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ABSTRACT

 Following an idea from [1], based on the Gaussian properties of
eigenimages, this paper presents a new technique for texture
classification using multiresolution eigenimages. The input
image, composed of two textures from the Brodatz album, is
subdivided into N sub-images of fixed size δµδ, which are
blurred with a Gaussian and normalized. The application of
Hotelling transform decomposes each sub-image into δ2

eigenimages. The R largest resulting coefficients can be used for
classification of the texture present in the sub-images.
Classification is done using the fuzzy C-means (FCM) algorithm
and the performance is measured with an appropriate quality
factor. We discuss the successful application of this technique,
as well as the influence of the different parameters of the
classification process on several pairs of textures. Moreover,
combination of Hotelling coefficients obtained with different
values of δ is shown to improve the performance, based on the
idea of analyzing the texture at different levels of resolution.

1. INTRODUCTION

There is a vast literature on texture analysis, as can be judged
from the innumerable applications the texture analysis has in
various fields. We now briefly discuss the categories of texture
as emerged in the literature [2].

Texture analysis techniques are classified basically into four
types of approaches: statistical, structural, transform-based and
model-based [2]. Statistical approaches represent the texture
indirectly by the non-deterministic properties that govern the
distributions and relationships between the gray-levels of an
image. For example, different order of moments in a localized
window can be used to represent smooth, coarse, grainy textures,
etc. Co-occurrence matrices are widely used in the texture
analysis [3].

Structural approaches represent texture by well-defined
primitives (microstructure) and a hierarchy of spatial
arrangements (macrostructure) of those primitives. In these
approaches, spatial structure descriptors are used to identify
geometric primitives and their arrangement in an image.

The first review on texture analysis is by Haralick [4] who
categorized all approaches into the statistical and structural

classes. The next excellent review is by Van Gool et al. [5] who
also classified all the approaches into the same two classes.

The transform-based approach is used to detect global
periodicity in an image by finding high energy, narrow peaks in the
spectrum like in Fourier transforms. This approach is not popular
because of computational complexity. Presently, Gabor filters [6]
and wavelets are popular.

Model-based texture analysis attempts to interpret an image
texture by the use of regenerative image model and stochastic
model [2]. This approach has evolved in recent years as can be seen
in the survey paper of Reed and du Buf [7]. Some techniques using
this approach are: local interaction models like autoregressive
moving average (ARMA) model, Gauss-Markov random field
model [8], and fractal model [9].

In recent years, scale space theory has been recognized as the
vital tool for texture analysis. This is because texture displays
multiscale property. Whatever may be the representation, it is
applicable in different scales. Fractals which represent natural
textures are derived from the decomposition of texture into
multiscales.

The other types of approaches are also coming into vogue. These
include entropy based approaches, neural network oriented
approaches and diffusion based approaches.

Present paper originates from a discussion between the authors
and Prof. Romeny, author of [1], regarding the experiment
described on pp. 187-190 of [1], where the relationship between
Gaussian derivatives and eigenimages is highlighted. Since
eigenimages form a good basis to express an image, it seems that
eigenimages for textured regions should reflect the texture
somehow. Hence the idea to use these eigenimages for texture
classification.

In this paper, we will first review the basic idea of eigenimages.
Then we will show how the eigenimages of textured regions indeed
reflect the texture present in the region. As a logical consequence, a
method will be discussed to use these eigenimages to do texture
classification. The method will then be extended to incorporate
multiresolution property for texture classification so as to handle the
problem of different grain of textures. Eventually, the sensitivity of
the method to the training set will be discussed, which will lead to
some important conclusions.
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2. EIGENIMAGE ANALYSIS

Eigenvectors E of a matrix M are defined as the vectors for
which the following equation holds: EME λ= , with λ being
the corresponding eigenvalue. These eigenvectors are
particularly useful in the Karhunen-Loève Transform (KLT, also
called Hotelling Transform or Principal Component Analysis
PCA). In this transform, the eigenvectors of the covariance
matrix of a vector population are used to define a transform
matrix A, the rows of which are made up of the eigenvectors
weighted by decreasing magnitude of corresponding eigenvalue.
Transformation of the input vectors with this transform yields a
vector population, the components of which are decorrelated,
i.e., the covariance matrix becomes diagonal. Applications
include multispectral image analysis (whereby the vectors are
composed of the different color channels of each pixel) and
binary object analysis (whereby the vectors are composed of the
coordinates of the pixels that are part of the object).

In the case of eigenimage analysis, the image is decomposed
into N small patches of size δµδ. The intensities of the pixels in
the patches are re-arranged as vectors of length δ2. The
covariance matrix, as well as its eigenvectors are calculated as
previously. The re-arrangement of those δ2-dimensional
eigenvectors as δµδ patches are called eigenimages. It has been
shown that, for large values of N, those eigenimages tend to look
like Gaussian derivative functions [1].

In the present paper, our aim is to use eigenimage analysis for
texture classification.

