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Abstract. Textures have an intrinsic multiresolution property due to their 

varying texel size. This suggests using multiresolution techniques in texture 

analysis. Recently linear scale space techniques along with multiple classifier 

systems have been proposed as an effective approach in texture classification 

especially at small sample sizes. However, linear scale space blurs and 

dislocates conceptually meaningful structures irrespective of the type of 

structures exist. To address these problems, we utilize nonlinear scale space by 

which important geometrical structures are preserved throughout the scale 

space construction. This adds to the discrimination power of the classification 

system at higher scales. We evaluate the effectiveness of this approach for 

texture classification in Brodatz dataset using multiple classifier systems and 

learning curves. Compared with the linear scale space, we obtain higher 

accuracy in texture classification utilizing the nonlinear scale space.  

Keywords: Multiscale, Nonlinear scale space, texture, multiple classifier 

systems. 

1   Introduction 

Texture provides important information in various fields of image analysis and 

computer vision. It has been used in many different problems including texture 

classification, texture segmentation, texture synthesis, material recognition, 3D shape 

reconstruction, color-texture analysis, appearance modeling, and indexing [1-4].  

As texture is a complicated phenomenon, there is no definition that is agreed upon 

by the researchers in the field [2, 3]. This is one of the reasons that there are various 

texture descriptors in the literature, each of which tries to model one or several 

properties of texture depending on the application in hand. 

However, most textures show multiresolution property. In the recent years, 

multiresolution techniques become prevalent in texture analysis due to this intrinsic 

multiscale nature of textures. Some of the most well-known multiresolution 

techniques on texture analysis in the literature are: multiresolution histograms [4] 

including locally orderless images [5], multiresolution local binary patterns [6], 

mailto:mkamel%7d@pami.uwaterloo.ca
mailto:hshabani@engmail.uwaterloo.ca


multiresolution Markov random fields [7], wavelets [8], Gabor filters [8, 9], 

multiresolution fractal feature vectors [10], texton based approaches especially those 

based on MR8 (maximum response 8) filter banks [11], and techniques based on scale 

space theory [5, 12]. 

Despite the success of multiresolution techniques in texture analysis, these 

techniques suffer from high dimensional feature space. This is due to the 

concatenation of the feature subsets obtained from different scales to be submitted to 

a classifier. This high dimensional feature space causes that the classifier suffers from 

the 'curse of dimensionality' [13], i.e., many data samples are required to train the 

classifier with a reasonable performance. This drawback is not usually revealed in the 

literature as the results are reported for sufficiently large training set size.  

Recently, an alternative approach based on multiple classifier systems (MCS) is 

proposed that avoids this problem by submitting each feature subset (obtained at a 

resolution) to a classifier, which is called a base classifiers (BC). Hence, instead of 

fusion of feature subsets, the decisions made by these BCs are combined. The 

improvement in the results is especially significant at small sample sizes, which is 

shown by using learning curves [14]. 

Linear scale space is used in [14] as multiresolution technique. However, linear 

scale space suffers from two main restrictions: first, it blurs all the structures in the 

image without considering their geometrical meaning. This may destroy meaningful 

structures especially at higher scales. Second, it dislocates the structures in the image, 

which is due to homogeneous diffusion of the image at all directions irrespective of 

the structures exist. The first issue is more important in texture classification as we 

would like to use the information at higher scales to improve the performance of the 

classification system [14]; vanishing the structures at higher scales may limit this 

goal.  

We propose using nonlinear scale space here to preserve the structures at higher 

scales and show that this improves the performance of the classification system in 

comparison to linear scale space, especially at small sample sizes. 

2   Scale Space in Texture Classification  

In this section, the theoretical background needed for this research is explained. 

Specifically linear versus nonlinear scale space theory, feature extraction, and 

multiple classifier systems in the context of multiresolution texture classification are 

discussed. 

2.1   Nonlinear versus Linear Scale Space  

A linear scale-space representation of an image can be derived from diffusion 

equation as given in (1) with constant diffusivity  and (time-like) scale variable   

 

 . (1) 



Using convolution integral, this diffusion equation corresponds to the Gaussian 

smoothing of the original image  with varying standard deviations. The variance of 

the Gaussian kernel is, therefore, proportional to the scale parameter (σ
2 

= 2s).  In this 

linear diffusion equation, the intensity of each pixel is evolved by the divergence of 

the radial spatial concentration gradients ( ) of the surrounding pixels.  

