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Abstract—Power electronic circuits exhibit nonlinear dynamical 
behaviour due to their inherent inhomogeneity and switching. 
Among power electronic converters, the DC/DC buck converter 
is studied with constant-frequency pulse-width modulation 
feedback control in continuous conduction mode. Phase-space 
and time-domain plots for several periodic and chaotic orbits are 
presented. The bifurcation diagram is studied together with 
periodic orbits and chaotic behaviour of the circuit. Several 
simulation methods including exact solution and simulation in an 
EMTP-type program are used and the importance of accurate 
modeling is justified. Finally, a method for computation of 
Lyapunov exponents in discontinuous systems is reviewed and 
implemented. 

Index Terms—Bifurcation diagram, buck converter, chaos, 
Lyapunov exponents, symbolic analysis, transient simulation. 

I. INTRODUCTION 
OWER ELECTRONICS has changed the way electric 
energy is used and processed. DC/DC converters that are 

used to regulate and step down (buck converters), step up 
(boost converters), or both step down and step up (buck-boost 
or Ćuk converters) are among the most-widely used power 
electronic circuits. One of the most important characteristics 
of power electronic circuits is their highly nonlinear 
behaviour. This nonlinearity is due to both nonlinear elements 
used in these devices (e.g., diodes, BJTs, transformers, and 
control circuitry employed such as comparators and pulse-
width modulators) and the switching operation, which changes 
the topology of the circuit [1], [2]. 

The traditional method for dealing with systems with slight 
nonlinearity is to linearalize the system equations around the 
operating point. This technique, however, is good only for a 
small neighbourhood of the operating point, which in turn 
causes difficulties in simulation of a nonlinear circuit in its 
entire operating range, and is not suitable for modeling of 
switched-mode DC/DC converters that are both nonlinear and 
time-varying dynamical systems. Other efforts for devising 
conventional linear models for power electronic circuits, such 
as state-space averaging, can only represent the details of the 
behaviour of the system to a certain harmonic order [3]. 

The behaviour of an electrical circuit can be characterized 
in its steady-state, if any, or in the transient state. In its steady 

state, an electrical circuit can exhibit one of the following four 
behaviours [4]: (i) point stability, (ii) cycle stability, (iii) 
instability (but saturated), and (iv) chaotic stability. In point 
stability, the circuit currents and voltages settle down to a 
constant value. In this case the circuit is called stable and 
representation of the system in phase-space is a single point. 
Most circuits are designed to operate in this mode. In cycle 
stability, the circuit states repeat themselves as periodic 
functions of time with a single period of T, period T and its 
multiples, or some disproportionate period. An oscillator cir-
cuit is perhaps the most used example of this type of be-
haviour. In saturated instability, voltages and currents diverge 
until bounded by an external factor, e.g., limited voltage of the 
power supply. Some circuits with very specific functions, for 
example Schmitt triggers, voltage clippers, and flip-flops use 
this mode of operation. In chaotic stability, the dynamical 
system is divergent but its trajectory is bounded. This fourth 
class is called chaotic behaviour and that trajectory is called 
strange attractor, which arises in many power electronic 
converters, such as buck converter, boost converter, and the 
ripple regulator circuit (a buck converter with constant refer-
ence voltage instead of a PWM feedback control) [5]. 

Existence of chaos in power electronic circuits has 
received great attention during last two decades. Due to their 
simpler structure, the most studied power electronic circuits 
are DC/DC converters. Chaotic behaviour of buck converters 
has been studied in [6]-[9]. A method for controlling chaos in 
the buck converter based on pole-placement is suggested in 
[10]. Boost converters are considered in [11]-[13]. 

This paper presents a study of the chaotic behaviour of the 
buck converter. In Section II a brief introduction to chaos is 
presented. Section III discusses the buck converter and its 
mathematical modeling. Three methods for simulation of the 
buck converter, consisting of the exact solution, numerical 
integration, and simulation in PSCAD/EMTDC program are 
presented in Section IV and results are compared. Lyapunov 
exponents are defined and calculated in Section V. Some final 
remarks in Section VI conclude the report. 