3. EIGENIMAGE TEXTURE CLASSIFICATION

Since the eigenimages form a good basis in which to express the
measurement vectors, it seems that the eigenimages of textured
regions should reflect the features of the texture. To validate this
intuition which was communicated orally by Bart M. ter Haar
Romeny to the authors, the eigenimages of a number of textures
from the Brodatz texture album were calculated and compared.
In Figure 1, the rows correspond to different textures in the
Brodatz  collection, the first column is the  original  image,  and
the subsequent columns are the first 10 eigenimages, arranged in
decreasing values of the corresponding eigenvalues.

From this figure, we can indeed notice a strong resemblance
of the eigenimages to the textures being considered. Hence, it
seems that these eigenimages could be used for texture
classification. One difficulty is that the zero-order Gaussian
derivative usually comes out as the first eigenimage - hence the
nature of the first eigenimage could hardly be used for texture
classification. Using a larger number of eigenimages as such for
texture classification would drastically increase the
dimensionality of the problem: each eigenimage is already of
dimension δ2, which should be reduced.

Dimensionality reduction is typically a task for KLT, since
the relevance of the components of the transformed vectors is
proportional to the corresponding eigenvalues, which are
arranged in decreasing order of magnitude. However, applying a
KLT on the eigenimages would be a double application of the
KLT, since this was already applied to obtain the eigenimages
themselves.

A more sensible approach would be to calculate the transform
matrix A, and then to transform the measurement patches
according to A and do the classification on basis of the first R
components. This, however, poses the problem that the

transform matrix A is calculated for individual textures. To
discriminate between two textures, the training patches should be
coming from both texture populations, so that the obtained
eigenimages result in a transform matrix A that is ideal for
discriminating between the two textures considered.

This approach was implemented using a number of pairs from
the Brodatz album. We describe here the practical implementation
of this texture detection scheme, and emphasize the choices and
parameters it depends on.

A first choice is the selection of two textures to classify. We will
call them T1 and T2 (e.g. Brodatz images D8 and D13). Next, a
number N of δµδ patches is extracted. The patches are designated
as Pi(x, y), i = 0…N-1, while the Brodatz images are Tj(x, y), j = 1,
2. The patches Pi(x, y) are selected from the images Tj with an
overlap of ε pixels:

where ((x))y is the modulo operator, and ≈.∆ (FLOOR) returns the
nearest integer value toward minus infinity. As mentioned in [1],
the observation process is simulated by convolving the patches with
a Gaussian with variance σ. From these patches, covariance matrix,
its eigenvectors, and finally the transformation matrix A are
calculated in the classical way.

Fig. 1. Eight images from the Brodatz album, with their
corresponding first ten eigenimages. Patches were taken to be of

size 12x12, with 6 pixels overlap

Pi(x, y)  = TiMOD (x + ((≈i/2∆))δ (δ  - ✒),
 y +  ≈≈i/2∆ / δ∆ (δ - ✒))

(1)
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Next, K patches are extracted at random and submitted for the
application of transform. Only the first R values are kept for
classification, and classification is done using fuzzy C-means
classifier (FCM). As a summary, the choices are the input
textures, and the parameters are: the number of training patches
N, the patch size δ, the patch overlap ε, the amount of blurring σ,
and the number of features used for classification R.

The extent of success is measured with a quality factor (QF),
which is defined as follows:

where NWP is the number of wrong classified patches and NTP
is the number of total classified patches.

4. MULTIRESOLUTION EIGENIMAGE
TEXTURE CLASSIFICATION

Texture classification is often a resolution-related matter.
Indeed, a feature size that is smaller than the grain of the texture
could not possibly correctly classify a texture. On the other hand,
large texture operators are computationally expensive and do not
locate the texture borders well.

In our idea, we could combine operators on a number of S
levels of scale by applying several operators of different sizes in
parallel, and selecting the classification features as a mixture of
the multi-scale features.

Our current algorithm works with S = 1, 2 or 3 (S is the
number of scales). Of course, δ, ε and σ have to be made
dependent on the resolution level. In our implementation, δ
varies from 12 to 36 (δ1 = 12, δ2 = 24 and δ3 = 36), σ from 5.5 to
17.5 (σ1 = 5.5, σ2 = 11.5, σ3 = 17.5) and ε is 6 in all scales.

Results of the classification with different values of S are
shown in Figure 2. From this figure, the added advantage of the
multiresolution is very evident. It appears also that higher
number of levels should be considered.

The influence of the other parameters is shown in figures 3-6.
In each case, the value of QF is given as a function of the
parameter being analyzed, and this is done for a number of
Brodatz pairs as given in the legend.

From these figures, we notice that the classification is quite
successful, depending on the particular texture pair to be
classified. Surprisingly, there is little influence from the size of
the training set N. This will be discussed further in the article.
Patch size (δ) and overlap (ε) do not have a drastic influence on
the performance either. This is related to the little dependence on
the training set, as will be further discussed.