Any multiscale signal processing approach that uses this linear (Gaussian) scale 

space filtering suffers from two drawbacks. First, Gaussian smoothing is an isotropic 

diffusion filtering in which two (or more) regions of different structures might merge 

as the scale increases. In texture recognition, this side effect may result in blurring of 

conceptually meaningful structures such as parallel stripes shown in Fig. 1.  

Consequently, the extracted features at higher scales are less informative and reliable. 

Second, due to the dislocation of important structures such as edges, any feature 

extractor has dislocation problem. 

To avoid undesirable blurring and dislocation of important structures (e.g., edges) 

in linear scale space filtering, it is proposed in [15] to control the diffusivity by 

incorporating the evolving image as a feedback in the smoothing process as follows: 

 

 . (2) 

 

In other words, image gradient is used as a measure of edge map. Consequently, an 

edge-stopping function, like what is given in (3), controls the diffusivity at each 

direction in this anisotropic filtering scheme  

 

. (3) 

 

Stopping the diffusion at the direction of gradients higher than a threshold (k) 

prevents the sharing of intensity between two (or more) different regions in the image 

and, hence, avoids their fusion. In this way, as the scale increases, the homogeneous 

regions smooth more while different regions are still separated.  

 

 

 

 

 

 

 
 

 

   

Linear Scale Space 

Nonlinear Scale Space 

Fig. 1. Linear (top row) versus nonlinear (bottom row) scale space on texture D11 of Brodatz 

album (left  texture). Note that as the scale increases (from left to right), linear scale space fails 

to preserve small slant patterns while nonlinear scale space can successfully do it. 

 



2.2   Multiscale Feature Spaces 

Multiscale feature subsets are obtained by computing the N-jet of derivatives up to the 

second order at various scales on patches. This means that in (2), I is a patch whose 

derivative is computed at scale . Hence, features are computed at each scale and 

derivative to generate n-dimensional vectors 

, where ns and nd are the number of scales and derivatives respectively. This 

generates  feature subsets at various scales/derivatives.  

These feature subsets can be composed into a single feature space 

, which is called distinct pattern representation (DPR) [16].  

2.3   Feature Extraction 

As the pixels in each patch are used as the features, the dimensionality of the feature 

subsets (n) depends on the patch size. As discussed in [14], it is beneficial to the 

performance of the classification system to increase the patch size at higher scales. 

The main reason is that at higher scales the coarser structures are emphasized and 

hence, they should be looked at through larger windows. This increases the 

dimensionality of feature subsets at higher scales. There are various feature reduction 

techniques in the literature among which principal component analysis (PCA) is 

adopted in this research. It is shown in [17] that PCA can have an adaptive feature 

extraction effect on multiscale texture classification. That is, at higher scales where 

larger patches are used and, thus, the dimensionality of feature subsets is higher, PCA 

reduces the dimensionality more than lower scales. The reason is that due to fewer 

details at higher scales, fewer components are needed to preserve certain fraction of 

variance of the original space.  

By applying PCA to original DPR, a new DPR y  is obtained in 

an uncorrelated space.  

2.4   Multiple Classifier Systems  

After computation of the DPR in reduced feature space, i.e., y, there are two main 

approaches for submitting the DPR to the classification system. The common 

technique (see, for example, [5, 8]) is to fuse the feature subsets and submit the 

resulting feature space  to one classifier1 , where 

 is the set of class labels for textures. The fusion of feature subsets 

generates a high dimensional feature space that can degrade the performance of the 

classifier  due to the 'curse of dimensionality' [13]. This problem is usually solved in 

the literature by severe dimensionality reduction of feature subsets, e.g., by 

                                                           
1  For simplicity of the notations, here we assume that each feature subset in reduced space has 

a dimensionality of k and that there are m feature subsets. However, as mentioned in 

subsection 2.4, due to adaptive feature reduction effect of PCA, the dimensionality of feature 

subsets are not necessarily the same. 



computation of moments of histogram [5] or estimation of energy at the output of 

filter banks [8].  

