}×NX,Xi(p)
and observe that

dC1(g̃i, P
X
Xi(p),1

) < δ1. By item (2) of Lemma 6.9, we obtain a δ-pertubation gi

of PXXi(p),1
. By (6.5) and (6.15), we have

dC0(gi,PXXi(p),1
) < 2dC0(g̃i, P

X
Xi(p),1

) < η.

Moreover, by the estimates in (6.5), we conclude that for any q ∈ ∆, there exists
n ∈ {1, . . . , n0 − 1} such that

| log detDPXp,n(q)− log detD(gn)(q)| > K0 − 4 log 2, (6.16)

where gn(q) := gn ◦ · · · ◦ g1(q).
Recall that for n ∈ {0, . . . , n0− 1}, the maps PXp,n and PXp,n are conjugated on ∆

by Ψ. By (6.5), we obtain that for any q ∈ ∆, it holds

| log detDPXp,n(q)− log detPXp,n| ≤ 2 log 2. (6.17)

Suppose there exists n ∈ {0, . . . , n0 − 1} such that | log detPnp − log detPnx | >
K + 3 log 2. By (6.17) and Remark 6.4, for any q ∈ ∆ it holds that∣∣∣log detPXq,τX

p,n(q) − log detPXx,n

∣∣∣ > K + log 2.

By Remark 6.7 and item 3 of Lemma 6.9, we conclude that

| log detPXq,n − log detPXx,n| > K.

In this case we do not make any perturbation. Suppose that for every n ∈
{0, . . . , n0 − 1} and every q ∈ ∆ we have

| log detPXq,n − log detPXx,n| ≤ K + 3 log 2.

Consider the maps g1, . . . , gn0
as it was explained above (obtained using Proposition

6.11). Applying Lemma 6.9, we obtain a C1 vector field Y that verifies the following
properties:

• dC1(X,Y ) < ε;
• the support of X − Y is contained in UX(p, U, n0);
• for each i ∈ {1, . . . , n0}, we have that PYX,Xi(p),1

= gi.
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By (6.16) and (6.17), we conclude that for each q ∈ ∆, there exists n ∈ {1, . . . , n0}
such that∣∣∣∣∣log

(
detPYx,n
detPYq,n

)∣∣∣∣∣ ≥
∣∣∣∣∣log

(
detDPXp,n(q)

detPYq,n

)∣∣∣∣∣−
∣∣∣∣∣log

(
detPXx,n

detDPXp,n(q)

)∣∣∣∣∣
≥

∣∣∣∣∣log

(
detDPXp,n(q)

detDgn(q)

)∣∣∣∣∣−
∣∣∣∣log

(
detDgn(q)

detPYq,n

)∣∣∣∣−
−

∣∣∣∣∣log

(
detPXx,n
detPXq,n

)∣∣∣∣∣−
∣∣∣∣∣log

(
detPXq,n

detDPXp,n(q)

)∣∣∣∣∣
> K0 − log 2−K − 4 log 2− log 2 > K.

This concludes the proof of Proposition 6.10. �

The following proposition is the version for flows of Proposition 7 in [BCW09].

Proposition 6.12. Consider a vector field X ∈ X1(M), a compact set D ⊂ MX ,
an open set O ⊂MX and a point x ∈MX satisfying:

• for any y ∈ O, any t ≥ 0, we have Xt(y) ∈ O and X1(O) ⊂ O;
• D ⊂ O −X1(O);

• orbX(x) ∩D = ∅.
Then for any K, ε > 0, there exists a vector field Y ∈ X1(M) with dC1(X,Y ) < ε
which satisfies the following property: for all y ∈ D, there exists n ≥ 1 such that

| log detPYx,n − log detPYy,n| > K.

Moreover, the support of X −Y is contained in the complement of the chain recur-
rent set of X.

Proof. Let X,D,O, x be as in the statement of Proposition 6.12. Let C > 1 be
chosen such that the vector field X is bounded by C, and let n0 = n0(d,C, 3K, ε),
ρ0 = ρ0(d,C,K, ε) be chosen according to Proposition 6.10. We set N := 2dn0.
Without loss of generality, we also assume that K satisfies K > 2d log(2C) > 0.

