Critical Notice of Denis Dutton, The Art Instinct (New York: Oxford University Press, 2009. $15.00 (paperback))

Mohan Matthen
University of Toronto

Denis Dutton’s book The Art Instinct is a rich work of philosophy, a lively and intellectually challenging read. Dutton’s knowledge of art and culture is extraordinarily deep and cross-culturally rich – he is founder editor of the enormously successful cultural news aggregator, The Arts and Letters Daily, has taken sitar lessons while a Peace Corps volunteer in India, has conducted anthropological field work in New Guinea – and this is just to skim the surface. He is also a clear and elegant writer and a passionate communicator. He is thus well-placed to argue powerfully against materialist conceptions of art that restrict it to the capitalist societies of North America and Western Europe, post-structuralist accounts that discount the artist’s role, and the kind of Saatchi-connoisseurship that unduly valorizes whatever might be going on at the moment.

In this book, Dutton argues for an evolutionary conception of the “art instinct”, which is sure to attract the ire of many philosophers and humanists, and he does so passionately, fearlessly, and uninhibitedly. He uses the evolutionary conception to undermine some of the artistic and aesthetics-theory excesses of the twentieth century. What more could one ask from 250 pages? In my comments below, I will question some of Dutton’s argumentative strategies, and use others as foils to my own views. I hope this will not mask my admiration for his achievement. The Art Instinct is a wonderful book, a must-read for anyone interested in art theory or human evolution.

* An earlier version of this paper was given in an Author Meets Critics session at the American Philosophical Association meetings in Chicago, February 2010. I am grateful to Christy Mag Uidhir, Diana Raffman, and Denis Dutton for helpful comments.
I. The Adaptationist Approach

“The evolution of Homo sapiens in the past million years is not just a history of how we came to have acute color vision, a taste for sweets, and an upright gait. It is also a story of how we became a species obsessed with creating artistic experiences with which to amuse, shock, titillate, and enrapture ourselves, from children’s games to the quartets of Beethoven, from firelit caves to the continuous worldwide glow of television screens” (2-3).

The “art instinct” has evolved in us, Dutton says, and is evident in every human culture. Culture-bound conceptions of art that deny this status to some of the products of non-western cultures, simply miss the evolved psychological source of cultural production.

At some level, this should be obvious to anybody who understands the modern theory of evolution. The capacity to make, or at least to appreciate, art is something just about all humans possess and all other living things lack. This in itself demonstrates, in the strict sense of the term, that the art instinct is evolved. It is not something that humans simply learn. Of course, one does have to learn how to appreciate certain art forms and art works – it may not be easy to enjoy Kabuki or Kathakali until one has been schooled. But such schooling takes off from the universal human response to skilled artistic performance. This response is universal not just in the sense that everybody responds to some art, but in the strong sense that all art, however much it may involve culturally specific context, plays to everybody. Not only is art prevalent in every human society; every broad form is universal – decoration, drawing, clothes-making, acting, dancing, singing, instrumental music, story-telling, and so on. Artistic universals are like linguistic universals, though they may not play exactly the same structural role. That humans engage with art is biologically determined: just as much so as it is for them to produce and understand language.

That art is an evolved capacity is not debatable. But some wonder whether the art instinct is selected-for – whether it was an evolutionary adaptation, or merely a side-product of some other advantage. It is here that Dutton’s work goes beyond the evolved-characteristic truism. Art, he says, is not merely evolved: it is a product of
selection. And here he transgresses against conventional wisdom. Here, by way of contrast, is Stephen Pinker’s take on art:

The mind is a neural computer, fitted by natural selection with combinatorial algorithms for causal and probabilistic reasoning about plants, animals, objects, and people. It is driven by goal states that served biological fitness in ancestral environments, such as food, sex, safety, parenthood, friendship, status, and knowledge. That toolbox, however, can be used to assemble Sunday afternoon projects of dubious adaptive significance. (Quoted by Dutton, 95)

Roberto Casati (2009), who confesses to “a general sympathy for an evolutionary approach to culture in general and to art in particular”, takes the same line.

Even if one agrees that the proper explanation of art must use Darwinian resources, one can align oneself on milder positions, and consider artistic phenomena not the effects of adaptations but by-products or consequences of adaptations; one may even deny that the notion of an art instinct constitutes a natural kind.

Dutton’s view, as we shall see, is not only that art is not a by-product, but also that many of the most characteristic features of the human mind were not selected for causal and probabilistic reasoning.