II. REVIEW OF CHAOTIC DYNAMICS 
Chaotic operation is the fourth class of stability of a dy-
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namical system. A continuous system governed by a set of at 
least three first-order, nonlinear, differential equations with no 
external input (autonomous), or of lower order but with an ex-
ternal input such as time (non-autonomous), can exhibit cha-
otic behaviour [14].  

The signals resulting from a chaotic system, although ape-
riodic, are bounded. The behaviour of a system is referred to 
as chaotic if the trajectory of its states possesses three proper-
ties. First, it should show high sensitivity to the initial 
conditions. Even the smallest changes can lead to very large 
differences in the trajectory, although the chaotic system is 
governed by a set of completely deterministic equations and 
even in the absence of noise.  

The second property of chaos is the underlying process of 
folding. While trajectories do not intersect, they are limited to 
a certain area—the strange attractor.  

The third characteristic of chaos is mixing, which means 
trajectories, regardless of the initial conditions, will eventually 
reach everywhere in the phase-space. A more formal defini-
tion is that for any two open intervals of non-zero length, a 
value from one interval maps to another point in the other 
interval after a sufficient number of iterations [15, p. 520], 
[16]. 

Two types of diagrams are frequently used in the study of 
chaotic systems: the phase-space diagram and the bifurcation 
diagram [17]. The phase-space diagram, which is an n-dimen-
sional diagram with n being the number of states of the 
autonomous system, shows the state trajectory of the system. 
For a stable system, the phase-space diagram is just a single 
point. For a periodic system, it is a closed trajectory. For an 
unbounded unstable system, the phase-space diagram is 
divergent, while for a chaotic system, although the phase-
space diagram is divergent, the trajectory is bounded. Such a 
trajectory is non-intersecting [16]. Note that, in general, any 
projection of the strange attractor on a sub-space below its 
embedding dimension becomes intersecting. 

A bifurcation diagram is a visual summary of succession 
of period-doublings. In a bifurcation diagram, the bifurcation 
parameter is plotted on the abscissa and the states of the 
system are plotted on the ordinate. Circuit parameters [8], [11]  
or feedback loop parameters [17] can be chosen as the 
bifurcation parameter.  

There are several methods to characterize chaos. The larg-
est Lyapunov exponent and the information dimension are 
among them [16]. The largest Lyapunov exponent and the in-
formation dimension for the studied buck converter are 0.64 
and 2.21, respectively [18]. 

III. THE SECOND-ORDER BUCK CONVERTER 
A buck converter is a step-down power electronic con-

verter that converts an unregulated DC voltage to a lower DC 
voltage regulated by means of closed-loop feedback operation. 
The circuit diagram of the buck converter is shown in Fig. 1. 
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Fig. 1.  Schematic of the second-order buck converter with simplified control 
circuitry. 

A. Behaviour of the Circuit 
There are two switches in a second-order buck converter. 

One switch is uncontrolled (diode D) and the other one (S) is 
controlled by the feedback controller. At any time, only one of 
these two switches is in the ON state. A capacitor C is con-
nected in parallel with the load to help maintaining a relatively 
constant load voltage. The series inductor L is used as an 
energy-storing device. During the ON state of S, energy from 
the source E is stored in L. When S is open, the inductor 
delivers the stored energy to the load R.  

The feedback loop tries to keep the load voltage, vout, con-
stant. The load voltage is measured and passed to the 
subtractor block to form the error signal, vcon, which is 
 ( )refoutcon VvAv −=  (1) 

where A is the amplification factor. This signal is then 
compared with a saw-tooth ramp signal with a minimum of 
VL, maximum of VU and period of T, defined as 
 ( ) )1,mod( TtVVVv LULramp −+=  (2) 

If the magnitude of the saw-tooth signal is greater than that 
of the error signal vcon, S is turned ON, otherwise S remains 
OFF. This means that the switch state changes whenever 
vcon = vramp is satisfied.  

Normally, the load voltage is passed through a low-pass 
filter (an integrator, which can be realized as a shunt RC 
circuit) before being fed to the subtractor to reduce its ripple. 
This filter is neglected here for simplicity. 