We fix a finite cover F = {D1, . . . , D`} of D by compact sets satisfying:

(1) D ⊂
⋃`
j=1 int(Dj) ⊂ O −X1(O);

(2) for each j ∈ {1, . . . , `}, there exists a real number τj ∈ (0, 1), a point

pj ∈ O − X1(O), an open set Uj ⊂ NX,pj (ρ0|X(pj)|), and a compact set
∆j ⊂ Uj , such that the following properties hold:
(a) we have

Dj = {Xt(y) : y ∈ ∆j , t ∈ [0, τj ]}, (6.18)

and

int(Dj) ⊂ {Xt(y) : y ∈ Uj , t ∈ (0, τj)} ⊂ O −X1(O);

(b) for each t ∈ [0, N ], we have PXpj ,t(Uj) ⊂ NX,Xt(pj)(ρ0|Xt(pj)|);
(c) for each t ∈ [0, N − 1], for each t′ ∈ [0, 1], and for each y1, y2 ∈
PXpj ,t(∆j), it holds

d(PXXt(pj),t′(y1),PXXt(pj),t′(y2)) ≤ 2Cd(y1, y2); (6.19)

34



(3) orbX(x) ∩
⋃`
j=1 Uj = ∅;

(4) for each j ∈ {1, . . . , `}, the map (y, t) 7→ Xt(y) is injective restricted to the
set Uj × [0, 1], and thus, it is also injective on the whole set IX(pj , Uj , N);1

(5) there exists a partition {1, . . . , `} = J0 t · · · t J2d−1 such that for each
k ∈ {0, . . . , 2d − 1}, and for each j1 6= j2 ∈ Jk, we have

UX(pj1 , Uj1 , 1) ∩ UX(pj2 , Uj2 , 1) = ∅.

One can obtain F by tiling the compact set D by arbitrarily small cubes as in
(6.18), i.e., obtained by flowing small transversals ∆j under X, for j = 1, . . . , `.
Besides, since we assume that D ⊂ MX , properties (1)-(4) are satisfied provided
that Dj , Uj and ∆j are chosen sufficiently small, for all j ∈ {1, . . . , `}. In par-
ticular, (6.19) is true provided that Dj and ∆j are chosen small enough, for all
j ∈ {1, . . . , `}, since X is bounded by C. Moreover, item (5) holds true provided
that the diameter of the sets U1, . . . , U` is small enough, since M has dimension d.

For each j ∈ {1, . . . , `}, and for each i,m ≥ 0, we set

VXj (i,m) := int(UX(Xi(pj),PXpj ,i(Uj),m)).

Each set VXj (i,m) is open: it is the interior of the “tube” obtained by flowing points

in the transversal PXpj ,i(Uj) under X until they hit the section PXpj ,i+m(Uj). We

have the following properties:

• for each j ∈ {1, . . . , `}, the sets VXj (0, 1),VXj (1, 1), . . . ,VXj (N − 1, 1) are
pairwise disjoint;

• for each j ∈ {1, . . . , `}, the orbit orbX(x) is disjoint from UX(pj , Uj , N);
• for each (k1, j1) 6= (k2, j2) with k1, k2 ∈ {0, . . . , 2d − 1} and j1 ∈ Jk1 ,
j2 ∈ Jk2 , we have

VXj1 (n0k1, n0) ∩ VXj2 (n0k2, n0) = ∅. (6.20)

Indeed, the first item is a consequence of point (4) above, the second one follows
from point (3) above, and the third one is a consequence of points (4) and (5) above.

1Indeed, for t > 1, we have Xt(Uj) = X1(Xt−1(Uj)), and Xt−1(Uj) ⊂ O −X1(O).
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Figure 4. Selection of the perturbation times for the different tiles.

Claim 4. There exists λ > 0 such that for each y ∈
⋃`
j=1Dj, there exist j ∈

{1, . . . , `}, z ∈ ∆j and u ∈ [0, 1] such that y = Xu(z), and NX,z(2λ) ⊂ ∆j.