An alternative solution is to submit the DPR to an ensemble of classifiers [14]: 

 

 (4) 

 

where,  is the base classifier (BC) trained on each feature 

subset . The decisions made by these BCs are subsequently fused 

to yield a single decision on the class of the pattern submitted for classification. 

Hence, the problem of finding a classifier  is converted into finding an 

aggregation function   for combining the outputs of the BCs such that  

The outputs of the BCs makes a decision matrix, which is also called decision 

profile (DP) as given in (5) 
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In (5), each row is the output of one BC and the DP is divided to some submatrices 

to represent the different derivatives at multiple scales. Here, we assume that the 

outputs of the BCs are continuous values. That is, each base classifier  in the 

ensemble generates a c-dimensional vector .   

The outputs of the BCs can be combined in one stage. However, in multiscale 

analysis, it makes sense to group the different derivatives of the same scale in a first 

stage (as shown in (5) for scale S1) and then different scales in a second stage to see 

the effect of each scale on the overall performance of the system. The structure of the 

proposed two-level classification system is shown in Fig. 2 and can be formulated as: 

   

 , (6) 

 

where  is the first aggregation function and the vector  is defined as: 
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3   Experimental Setup 

To evaluate the performance of the system on the classification of small texture 

patches, we perform some experiments on supervised classification of several test 

images from Brodatz album. These test images are shown in Fig. 3. All textures used 

are homogeneous and have a size of 640 × 640 with 8 bit/pixel intensity resolution.   

Data Preparation and Preprocessing. There is only one texture image per class in 

Brodatz album. Hence, to guarantee disjoint training and test sets, each image is 

divided into two halves. The upper and lower halves are used for the extraction of 

training and test patches, respectively. The patches of 32 × 32 pixels are then 

systematically taken from top left to bottom right of each half with some overlap to 

extract 1769 patches in total from each half. In order to make sure that the 

classification is based on the texture type not the variations in average intensity or 

contrast, the patches should be indiscriminable to their mean and variance. To this 

end, DC cancellation and variance normalization are performed on each patch. 

Computation of Multiscale Patches. The N-jet of derivatives up to the second order 

is used for the computation of multiscale patches. For nonlinear scale space, we set 

experimentally the edge threshold k = 10 and select three scales evenly distributed in 

250 iterations of nonlinear diffusion equation (2). This iteration is performed with 

scale difference ds = 0.25 and central finite difference operation. Similar to what is 

reported in [14], I (zero
th

 order derivative), Ix, Iy, Ixx, Ixy, and Iyy are computed at 

multiple scales for each patch.  

Construction of Training and Test Sets. As described in subsection 2.4 and also 

shown in [14], increasing the patch size at higher scales is beneficial to the 

performance of the classification system. Hence after preprocessing and computing 

the multiscale patches, the patches of 18 × 18, 24 × 24, and 30 × 30 are taken from the 

central part of multiscale patches at scales S1, S2, and S3 respectively.  

Feature Extraction. Principal component analysis (PCA) is adopted as the feature 

extraction technique. PCA is computed over all classes in each scale/derivative 

separately and 95% of original variance is retained in uncorrelated space. As 

discussed in 2.3, fewer components are needed to retain this percentage of variance at 

higher scales due to fewer details available at these scales. 

Multiple Classifier System. A two-stage parallel combined classifier with the 

structure shown in Fig. 2 is used in the experiments. Quadratic discriminant classifier 

(QDC) with regularization at scale S1 performed the best among the base classifiers 

(BCs) tested and hence adopted in our experiments. Regularization at scale S1 is 

required because the dimensionality of feature subsets at this scale (even after using 

PCA) is still high and this degrades the performance of the BC at small sample sizes. 

The mean combiner is used at both stages as it consistently shows good performance 

comparing to other type of combiners over different sample sizes. 



  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The structure of proposed two-stage multiple classifier system. In first stage, different 

derivatives at the same scale are combined. In second stage, different scales are combined.  

 

 

 

 

 

Fig. 3. 4-class (D4, D9, D19, and D57) and 16-class (D3, D4, D5, D6, D9, D21, D24, D29, 

D32, D33, D54, D55, D57, D68, D77, and D84) problems of Brodatz used in the experiments. 