B. Model of the Circuit 
At each instant, the system state is determined by the two 

state variables v (capacitor voltage) and i (inductor current) as 
well as the state of switch S. The buck converter can be con-
sidered as two circuits multiplexed in time. The differential 
equations for v and i are 

 
( ) ( )

( ) ( ) E
L
ttv

Ldt
di

ti
C

tv
RCdt

dv

ζ+−=

+−=

1

11

 (3) 

where ζ is the control signal and is 1 when the switch is ON 
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and is 0 when the switch is OFF. 
The circuit is simulated using the parameters shown in 

Table I. Input voltage E is used as the bifurcation parameter 
and is varied between 15 and 40 V. 

 
TABLE I:  BUCK CONVERTER PARAMETERS USED FOR SIMULATION 
 

R (Ω) L (mH) C (µF)   Circuit 
Parameters 22 20 47   

VU (V) VL (V) T (µs) Vref (V) A Controller 
Parameters 8.2 3.8 400 11.3 8.4 

 
The differential equations (3) of the circuit are solved in 

the next section by three methods: the exact closed-form 
solution, numerical integration, and PSCAD simulation.  

IV. SIMULATION OF THE BUCK CONVERTER 
Behaviour of the closed-loop buck converter is analyzed 

using three methods. First, the piecewise closed-form solution 
of the system equations is presented [7]. The extreme sensitiv-
ity of the circuit is the main incentive for looking for the exact 
solution of the circuit, so that the round-off error does not 
propagate from one step to another and the most accurate 
results can be obtained. The system equations are also solved 
by numerical integration and by the commercial simulation 
emtp-type program PSCAD/EMTDC. In all cases, circuit 
elements are assumed to be ideal. 

A. Closed-Form Solution 
In this method, (3) is solved for v(t) and i(t) with a constant  

ζ and the closed-from solution is obtained. The switching 
happens whenever the following boundary condition is 
satisfied 
 ( ) ( )crampccon tvtv =  (4) 

where tc is the switching time. Then, the equation is solved 
using Newton-Raphson method with a maximum allowable 
error of 10-10 to find the exact switching time.  

For E equal to 24, 28, 32, and 33 V, phase-space plots 
show period-1, -2, -4, and chaotic behaviour of the system as 
shown in Fig. 2. Figure 3 shows time-domain waveforms for 
chaotic operation for E = 33 V. It can be clearly seen that it is 
possible for vcon to skip some cycles (no switching in a cycle) 
as well as to intersect the ramp voltage more than once in a 
cycle (multiple switchings in a cycle). 

Bifurcation diagram is plotted for input voltage E swept 
from 15 to 40 V (Fig. 4) and is obtained by recording the 
voltage at the end of each period. It clearly shows the 
succession of period doublings.  

The separation between period-doubling points decreases 
with the number of periods. The ratio of successive bifurcation 
parameters approaches the Feigenbaum number, 4.6692···. 
This number, which is believed to be transcendental but not 
yet proved to be so, also arises in many physical systems 
before they enter the chaotic regime. The abrupt transition 
from the period-doubling to chaotic region is related to the 

sharp, singular points in the phase-space diagram of the 
converter. 

B. Numerical Integration 
The equations in (3) are already in the suitable form for 

computer implementation of numerical integration of the state-
space representation. Both Euler’s and trapezoidal methods are 
implemented with a small time-step of 1 µs.  

The results are shown in Fig. 5. The discrepancy observed 
between the results of this method and the exact solution is 
due to the extensive round-off errors, which are magnified not 
only by the sensitivity of the circuit to initial conditions, but 
also by the discretization of time tc, in contrast to the previous 
approach where Newton-Raphson method is used to find the 
almost exact tc. That is, a flow has been converted to a map. 

C. PSCAD/EMTDC Simulation 
The model is also implemented in PSCAD/EMTDC 

electromagnetic transient simulation program [19]. Figure 6 
shows the converter model. The results are used to verify 
those of numerical integration method and to investigate the 
effects of limited accuracy used for tc. Taking advantage of the 
interpolation block in PSCAD [20], tc is found with an 
accuracy of  0.01% of time step. 