Pinker and Casati are overly influenced by the currently fashionable invocation of “spandrels” – traits or structures that evolved only because they are necessary accompaniments of adaptive traits. Their comments reflect the exaggerated deference that the academic community pays to the well-entrenched, but hugely over-rated, polemic of Stephen Gould and Richard Lewontin (1979) against “adaptationism,” the alleged tendency of evolutionary biologists to ignore causes of evolution other than adaptation as measured by cost-benefit analyses. Gould and Lewontin equate this theoretical stance with the “Panglossian paradigm” – they think it mimics the Voltaire character’s: “Our noses were made to carry spectacles, so we have spectacles. Legs were clearly intended for breeches, and we wear them.” Evolutionary biologists are guilty of just such “inversions of explanation”, Gould and Lewontin say (583).
Gould and Lewontin recommend that wherever possible traits should be regarded as coming in bundles tied together by developmental or genetic constraints. Such bundles contain spandrels, they say. Gould (1997) himself took this recommendation to an extreme.

I am content to believe that the human brain became large by natural selection, and for adaptive reasons—that is, for some set of activities that our savanna ancestors could only perform with bigger brains. . . . Many, if not most, universal behaviors are probably spandrels, often co-opted later in human history for important secondary functions. The human brain is the most complicated device for reasoning and calculating, and for expressing emotion, ever evolved on earth. Natural selection made the human brain big, but most of our mental properties and potentials may be spandrels—that is, nonadaptive side consequences of building a device with such structural complexity.

(1997, 51)

Dutton is justly dismissive of this line of thought:

On the question of which universal human behavior patterns are spandrels, [Gould] drops a few suggestions – the early Holocene invention of writing and reading is one – but he analyzes none. Gould feels no need to defend himself on this issue. (93)

Gould’s explanation of human literacy is no better founded than that of Dr. Pangloss; he offers no account of what savanna capacity was readapted to reading and writing. Nor does he take account of the fact that reading and writing exploit innate modular capacities, as disorders such as dyslexia, aphasia, and alexia demonstrate. (See the memoir on alexia by Canadian mystery-writer, Howard Engel (2008), and the account of reading in Stanislas Dehaene 2009.) Reading and writing are not by-products of high general intelligence, though, of course, they serve high intelligence, and would be worthless, for instance, in cats.

In evolutionary biology, when one considers the evolution of universal traits, natural selection is the null hypothesis. To illustrate what Gould and Lewontin overlook, consider their oracular observation about the human chin: “If we regard the chin as a "thing," rather than as a product of interaction between two growth fields (alveolar and mandibular), then we are led to an interpretation of its origin (recapitulatory) exactly
opposite to the one now generally favored (neotenic)” (1979, 585). This is supposed to refute the appeal to adaptation. But does it?

The issue is this: monkeys and apes have a receding chin; humans do not. Is this because this kind of chin is advantageous to us? Is it added on to the ancestral developmental process expressly for this advantage? – Is it, in other words, neotenic? No, say Gould and Lewontin. The human chin has the shape it has because our jaws are short, compared to our hominin ancestors, and thus the line from brow to mouth to chin is vertical and more or less straight (orthognathous). Thus, they claim, the chin is directly below the mouth because the protrusion of simian jaws has been cancelled – it is a recapitulation of the pre-ape state, not a neoteny.

Actually, the question of neoteny vs recapitulation is irrelevant here. That a trait arose by reversion to an ancestral state does not imply that it is not an adaptation. Why are human jaws shortened relative to those of apes? The answer is that the apes eat things that need to be chewed more than the things that humans eat. Consequently, they have much heavier musculature in their jaws, and the protrusion of their lower jaws enables, moreover, a shearing action. Since humans eat softer things (including meat and cooked grains), the need for this type of structure disappeared, and the protruding mouth disappeared with it. Gould and Lewontin are right to say that there is no advantage, as such, in having a chin directly below the mouth. But they do not give full weight to the fact that the chin is a part of a complex structure that serves adaptive ends. Apes need prominently protruding jaws, and they have them; consequently, they have a receding chin. Humans do not need such jaws, and have either lost them (recapitulation) or gained shorter ones (neoteny). Perhaps this shows that adaptation is not omnipotent – the chin was forced on evolution when it shortened the jaws. It illustrates, nonetheless, how natural selection is omnipresent. Gould and Lewontin want us to think of spandrels as non-adaptive consequences of constraints, and they seek thus to de-emphasize adaptation. It is, therefore, more than just a shift of emphasis to point out that spandrels are consequences of adaptation under constraint.
Dutton offers a subtle, if rather compressed, account of function in this sort of integrated system. The cooling system of an internal combustion engine does not power the drive-shaft of a car, he points out, and so it doesn’t contribute directly to the primary function of the engine. Nevertheless: “It is as much an intrinsic part of the design of the engine as, for instance, the heating and cooling systems of the human body” (97). Pushing this “a step further”:

Suppose water used to cool a car engine is diverted into a second, smaller radiator with a fan in order to heat the driver/passenger compartment. Are we now justified at least in calling the car heater a by-product of the system? The answer again is no: rather than being an extraneous epiphenomenon, the heater is an entirely calculated way of using what really is a by-product (excess engine heat) for the benefit of the driver, satisfying his desire to stay warm. (ibid.)