Proof. Let λ1 > 0 be a Lebesgue number of the cover F . We choose λ2 > 0 such

that NX,y(λ2) ⊂ B(y, λ1), for any y ∈
⋃`
j=1Dj , and we take λ > 0 such that

PXz,u(NX,z(2λ)) ⊂ NX,Xu(z)(λ2) for any z ∈
⋃`
j=1 ∆j and u ∈ [0, 1]. The existence

of λ > 0 follows from the compactness of
⋃`
j=1 ∆j and from the fact that X is

bounded C > 0. By the definition of λ1 and D1, . . . , D`, for each y ∈
⋃`
j=1Dj ,

there exist j ∈ {1, . . . , `}, z ∈ ∆j , and u ∈ [0, 1] such that y = Xu(z), and
B(y, λ1) ⊂ Dj . By the definition of λ2, we also have NX,y(λ2) ⊂ B(y, λ1). Then,
by the definition of λ and Dj , and since y = Xu(z) ∈ NX,y(λ2) ⊂ Dj , we deduce
that NX,z(2λ) ⊂ (PXz,u)−1(NX,y(λ2)) ⊂ ∆j . �

For any η > 0, we define a sequence (aη(m))m≥0 inductively as follows:

aη(0) := 0; aη(m+ 1) := 2Caη(m) + η.

Note that limη→0 aη(N) = 0. In the following, we fix η0 > 0 small enough that

aη0(N) < (2C)−Nλ, η0 <
λ

2
.

For each k ∈ {0, . . . , 2d − 1} and j ∈ Jk, the set PXpj ,n0k
(∆j) and the point

Xn0k(x) satisfy the hypotheses of Proposition 6.10. We obtain a vector field Ỹ ∈
X1(M) such that the support of X − Ỹ is contained in VXj (n0k, n0). Moreover,

for distinct choices of (k, j), (6.20) guarantees that the associated perturbations
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will be disjointly supported. Hence, applying Proposition 6.10 over all pairs (k, j)
with k ∈ {0, . . . , 2d − 1} and j ∈ Jk, we obtain a vector field Y ∈ X1(M) with the
following properties:

• the support of X − Y is contained in

2d−1⋃
k=0

⋃
j∈Jk

VXj (n0k, n0) ⊂
⋃̀
j=1

UX(pj , Uj , N);

• dC1(X,Y ) < ε;
• dC1(PXXi(pj),1,P

Y
X,Xi(pj),1) < δ(ε), for all i ∈ {0, . . . , N} and j ∈ {1, . . . , `};

• dC0(PXXi(pj),1,P
Y
X,Xi(pj),1) < η0, for all i ∈ {0, . . . , N} and j ∈ {1, . . . , `};

• for each k ∈ {0, . . . , 2d − 1} and for each z ∈
⋃
j∈Jk ∆j , there exists an

integer n ∈ {1, . . . , n0} such that:∣∣∣∣log detPYXn0k(x),n − log detPYPX
pj,n0k(z),n

∣∣∣∣ > 3K.

Claim 5. For each y ∈
⋃`
j=1Dj, there exist k ∈ {0, . . . , 2d − 1}, j ∈ Jk, and

t ∈ [0, 2], such that y = Yt(w), with w ∈ ∆j and PYX,pj ,n0k
(w) ∈ PXpj ,n0k

(∆j).

Proof. Let y ∈
⋃`
j=1Dj . By Claim 4, there exist j ∈ {1, . . . , `}, z ∈ ∆j

and u ∈ [0, 3
2 ] such that y = PXpj ,u(z), and NX,z(2λ) ⊂ ∆j . We have

dC0((PXpj ,u)−1, (PYX,pj ,u)−1) < η0 < λ
2 , hence y = PYX,pj ,u(w) = Yt(w), for some

t ∈ [0, 2], and w ∈ ∆j satisfying NX,w(λ) ⊂ ∆j . Moreover, X is bounded by
C, hence NX,Pi

X,pj
(w)((2C)−iλ) ⊂ PXpj ,i(∆j), for all i ∈ {0, . . . , N − 1}. For any

i ∈ {0, . . . , N − 1}, by (6.19), and by the fact that dC0(PXXi(pj),1,P
Y
X,Xi(pj),1) < η0,

we have the estimate

d(PXpj ,i+1(w),PYX,pj ,i+1(w)) ≤ d(PXXi(pj),1 ◦ P
X
pj ,i(w),PXXi(pj),1 ◦ P

Y
X,pj ,i(w))

+ d(PXXi(pj),1 ◦ P
Y
X,pj ,i(w),PYX,Xi(pj),1 ◦ P

Y
X,pj ,i(w))

≤ 2Cd(PXpj ,i(w),PYX,pj ,i(w)) + η0.