Evaluation. One of the main shortcomings of the papers in multiresolution texture 

classification is reporting the performance of the system at only a single (usually 

large) sample size. This keeps the performance of the algorithm in small training set 

sizes unrevealed. To overcome this problem, we use the learning curves to show the 

classification error of patches at various sample sizes from 10 to 1500. The 

experiments are repeated 5 times on different randomized patches in training and test 

sets and averaged results are reported. The test set size is fixed at 900. 

4   Results 

In this section, we present the results of texture classification using nonlinear scale 

space and two-stage multiple classifier systems. The performance is compared with 

Abbreviations: 
S: Scale 
FR: Feature Reduction 
BC: Base Classifier 
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linear scale space to show how using nonlinear scale space helps to improve the 

results, especially at smaller sample sizes. 

The results for 4-class and 16-class problems using nonlinear and linear scale space 

are shown in left and right graphs of Fig. 4, respectively. The top graphs are for 4-

class and bottom graphs are for 16-class problems of Brodatz dataset. In each graph, 

the thick curve displays the overall performance of the classification system, i.e., the 

output of the second stage in the proposed structure shown in Fig. 2. Thinner curves 

are the intermediate results, i.e., the outputs of the first stage of classification in Fig. 

2, which are the results of combining different derivatives at the same scale.   

Comparing the overall performance of left (nonlinear SS) and right (linear SS) 

graphs in Fig. 4 clearly shows the advantage of using nonlinear over linear scale 

space. The improvement is especially important at small sample sizes and could be 

due to this phenomenon that nonlinear SS preserves the structures at higher scale and 

this adds to the discriminative power of base classifiers at these scales. As can be seen 

from the graphs in Fig. 4, the performance of combined S1 and combined S2 are 

improved in nonlinear SS comparing to linear one. The overall performance is 

subsequently improved. 

To verify the superiority of combined classifiers over combined feature space 

(CFS), which is the common technique in the literature, we here compare these two 

techniques on 4-class problem of Brodatz. Fig. 5 displays these results using CFS. 

Here, the feature subsets from different scales and derivatives are concatenated and 

after feature reduction, the combined feature space is submitted to a single QDC with 

the same regularization parameters as the BCs in Fig. 2. As can be seen from 

comparing Fig. 5 and top right graph of Fig. 4, high dimensional feature space of 

CFS, causes that the single classifier suffers from the 'curse of dimensionality' and its 

performance is significantly degraded especially at smaller sample sizes. If there are 

many data samples for training, we expect that CFS performs asymptotically as good 

as MCS. However, in this example this will happen for more than 1500 data samples 

which is the maximum training set size used in our experiments.  

5   Discussion and Conclusion 

In this paper nonlinear scale space along with multiple classifier systems are proposed 

for texture classification. This is to address the problem of linear scale space in 

blurring and dislocating the important texture structures. Consequently, we obtained 

improvement in classification of Brodatz texture dataset. 

It is shown using learning curves and multiple classifier systems that nonlinear 

scale space can improve the performance of texture classification system especially at 

small sample sizes. This is due to more discriminative power available at higher 

scales of nonlinear scale space comparing to linear one. The improvement of 

performance at small training set size is important in applications where data 

acquisition is cumbersome or costly and the number of data samples for training the 

texture classification system is limited. This is, for example, the case in medical 

applications such as the diagnosis of lung diseases in high resolution CT [12] or liver 

diseases in B-scan images of ultrasound [10].  



It is also shown that multiple classifier systems improve the performance of texture 

classification system based on multiresolution techniques comparing to combined 

feature space.  

 

  

  

Fig. 4. Learning curves for the classification of 4-class (top row) and 16-class (bottom row) 

problems of Brodatz using nonlinear (left) and linear (right) scale space texture classification 

system with the structure proposed in Fig. 2. 

 
Fig. 5. The learning curves for the classification of 4-class problem of Brodatz using combined 

feature space (CFS) technique. These curves should be compared with the ones on top right 

graph of Fig. 4 which are the results for the same problem using multiple classifier systems. 
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