It is in this sort of complex inter-relationship of functions that we should understand the functionality of the art capacity. Do not ask: How does art lead to increased reproductive fitness? Ask rather: What role does art play in the genetically inherited lifestyle that leads to increased fitness in humans? Do not therefore dismiss layered contributions as “by-products” or “spandrels”.

Now, the adaptive evolution of the art instinct is thought to present a problem for theorists. Its exercise takes time and energy that could have been devoted to hunting, child-care, food-preparation, vigilance against predators, and so on. Moreover, it is expensive. Dutton says about language:

It is inadequate to analogize language only to a tool – say, a bread knife or the assorted blades of a Swiss Army knife. If knives are the analogy, language is better thought of as a saber with a jewel-encrusted hilt and a blade with intricate gold inlay. You are free to whittle a stick or cut bread with such a knife, but its meanings and uses extend far beyond utility for survival. (146)

Art is the same: it is extravagant in ways that do not contribute to survival.

My approach to this problem is summarized by two observations. First, humans are specialists. Some animals take care of all of their own needs. Humans do not. They
band together and each produces more of something than s/he needs for her/himself. S/he thus provides for others, who in turn provide her with what s/he does not produce. Specialization has a group-selective advantage in the following sense: if one belongs to a group that specializes and divides labour according to specialization, one will be fitter than if one belonged to a group in which every member produces only for him/herself. For this reason, there will be selection for social tendencies. (There is a problem here about free-riding, but it is not relevant to the art instinct in particular.) Assuming that art is valuable to the group, then, one would expect that there will be art specialists. The supposed problem of time and energy that could have been devoted to foraging, childcare, etc. is taken care of by division of labour. Second, art will develop if groups that have it are fitter on average than groups that do not. If this were so, it would follow that the resources devoted to art are not a waste. The upshot of my two observations is that we do not need to explain the art instinct by invoking evolutionary benefits that accrue to artists individually, except insofar as they belong to a group that is on-average fitter. I will call my approach (slightly misleadingly perhaps\(^1\)) the Group Selection Hypothesis (GSH).

Now, one can add to GSH the further claim that some people are genetically better-equipped than others to be producers of art. But this is not an essential part of the hypothesis. All that is needed is (a) that art is good for the group, and (b) that the group divides labour and specializes. Heritable variance with respect to artistic ability is not needed for this, no more so than it is needed to explain a class of shepherds or weavers.

Of course, GSH says nothing about why or how groups that are art-oriented are fitter than those that are not. It would certainly be illuminating to have an account of this. But evolutionary biology cannot provide such an account unassisted. The reason the group selection hypothesis is prima facie plausible is not that we know how art

\(^1\) I assume that it is the social behaviour of individuals that is the target of group selection, not any property of groups. Social organization, which ensues from this kind of behaviour, benefits the individuals who behave in this way.
provided groups of humans an advantage. The reason to consider it seriously is that in the face of a universal trait, natural selection is the null hypothesis. Group selection is well suited to explaining how costs undertaken by individuals on behalf of a group can turn out to be net benefits because of the benefits these individuals gain by being a part of the group. GSH simply subsumes art under this explanatory rubric.

II. Sexual Selection

Given what I said about natural selection in the preceding section, I must now record a disappointment – Dutton does not favour the null hypothesis! For though he acknowledges the role of natural selection in forming many of our aesthetic responses, he opts to explain the art instinct by sexual selection of a special form. Here, he follows Geoffrey Miller of *The Mating Mind* (2000a) who attempts to explain the evolution of “luxury behaviors like conversation, music, and art” by mate-selection based on indicators of fitness. Miller concedes that: “Of course, about 90 percent of our psychological adaptations evolved through standard natural selection and social selection to solve routine problems of surviving and living in groups” (*ibid*, 133). Thus, his thesis, effectively adopted by Dutton, is that the “luxury” behaviours just mentioned evolve differently. In my view, this is an unnecessary wrinkle.

Classically – i.e., in Darwin and in R. A. Fisher (1930) – sexual selection was thought to arise when organisms select mates on the basis of their fitness. Females invest more in each offspring they produce, and hence have an interest in producing only offspring of maximal fitness. To achieve this end, they must choose mates of maximal fitness, and they develop the means to recognize fitness. According to Fisher (137), the result, though beneficial to some individuals in the short run, is “runaway” selection. Here is a helpful exposition of the argument by James and Carol Gould (1989):

> The process begins with a slight adaptive dimorphism on the part of a few males – something like increased size. . . . Females . . . evolve genes that encourage them to prefer males with this dimorphism . . . Their offspring reap the triple benefit of the adaptiveness of the dimorphism itself, of sons that will be more attractive to females, and of daughters that will select mates with the three-way edge. As the proportion of
males with the dimorphism and females that prefer it increases in the population, selection for the character and its choice increases, and larger dimorphisms and stronger preferences will be favored. The process goes on and on until the dimorphism is exaggerated beyond all reason and becomes a substantial burden. (ibid, 183)

As can be seen, the argument was classically applied to easily perceptible dimorphisms that are, moreover, directly advantageous to begin with, but deleterious in the extreme form.