Thus, for any i ∈ {0, . . . , N − 1}, we obtain

d(PXpj ,i(w),PYX,pj ,i(w)) ≤ aη0(i) < (2C)−Nλ.

Let k ∈ {0, . . . , 2d − 1} be such that j ∈ Jk. We conclude that PYX,pj ,n0k
(w) ∈

NX,PY
X,pj,n0k(w)((2C)−n0kλ) ⊂ PXpj ,n0k

(∆j), where Yt(w) = y. �

We deduce that for each y ∈ D ⊂ ∪`j=1Dj , there exist k ∈ {0, . . . , 2d−1}, j ∈ Jk,
w ∈ ∆j , t ∈ [0, 2], such that y = Yt(w), and there exists n ∈ {1, . . . , n0}, such that

| log detPYXn0k(x),n − log detPYPY
X,pj,n0k(w),n| > 3K.

Since the vector field X − Y has support in
⋃`
j=1 UX(pj , Uj , N), which is disjoint

from the orbit orbX(x), we have Xn0k(x) = Yn0k(x). Moreover, there exists t′ ∈
[n0k − 2, n0k + 2] such that PYX,pj ,n0k

(w) = Yt′(y). We thus have

| log detPYYn0k(x),n − log detPYYt′ (y),n| > 3K.
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We have PYYt′ (y),n = PYYn0k(y),n ◦ P
Y
Yt′ (y),n0k−t′ , with n0k − t′ ∈ [−2, 2]. Recall that

K > 0 was chosen such that K > 2d log(2C). Since Y is close to X, we can assume
that Y is bounded by 2C. We thus get

| log detPYYn0k(x),n − log detPYYn0k(y),n|

≥ | log detPYYn0k(x),n − log detPYYt′ (y),n| − max
u′∈[−2,2]

max
y′∈MX

| log detPYy′,u′ |

> 3K − 2d log(2C) > 2K.

Besides, PYz,n+n0k
= PYYn0k(z),n ◦ P

Y
z,n0k

, hence of the following two cases holds:

• | log detPYx,n0k
− log detPYy,n0k

| > K;

• | log detPYx,n+n0k
− log detPYy,n+n0k

| > K.

In either case, | log detPYx,n′ − log detPYy,n′ | > K, for some n′ ∈ {1, . . . , N}, as
required.

By construction, the support of X − Y is contained in at most N iterates of
O −X1(O) for some trapping region O, and thus, the iterates of O −X1(O) for X
and Y coincide. This implies that the vector fields X and Y have the same chain
recurrent set, and they coincide on this set, which concludes the proof. �

6.1.4. Proof of Theorem 6.3. Let F be a countable and dense subset of M , and
let K = {Dn}n∈N be a countable collection of compact sets Dn, that verifies the
following conditions:

– diamDn → 0, as n→ +∞;

– for any n0 ≥ 1, it holds
⋃
n≥n0

Dn = M .

For each D ∈ K we define the following set

OD = {X ∈ X1(M) : ∃ open set U , X1(U) ⊂ U and D ⊂ (U −X1(U))}.
It is easy to see that OD is open. For any point x ∈ F we define

Ux,D = {X ∈ OD : x /∈ Zero(X) and orbX(x) ∩D = ∅}.
This set is not open. The next lemma gives a criterion for a vector field X to be in
its interior.

Lemma 6.13. Let X ∈ Ux,D and let U ⊂M be an open subset such that X1(U) ⊂
U and D ⊂ (U − X1(U)). Assume that orbX(x) ∩ (U − X1(U)) 6= ∅. Then X
belongs to the interior of Ux,D, in particular, for any Y ∈ X1(M) sufficiently close

to X it holds that orbY (x) ∩D = ∅.
Proof. Observe that the conditions X1(U) ⊂ U and D ⊂ (U − X1(U)) are open.