Phase-space diagrams for four input voltages values (24, 
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Fig. 2.  Phase-space diagram of the buck converter showing period-1 (E = 24 
V), period-2 (E = 28 V), period-4 (E = 32 V), and chaotic (E = 33 V) wave-
forms obtained form the exact solution. 
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Fig. 3.  Chaotic operation of the buck converter obtained by exact solution 
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28, 32, and 33V) are shown in Fig. 7, which are quite similar 
to those of the exact solution in Fig. 2. This is because of the 
proper selection of time-step as well as approximating the 
witching instant by interpolation. Figure 8 shows time-domain 
voltage waveform an input voltage of E = 33 V. 

V. THE LARGEST LYAPUNOV EXPONENT 
Lyapunov exponent is a quantitative measure of the sensi-

tive dependence of a dynamical system on the initial condi-
tions [21]. It shows the rate of divergence of the system 
trajectories corresponding to close initial conditions. The 

number of Lyapunov exponents for a system is equal to the 
dimension of its phase space. Normally the largest exponent is 
used, because it determines the horizon of predictability of the 
system. In this sense, the inverse of the largest Lyapunov 
exponent is called Lyapunov time, which defines the charac-
teristic folding time of the system.  

The concept of Lyapunov exponents can be considered as 
the nonlinear counterpart of eigenvalues for linear systems. As 
it shows the rate of separation of infinitesimally close 
trajectories, one can predict the behaviour of the system based 
on the sign of the Lyapunov exponent.  

A negative Lyapunov exponent is characteristic of 
dissipative (non-conservative) systems, which exhibit point 
stability. The more negative the exponent, the faster the 
stability. An exponent of −∞ shows the extremely fast 
convergence, and hence stability. A Lyapunov exponent of 
zero is characteristic of a cycle-stable system. In this case, the 
orbits maintain their separation. A positive Lyapunov 
exponent, on the other hand, implies that nearby points, no 
matter how close, will finally diverge to an arbitrary 
separation. This happens in the case of instable as well as 
chaotic system. The distinction between these two is made by 
using the set of Lyapunov exponents. 

The largest Lyapunov exponent is defined as 

 
( )

( )
( ) 











δ
δ

=λ
→∞→δ 0

ln1limlim
00max x

x
x

t
tt

 (5) 

where δx(t) shows the perturbation of the system.  
To overcome the problems in applying the above equation 

to power electronic circuits [22], an approximate method has 
been suggested by Müller [23]. This method is used for the 
buck converter and λmax is calculated from 

 ( )
( )
( )00

max ln1
t
t

Ttt x
x

δ
δ

−
=λ  (6) 

 

 
Fig. 4.  Bifurcation diagram obtained by sampling the output voltage at the
end of each cycle. 
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Fig. 5.  Phase-space diagram of buck converter showing period-1 (E = 24 V), 
period-2 (E = 28 V), period-4 (E = 32 V), and chaotic (E = 33 V) waveforms 
obtained form numerical integration. Note jitters for E = 24 and 32 V. 

Fig. 6.  PSCAD model of the buck converter. 
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While for E = 24 V, the maximum Lyapunov exponent is 
λmax = 3×10-4

 (practically zero) that indicates a stable system, 
for chaotic region, E = 33 V, λmax = 0.68, which is a positive 
number, in agreement with [18]. 

VI. CONCLUSIONS 
In this paper, the buck converter and its operation in the 

chaotic regime is studied using time-domain, phase-space, and 
bifurcation diagrams, as well as Lyapunov exponents. 

The chaotic nature of circuit operation intensifies the need 
for precise determination of the switching instances. 
Therefore, three methods (analytical solution, numerical 
integration, and simulation in the PSCAD/EMTDC program) 
are used to study the circuit and find the most suitable 
combination of simplicity of implementation and accuracy of 
results. Comparing the results, it is found that simulation in 
PSCAD/EMTDC, being a simulation program primarily 
developed for study of rapidly changing phenomena, requires 
less effort, is generally faster, and offers more flexibility in 
tailoring the model to include complex converter and control 
circuitry models. This could establish a new and comprehen-
sive platform to study and detect chaos in power electronic 
circuits.  
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