Amotz Zahavi’s (1975) Handicap Principle arises from an application of signalling theory to the above reflection. What is required for successful mate-choice is that females be able to recognize fitness in males (and vice versa, to the extent that males have an interest in choosing fit females). But fitness is not always the result of directly perceptible characters such as size. Health, intelligence, and resistance to disease are fitness-increasing, but not easily perceived. Thus, females need to fasten on characteristics that are not fitness-endowing in themselves, but are rather reliable indicators of fitness. The trouble is that if such characteristics come cheap, unfit individuals will develop them in order to mimic fit individuals, and thus the indicator will lose its reliability.

To avoid false advertising, the fitness indicators fastened upon by females must be “expensive” to produce – they must be indicators that only fit individuals can afford to produce and display. According to Zahavi, the best such indicators are those that actually reduce fitness.

An individual with a very good genotype but without a handicap is certainly fitter than a handicapped individual which otherwise possesses the same genotype. But since an individual without the handicapping marker does not advertise its quality, a potential mate cannot spot it. Females which choose by a sexually selected character compromise. . . Sexual selection proceeds in producing an effect, as long as females benefit more from the assurance of the quality of their mates than they lose by mating with a handicapped mate, and as long as the males can survive the handicap. (ibid, 207-208)
Zahavi points out that many dimorphisms are of this sort: colourful male plumage that reduces camouflage, sexual displays that endanger their performers, occupancy of territory that is highly contested, and so on. Organisms that are able to survive despite such costly displays are unlikely to be burdened by deficiencies that they would pass down to their offspring. They are unlikely to be diseased, short-sighted, or weak.²

Zahavi’s ideas were enriched by the idea that fitness-indicators have evolved to be “condition-dependent” – i.e. to reflect how well an organism is faring in its environment, which is partially dependent on its genetic fitness and partly on its circumstances (Locke Rowe and David Houle 1996). Mate-selection by females is for a constellation of factors that includes strength, fecundity, resistance to disease, and contributions to offspring nurture. None of these traits is directly observable. So they evolve observable traits that develop by drawing resources from the organism’s condition. Condition-dependent traits are fuelled by condition, hence they advertise good condition. They will therefore be subject to sexual selection. Mate-selection might be rank-ordered: the selecting organism goes down a list of mates ranked by their condition-dependent traits until it arrives at one not taken by somebody else. As Dutton puts it, “Each to his own level of competence: that is how assortative mating works” (148). Under these conditions, condition-dependent traits get exaggerated – they become bigger and more complex, drawing more and more from condition.

Now, mate-choice for a trait makes sense only where there is genetic variance of fitness. If two traits are equal in fitness, it makes no sense to choose a mate for one of them. For this reason, fitness variation is a necessary condition for sexual selection. However, natural selection tends to diminish variation in fitness. Thus it is not clear why there is sexual selection. (This is sometimes called the “lek paradox”.) The correct

² I have deliberately avoided the usual formulation, namely that handicaps advertise heritable fitness. Let the fitness of a handicapped individual be \((F - H)\), where \(H\) is the reduction of fitness due to the handicap. The handicap gives palpable assurance of high \(F\), which cannot be observed in an unhandicapped individual. However, \((F - H)\), which is the handicapped individual’s heritable fitness, remains unobservable.
response is (as in footnote 2) that the point of mate-choice is not so much to probe for optimal adaptative fitness, but to check for inheritable defects. Thus, mate-choice focuses on traits that indicate an absence of defects. Mutations are one kind of defect, since they are generally deleterious. Thus, sexual selection should operate on traits that involve a large number of genes and are complicated to produce. These traits are disrupted by mutations (Møller and Mousseau 2003). Parasites and infections are another class of defect, since they indicate low resistance to disease. Many secondary sexual characteristics are spoiled by parasites (Hamilton and Zuk 1982).

III. Art and Sexual Selection

Dutton’s theory, influenced by Miller, is that the art instinct is sexually selected. (He reviewed Miller’s book in [2000].) Miller’s thesis takes off from a simple, yet highly speculative, observation:

> Giving pleasure is generally harder than exploiting sensory biases, because pleasure has to reach much deeper into the receiver’s brain. For this reason, pleasure-giving courtship is probably a better fitness-indicator than courtship that merely activates sensations. (Miller 2000a, 152)

To be chosen by a female, a man must give her assurance that he is fitter than the rest. Giving pleasure is a complex behaviour that would be disrupted by underlying deficiencies. Further, it demands high intelligence. Thus, intelligence is a secondary sexual characteristic developed by males. Dutton’s idea is that the art instinct arises from this secondary sexual characteristic. Let’s call this the Sexual Selection Hypothesis (SSH).