If orbX(x) ∩ U 6= ∅, we can fix t1, t2 ∈ R such that
(

orbX(x) ∩ U −X1(U)
)
⊂

X[t1,t2](x). We can also assume that this property is open, that is, for any C1

vector field Y sufficiently close to X, it holds

orbY (x) ∩ (U − Y1(U)) ⊂ Y[t1,t2](x).

Since D and X[t1,t2](x) are compact and disjoint, the distance between them is

strictly positive. This implies that for any Y sufficiently C1-close to X it holds
that Y[t1,t2](x) does not intersect D. Since for any Y close to X, U − Y1(U) is a

fundamental domain for the attracting region Y , we conclude that orbY (x)∩D = ∅.
In particular, X belongs to the interior of Ux,D. �
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The proof of the following lemma is the same as Lemma 15 in [BCW09].

Lemma 6.14. The set Int(Ux,D) ∪ Int(OD − Ux,D) is open and dense inside OD.

First, observe that if X ∈ Ux,D then D ∪ {x} do not have any singularity of X.
In particular, the linear Poincaré flow is well defined for any point y ∈ D ∪ {x}.
For x ∈ F , D ∈ K and any K ∈ N, we define:

Vx,D,K :=
{
X ∈ Int(Ux,D) : ∀y ∈ D, ∃n ≥ 1, | log detPXy,n − log detPXx,n| > K

}
.

Using the fact that D is compact, it is easy to see that Vx,D,K is open inside
Int(Ux,D). Proposition 6.12 implies that Vx,D,K is dense in Int(Ux,D). Therefore,
the set

Wx,D,K = Vx,D,K ∪ Int(OD − Ux,D) ∪ Int(X1(M)−OD)

is open and dense in X1(M). Define the set

R0 =
⋂

x∈F,D∈K,K∈N
Wx,D,K .

By Baire’s theorem, this set is residual in X1(M). Let R = R0 ∩ R∗, where R∗ is
the residual subset given by Theorem 6.2.

Let X ∈ R. Consider x ∈ F − Zero(X) and y ∈ M − CR(X) such that y /∈
orbX(x). Since y /∈ CR(X), by Conley’s theory there exists an open set U ⊂ M
such that X1(U) ⊂ U and y ∈ (U −X1(U)) (see for instance chapter 4 in [AN07]).

Observe also that orbX(x)∩(U−X1(U)) is either empty or a compact orbit segment.
Take D ∈ K a compact set that contains y. If its diameter is sufficiently small, we
have that D ⊂ (U −X1(U) and orbX(x) ∩D = ∅.

Hence X ∈ Ux,D. Since X ∈ R0 and by the definition of R0, for every K ∈ N, it
holds that X ∈ Wx,D,K . By the definition of Wx,D,K and since X ∈ Ux,D, we have
that X ∈ Vx,D,K . Therefore, for any K ∈ N, there exists n ≥ 1 such that

| log detPXx,n − log detPXy,n| > K.

We conclude that X verifies the unbounded normal distortion property. �

6.2. Collinearity. Once we have established Theorem 6.3, by combining Proposi-
tion 2.5 and some known generic results one obtains the collinearity of the central-
izer of a C1-generic vector field.

Theorem 6.15. There exists a residual subset of R ⊂ X1(M) such that if X ∈ R
then the C1-centralizer of X is collinear.

Proof. The result follows directly from Proposition 2.5, and Theorems 6.2 and
6.3. �

6.3. Quasi-triviality. By Theorem 6.2, we have that C1-generically all the singu-
larities are hyperbolic. As a consequence of Theorem 4.3, since C1-generically the
C1-centralizer is collinear and all the singularities are hyperbolic, we conclude that
C1-generically the C1-centralizer is quasi-trivial. More precisely, we have

Theorem 6.16. Let M be a compact manifold. there exists a residual subset
R1 ⊂ X1(M) such that if X ∈ R1, then any singularity and periodic orbit of X is

hyperbolic, Per(X) = Ω(X) = CR(X), and

C1(X) = {fX : f ∈ I1(X)}, where I1(X) = {f ∈ C1(M,R), X · f ≡ 0}.
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Proof. By Theorem 6.15, there exists a residual subset R ⊂ X1(M) whose elements
have collinear C1-centralizer. Moreover, by Theorem 6.2, there exists a residual
subset R∗ ⊂ X1(M) such that for any X ∈ R∗, any singularity and periodic orbit

of X is hyperbolic, and Per(X) = Ω(X) = CR(X). Then, R1 := R∩R∗ is residual,
and any X ∈ R1 satisfies the hypotheses of Theorem 4.3, which concludes. �

6.4. Triviality.

6.4.1. C1-generic triviality for systems with a countable number of chain recurrent
classes. We can now conclude the proof of Theorem 6.1. To prove that we need
the following lemma.