Fig.  2. Quality of eigenimage texture classification as a function
of the number of multiresolution levels (S) for a number of

Brodatz texture pairs. Other parameters: N = 10000, δ1 = 12, δ2 =
4, δ3 = 36, ε = 6, σ1 = 5.5, σ2  = 11.5, σ3  = 17.5, R = 10, 20 and

30 for 1, 2 and 3 scales respectively

Fig. 3. Quality of eigenimage texture classification as a function of
the size of the training set (N) for a number texture pairs. Other

parameters: δ = 12 & 24, ε = 6, σ = 5.5 & 11.5, R = 20

Fig. 4. Quality of eigenimage texture classification as a function of
the patch size (δ) for a number of Brodatz texture pairs. The patch
size shown is for 1st scale. In the 2nd scale the patch size is double.

Other parameters: N = 10000, ε = 6, σ = half of patch size in 1st

scale, R = 20

Fig. 5. Quality of eigenimage texture classification as a function of
the overlap (ε) for a number of Brodatz texture pairs. Other
parameters: N = 10000, δ = 12 & 24, σ = 5.5 & 11.5, R = 20

Fig. 6. Quality of eigenimage texture classification as a function of
the initial blurring (σ) for a number of Brodatz texture pairs. Other

parameters: N = 10000, δ = 12 & 24, ε = 6, R = 20

The Gaussian kernel size (σ) is more influential. Particularly, it
should not be too big compared with the grain of the texture, and
different texture pairs seem to have a different value of the optimal
kernel size.

All in all, the most important parameter is the number of
different scales taken into account, and to a lesser degree the
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amount of pre-processing (σ). However, the little amount of
influence from the training set deserves further analysis.

5. SENSITIVITY TO TRAINING SET

A surprising fact can be noticed when looking at the
eigenimages produced by the process developed in the previous
paragraphs, as depicted in Figure 7. The eigenimages are
"trained" to discriminate between two specific textures. We
remember (see Figure 1) that the eigenimages for a single texture
carry a lot of information about that specific texture. However,
when we look at the results in Figure 7, we notice that the
specificity to the particular textures being considered is almost
gone! Most of the eigenimages are plain derivatives of the
Gaussian, just as was observed for a non-textured image in [1].

The question arises then as to how sensitive the proposed
algorithm is to the training for a specific pair of textures. To
assess this sensitivity, we took the transform matrix A for the
least-performing pair (D11 and D34: QF = 74%) and used that
for the classification of the best-performing pair (D3 and D6: QF
= 99%). If the results are dependent on the training for a specific
pair, the results we get should be close to or worse than 74%. If
the results only depend on the input pair and not on the training,
the results should be close to 99%. In practice, the results are
99% indeed, showing that the results do not depend on the
training set.

If this is the case, we could just follow the reasoning in [1]
and use the first derivatives of the Gaussian as eigenimages to
compose transformation matrix A. We did a test with this matrix,
and the results are plotted in Figure 8, showing ever better
performance than with training!

As a result, we can skip the whole (computationally
expensive and time-consuming) training altogether and just work
with Gaussian derivatives as characteristic features to do the
texture classification.

One might wonder how the results of the un-trained process
can be better than those of the trained process. The answer lies in
the statistical significance of the training set. A larger training
set would probably make the eigenimages converge more and
more to the Gaussian derivatives. Once we know that, we can
skip this step and go immediately to the results that would be
produced with an infinite training set, namely the Gaussian
derivatives.

6. DISCUSSION AND CONCLUSION

Humans are very efficient in discriminating textures, even at
different resolution levels. Research about the human early
vision system shows that basic preprocessing is done at the level
of the retina by "convolving" the observed intensities with
Gaussian derivatives of different sizes [1]. Human texture
analysis must thus be based on uncommitted (un-trained)
Gaussian-shaped texture analysis.

Our experiments show that it is possible to build a computer-
based algorithm doing just the same: uncommitted (un-trained)
multiresolution texture analysis by transforming the image
patches according to a linear transformation matrix made up of
Gaussian derivative patches. The derivatives to be used are
arranged according to increasing order of the derivative, and not
many derivatives are necessary to come to an efficient system -
typically up to 1st or 2nd order (3 to 6 features per resolution
level).

Fig. 7. Ten first eigenimages for the four pairs of images from
the Brodatz album used in this article. N = 10000, δ = 24, ε = 6, σ

=5

Fig. 8. Quality of eigenimage texture classification with
Gaussian derivatives as eigenimages. Parameters: δ1 = 12, δ2 = 24,

σ1 = 5.5, σ2 = 11.5, R = 20 (N and ε were only used for training and
hence do not play a role anymore)

Although the present article has shown the feasibility of the
uncommitted multiresolution eigenimage approach to texture
analysis, further work will involve: 1) the optimization of the
algorithms, 2) the benchmarking of it in comparison with other
methods for texture analysis, and 3) the application of this method
in real-world situations.
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