SSH is a rival of the group selection hypothesis (GSH) outlined in section I, above. According to GSH, the supposed disadvantages suffered by artists turn out to be net viability increasers in the context of the groups they strengthen, and which can hence compensate artists for the deficits they take on to specialize in art production. According to SSH, these disadvantages are viability reducers that advertise the absence of underlying deficiencies, and are thus fecundity increasers in a context of mate-
selection by females. If SSH is correct, the art instinct is highly variable among humans (since sexually selected traits are) while (as I have presented it) GSH makes no prediction on this score (though some assume that naturally selected traits are *not* highly variable).

Now, there are a number of empirical hurdles that SSH has to clear. To his credit, Miller (2000b) clearly recognizes this: “The theory of sexual selection for intelligence-indicators might not turn out to have the virtue of truth,” he says, “but at least it has the virtue of falsifiability” (268). In the first place, it has to address the implication of dimorphism with respect to intelligence. Doesn’t SSH imply that males will be intelligent, and females ape-like? Miller denies this consequence, observing that while females drive the evolution of mental powers because they desire intelligence in a partner, intelligence itself is not sex-linked. Thus, “even if sexual selection were driven entirely by female choice favoring highly intelligent males . . . average [intelligence] would increase in both sexes at the same rate” (264-265). As well mate choice is mutual, and men prefer intelligence in women too, at least where long-term relationships are concerned – though since the male investment is lower, women will presumably expend fewer resources on fitness display. So SSH survives this test . . . whew!

However, given the sexual asymmetry that underlies the whole argument about female choice, Miller is obliged to posit some dimorphism – and he does.

Sexual selection theory would predict sexual dimorphism in the public behavioral manifestations of intelligence, because the reproductive benefits of such displays would always be higher for males than for females given some degree of polygyny” [i.e. male promiscuity]. . . Demographic data on the production of costly, difficult, public displays of intelligence such as painting pictures, writing novels, producing jazz albums, and publishing philosophical speculations (!) reveals a very strong dimorphism, with males producing about ten times more displays than females, and male display rates peaking in early sexual maturity. (2000b, 265)

Here then are some acknowledged consequences of Miller’s thesis:
(1) Being all indicators of fitness, characteristics such as size, good looks, and resistance to disease are strongly correlated with advanced capacities for language, art, philosophy, music, generosity, creativity, and humour (Miller 2002b, 262).

(2) Fit males are much more artistically (and philosophically) active (and fit females are more discriminating consumers of such activity). Such inequalities will persist even if social barriers to female displays were dropped.

(3) Maximal male artistic production occurs during early sexual maturity.

(4) The genetic basis for artistic production is highly variable.

In addition, and for reasons that are implicit in the above argument, Miller (and thereby Dutton) is committed to the idea that artistic activity is a fitness-handicap in males, and that for this reason, artists who survive thereby demonstrate overall fitness, including physical fitness. It is not at all clear to me that (or why) anybody would want their aesthetic theory to be held hostage to such propositions. GSH is not committed to these questionable empirical claims.

The underlying presupposition of SSH is that artistic display, together with large vocabulary size, verbal expressiveness, engagement with abstract problems, are all used as indicators of a relatively unmutated genotype. They indicate this because they are complicated displays the only function of which is to indicate an unmutated genotype. In themselves, such luxuries have no function. Here is Dutton on vocabulary size:

The average speaker of a modern language . . . knows sixty thousand or more separate words, learned spontaneously at an average of ten to twenty every day between the ages of about three years to eighteen. Would survival in the Pleistocene have require and thus enabled the acquisition of such a stupendous vocabulary? Certainly not; and in fact, 98 percent of our speech even today uses only about four thousand words. (147)
This echoes Miller: “Given that the word ‘blue’ exists, why does the word ‘azure’ exist? . . Why . . do we also need ‘cobalt’, ‘sapphire’, ‘ultramarine’, ‘cerulean’, and ‘indigo’?” (2000a, 369). The presumed answer is: “In order to display an undamaged genome.”

This is not a persuasive argument. In the first place, I am willing to bet that most people find the gratuitous use of a large number of word types (or word tokens, for that matter) fatuous. I am not absolutely sure what a woman would think of a man who for no adequate communicative reason used ‘azure’, ‘cobalt’, ‘sapphire’, ‘ultramarine’, ‘cerulean’, and ‘indigo’ on a first date, but I strongly suspect that she would not be inclined to drag him off to bed solely because of his verbosity. My advice would be “Liquor is quicker”.