Lemma 6.17. there exists a residual subset RCR ⊂ X1(M) such that if X ∈ RCR
and f ∈ C0(M) is an X-invariant function, then f is constant on chain-recurrent
classes.

Proof. By Theorem 1 in [Cro06], there exists a residual subset RCR ⊂ X1(M) that
verifies the following: if X ∈ RCR and C ⊂ CR(X) is a chain-recurrent class, then
there exists a sequence of periodic orbits (O(pn))n∈N that converges to C in the
Hausdorff topology.

By this property, for any two points x, y ∈ C, there exist two sequences of
points (qn)n∈N and (q′n)n∈N, with qn, q

′
n ∈ O(pn), such that qn → x and q′n → y as

n→ +∞. Let f be a continuous function which is X-invariant. By continuity,

lim
n→+∞

f(qn) = f(x) and lim
n→+∞

f(q′n) = f(y).

However, since f is X-invariant and by our choice of qn and q′n, we have that
f(pn) = f(qn) = f(q′n), which implies that f(x) = f(y). �

Proof of Theorem 6.1. Take R := R1 ∩RCR, where R1 is the residual subset given
by Theorem 6.16. Using the conclusion of Lemma 6.17 and arguments analogous to
the proof of Theorem 5.1 we can easily obtain the conclusion of Theorem 6.1. �

Appendix A. The separating property is not generic

In this section we prove that the separating property is not generic. Let M be a
compact, connected Riemannian manifold. Take any Morse function f ∈ C2(M,R)
and let X := ∇f be the gradient vector field which is C1. It holds that X has two
hyperbolic singularities, σs and σu with the following properties:

• σs is a hyperbolic sink and σu is a hyperbolic source;
• W s(σs) ∩Wu(σu) 6= ∅;
• for any C1 vector field Y which is sufficiently C1-close to X, then
W s(σs(Y )) ∩Wu(σu(Y )) 6= ∅, where σ∗(Y ) is the continuation of σ∗ for
the vector field Y , for ∗ = s, u.

We claim that X is C1-robustly not separating. Let U be a compact ball inside
(W s(σs) ∩Wu(σu)) − {σs, σu}. Since compact parts of stable and unstable mani-
folds vary continuously with the vector field, it holds for any Y sufficiently C1-close
to X it holds that U ⊂ (W s(σs(Y )) ∩Wu(σu(Y )))− {σs, Bu}.

Take any ε > 0 and consider the the balls B(σs,
ε
2 ) and B(σu,

ε
2 ). Since U is

compact, there exists TX = T (ε) > 0 such that any point x ∈ U verifies

X−t(x) ∈ B
(
σu,

ε

2

)
and Xt(x) ∈ B

(
σs,

ε

2

)
, for all t ≥ T . (A.1)
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Notice that for any two points x, y ∈ B(σs,
ε
2 ) it holds that d(Xt(x), Xt(y)) < ε,

for all t ≥ 0. Similar statement is true for points in B(σu,
ε
2 ) and the backward

orbit.
Since T that verifies (A.1) is fixed, there exists δ > 0 such that for any x ∈ U

and any y ∈ B(x, δ) ⊂ U , it holds that

d(Xt(x), Xt(y)) < ε, for any t ∈ R.

In particular X is not separating. Also, observe that this holds for any Y sufficiently
C1-close to X. Thus we conclude that X is C1-robustly not separating.

Remark A.1. It is easy to see that the same type of example proves that the
hypothesis of Proposition 3.2 is not generic. We conclude that the hypotheses of
Propositions 2.4 and 3.2 are not generic.
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