Secondly, there are good functional reasons to have a large vocabulary, even if you make very little use of most of it. For as E. J. Briscoe (2008) writes:

In a foraging, scavenging or hunter society, the ability to discriminate – and thus name more and more species, according to nutritional value, location, method of capture or harvesting, and so forth – would be of value for survival because it would allow efficient transmission of these skills to kin as well as survival over larger and more varied habitats. . . . It is useful not only to be able to talk about plants in general but also species and subgroups (e.g. by location or edible part) . . . Once we accept such a pressure to name in an increasingly complex and multifaceted environment, then the tendency for there to be smaller numbers of high frequency words of generic reference and a larger number of words with highly specific denotations is just a case of the structure of vocabulary mirroring (our perception of) this environment. (ibid, 70)

This offers a clear functional rationale both for large vocabulary and relatively rare use of many, indeed most, words. We use ‘cerulean’ less often than ‘blue’, because there are fewer cerulean things than blue things; in any case, it is often more salient to us that they are blue than that they are cerulean. Nonetheless, some people do sometimes need to note and to say that something is cerulean. That this happens rarely doesn’t mean that it isn’t important when it happens.
Briscoe also notes that language develops in unpredictable and idiosyncratic ways, both in individuals and in societies, and that successful communication therefore requires that each individual should acquire words that properly belong to the idiolects of other speakers. Effectively, Briscoe brings to our attention how social integration explains the features of vocabulary size and frequency of usage that Miller and Dutton attribute to sexual display.

Of course, the non-superfluous and apposite use of a large vocabulary may well be a sign of high general intelligence. But if this is so, wouldn’t large vocabulary usage equally be useful in shifting you upward in human social hierarchies? Wouldn’t it get you hired in the early Upper Pleistocene equivalent of investment banks and corporate law firms? Doesn’t it equip you for the more supervisory, less specialized, positions in a specialized society? – For a king or lord must know the vocabulary of hunters as well as of cooks and manufacturers. Wouldn’t it then get you better resources to have and to raise children? And wouldn’t your children tend to have not only the same advantage, but a better start on being hired in investment banks and corporate law firms. Of course, general intelligence might be sexually attractive as well. If so, assortative mating may result, which would explain the variability of general intelligence. My point is not that sexual selection is irrelevant here: it is rather that sexual selection can operate on perfectly functional traits.

What about the art instinct? Dutton notes that art works are expensive luxuries. Very true. But art works are not Zahavi handicaps for artists. Rich and powerful people consume expensive works of art – not artists (save for the few who are rich and powerful). Art works may be Zahavi handicaps for these consumers, but clearly not for the artists. Since art must be made before it is displayed, this implies that the creative impulse preceded the handicap (or any other fitness indicator related to its value). Of course, there are humbler forms of art: “story-telling, picture-making, crafting artifacts, music, poetic language, joke-telling, dance, and ordinary banter” (162-163) as practised by the folk for their own amusement (not by elite institutions for the rich). Possibly, sexual selection can explain these. Perhaps then the thesis should be that the art
instinct got started with such demotic performances, and later got specialized. It is not entirely clear that these performances are handicaps, but perhaps they could be taken as condition-dependent indicators. Once institutional art got going, sexual selection can again play a role. As with general intelligence, sexual selection can play a role in maintaining genetic variation for artistic ability – assuming that there is such variation.

The sexual selection approach to art assumes that it is a conspicuous luxury and subsumes it under the only theory of selection that gives selective value to fitness-handicaps. Under this approach, the production of art demonstrates fitness to a potential mate. I have conceded that (subtracting the conspicuous luxury part) this might have some explanatory value for demotic art. The group selection approach assumes that art benefits a social group, and thus enhances the fitness of individuals who belong to the group. However, it is too expensive to produce if everybody has to do so for themselves. Groups best organize the production of art by delegating it to a few, who are provided, in exchange, with the goods that they have no time to produce. Art is possible in groups within which there is specialization. In my opinion, the group selection approach offers an alternative and at a minimum supplementary perspective on the evolution of art, and a clearly superior view of general intelligence, language, etc.

IV. The Cluster Concept Approach

It’s all very well to talk of the art instinct. But what is an instinct for? What is art? Dutton justly lampoons the way that contemporary aesthetics approaches this question.

Aesthetics today finds itself in a paradoxical, not to say bizarre, situation. On the one hand, scholars and theorists have access – in libraries, in museums, on the Internet, firsthand via travel – to a wider perspective on artistic creation across cultures and through history than ever before. . . Against this glorious availability, how odd that philosophical speculation about art has been inclined towards endless analysis of an infinitesimal class of cases, prominently featuring Duchamp’s readymades or boundary-testing objects such as Sherrie Levine’s appropriated photographs and John Cage’s 4’33”. (50; = 2006, 368)

He says:
If you wish to understand the essential nature of murder, you do not begin with a
discussion of something complicated or emotionally loaded, such as assisted suicide or
abortion or capital punishment. Assisted suicide may or may not be murder, but
determining whether such disputed cases are murder requires first that we are clear on
the nature and logic of indisputable cases; we move from the uncontroversial center to
the disputed remote territories. The same principle holds in aesthetic theory. (50; =
2006, 368)

And:

Too many disputes in art theory tiresomely rehash the artistic status of amusing
modernist provocations, such Andy Warhol’s signed soup cans or John Cage’s sitting at a
piano with a stopwatch. We need first to focus on what makes La Grande Jatte or Anna
Karenina or the Chrysler Building art. (4)

These are powerfully expressed opinions, and I sympathize with them completely. But I
do not entirely understand Dutton’s own approach.

Dutton proposes a “cluster definition” of art – one in which a list of properties of
artworks figures. (See below.) The list functions as a kind of score-keeper. No property
on the list is a necessary condition of being an artwork, but one might assign it a score
for how well it exemplifies each property, and it will count as an artwork if its score
reaches a certain threshold. The way that Dutton (196-201) applies his definition to
Duchamp’s Fountain is instructive. Thus:

1. Direct pleasure No: but exhibiting it is a kind of joke.
2. Skill and Virtuosity No: but exhibiting it in a museum is very clever.
3. Exemplifies a recognizable style No.
4. Novelty Yes (but only as an art exhibit\(^3\)).
5. Affords opportunity for criticism Yes (but only as an exhibit).
6. Representation No, but exhibiting it means something.
7. Focus of interest is removed from ordinary life Yes, as an exhibit.

\(^3\) The parenthetical evaluations are mine, not Dutton’s.
8. *Expressive individuality* Yes, as a gesture.

9. *Emotional saturation* Yes, as a gesture.

10. *Intellectual challenge* Yes, as a gesture.

11. *Institutional acceptance* Yes (but only in an exhibition, not in the Men’s).

12. *Imaginative experience* No.

In summary, “On a numerical calculation of items on the cluster criteria list . . . the answer is a resounding ‘Yes . . . ’. Nevertheless, Dutton says, *Fountain* is an anomaly. Its refusal to engage our evolutionary response-system for art challenges the *raison d’etre* of art. “As an art-theoretical gesture, it is a work of incandescent genius.” But it neither falls under a pre-established genre, nor establishes a new one: “like jokes that can only be laughed at once, having been done, [readymades] cannot be done again with anything like Duchampian impact” (201). The 90 notorious cans of Piero Manzoni’s shit (201-202), one of which fetched the artist $61,000 from the Tate Museum, are full of . . . it.

This is not a bad result. The cluster definition has eliminated a lot of rubbish that some influential people take seriously. (Do the excesses of abstract modernism fall to the cluster definition? By my reckoning, the works of Barnett Newman get by only on two questions, 3 and 11.) Still, cluster theories are generally resorted to when a word, such as ‘game’, seems to be used in multiple, overlapping but confusingly diverse ways. They try to capture the extension of a term in such confusing situations. When usage changes, it appears that such definitions ought to be modified. This raises a question: When experts purchase Manzoni and Newman and put them on display in important galleries, should we let a positive answer to question 11 over-rule the rest, or should we insist that Dutton’s cluster definition has normative force, and that it shows why the experts are wrong? Both answers are unsatisfying. On the one hand, it seems clear that even curators at Tate Modern can be wrong. On the other hand, it is not clear whence the normative authority of extension-capturing definitions flows.
CRITICAL NOTICE OF DUTTON: THE ART INSTINCT

On the other hand, evolutionary accounts do seem to have normative consequences. Consider, for example, the following argument:

A. The human hand was selected for grasping (among other things).

B. Therefore, grasping is a function of the human hand.

C. Anything that is unable to perform one of its functions is ceteris paribus a bad exemplar of its kind.

D. Therefore a hand that cannot grasp is (at least in that respect) a bad (i.e., diseased or deficient) hand.

This argument is widely thought to be effective, provided, of course, that ‘bad’ in C and D is not taken as having moral connotation – a bad hand is not a bad thing as such. If art was selected for something, then, art works that fail to perform that thing must be bad art.

Dutton claims that art has an evolutionary function – it may be a bit more complicated than this, but it has something to do with advertising health and fitness. And he uses this claim normatively. He argues, first, that this function “makes it impossible to take bad poetry and transform it into good poetry willy-nilly claiming that the author meant a bad poem ironically” (175). Pace the “intentionalist fallacy”, the artist’s intentions are relevant to assessing art because the artist’s intentions are relevant to his or her fitness. Second, he argues that forgeries are aesthetically worthless because “works of art are skill displays, Darwinian fitness tests . . . that emerged in sexual selection” (188). In forgery, the artist conceals his authorship. So, if we want to assess van Meegheren’s Christ at Emmaus as art, the fact that it is self-defeating as a “Darwinian fitness test” trumps the cluster definition.

This is an unresolved tension, it seems to me, in Dutton’s book. Evolutionary accounts are functional, and have normative consequences. Cluster-concept definitions attempt only to capture extension, and don’t have normative consequences. Why give a cluster definition, when the evolutionary account suggests a functional approach?
V. REFLEXIVITY

Putting this worry to the side, I’ll conclude by pondering an objection to the cluster concept raised by Dutton himself, and his response.

Consider . . . a case that has been repeatedly brought up for discussion by my students: sporting events such as a World Cup final in soccer or the American Super Bowl. . . [T]hey would seem to fulfil my criteria for (1) pleasure, (2) skill, (5) criticism, (7) special focus, and perhaps (9) emotional saturation. . . . The reason to resist calling such games works of art has to do with the absence of what must be weighted as one of the most important items on the list: (12) imaginative experience. For the ordinary sports fan who cheers the home team, who actually wins the game, not in imagination, but in reality, remains the overwhelming issue. . . Were sports fans authentic aesthetes, . . . they would care little or nothing for scores and results but only enjoy games in terms of style and economy of play, skill and virtuosity, and expressiveness of movement. (62)

This seems right – indeed it would seem that in addition to the criteria Dutton mentions, games would also score well on criteria 3, 4, 8, and 10 – 9 out of 12 is not bad. Still, Dutton insists that these characteristics are trumped by criterion 12, surely an odd way to apply a cluster criterion.

What the aesthete cares about, Dutton tells us, is qualities of the art object itself. Here are two further examples that illustrate the point. Dutton asks us to imagine a drug which when taken produces the same emotional and aesthetic experience as a work of art – perhaps a pill that produces “the exact same emotional feeling that you get from listening to [Brahms’s Fourth Symphony].” “Can you imagine taking the pill in order to save the expense of concert tickets?” he asks (234). No, he replies, for “we want feeling from art, but not as an end for which the art is a means: with art, the means is the end itself.” This is very much of a piece with the reflection on spectator sports. Your enjoyment of Brahms is non-fungible – that is, it is not exchangeable for the effects of a pill that gives you the same enjoyment. Spectator sports, by contrast, are fungible – you enjoyed the game your team won, but you would have been just as satisfied with any other win.
Pornography evokes a similar thought. The consumer of pornography may care about the aesthetic qualities of the material, but offered a pill (or a different pornographic work) to replicate the effect, he might not object too strongly. Moreover, as Dutton tells us: “Although love is the most pervasive theme for representative arts everywhere, explicit eroticism does not tend to figure importantly in the greatest masterpieces” (238). Dutton subsumes this to the idea that great art must have serious content: it does not attain greatness through “prettiness or attractiveness”, he rightly says. I don’t think this tells us enough about pornography – which need not be pretty or attractive in any case. I think that the problem is this: even when erotica are artistic – think of Turkish miniatures or Japanese woodcuts – they have too direct an effect on sexual response, and this distracts the viewer’s attention away from the work itself. Jerrold Levinson (2005) writes: Pornography “induces you, in the name of arousal and release, to ignore the representation as as to get at the represented” while erotic art “induces you, in the name of aesthetic delight, to dwell on the representation and to contemplate it in relation to the stimulating or arousing qualities of what is represented.” I agree, and add that erotic art tends not to be great art – no, I do not think that The Origin of the World is great art; clever titles often mask inferior art – because the more erotic it is, the more difficult it is for the viewer to treat it in Levinson’s second way.

Words, music and other potential vehicles of art can have an effect on evolved responses. But this is not sufficient to make them art. What makes them art is their own intrinsic interest as evokers of evolved emotion. Art arises not from just from its effect on evolved responses, but from the conjoined human ability to adopt higher level intentional attitudes – to speak about words, to think about thoughts, and generally to represent representers. It is these recursive abilities that gives the symbol its power. This ties the emergence of art to the emergence of recursive thinking and language.

4 See Mag Uidhir 2009 for a different, perhaps better, way of thinking about pornography, which also implies its non-reflexivity.
Linking art to recursion has one interesting consequence. Recursion and language emerged somewhere between fifty and one hundred thousand years ago. Aesthetic impulses, such as those expressed in Acheulean handaxes, emerged a little more than 1.5 million years ago. So we should not regard these handaxes as works of art – these objects appealed to *Homo ergaster* aesthetic (perhaps one should say ‘proto-aesthetic’) responses, but they did not induce their consumers to dwell on their relationship to the responses they aroused. *H ergaster* was capable of communication, but not language: for exactly the same reasons, it was capable of decoration, but not art. Neither Dutton’s cluster concept nor his evolutionary account accommodate this conclusion.

To conclude: Dutton’s bold invocation of sexual selection to explain art probably has some validity, at least with regard to the demotic origins of art, though I have argued that group selection must also have played a role. Either way, art has an evolutionary function, and this function could be the source of critical norms. These are important contributions made by an important book.
CRITICAL NOTICE OF DUTTON: THE ART INSTINCT

WORKS CITED

